
For permission to copy or republish, contact the American Institute of Aeronautics and Astronautics
1801 Alexander Bell Drive, Suite 500, Reston, VA 20191-4344

AIAA-2000-4763
A Study of a Global Design Space
Exploration Method for
Aerospace Vehicles

Chuck A. Baker Layne T. Watson, Bernard Grossman,
Raphael T. Haftka and William H. Mason
Multidisciplinary Analysis and Design Center for
Advanced Vehicles
Virginia Polytechnic Institute and State University
Blacksburg, VA

8th AIAA/USAF/NASA/ISSMO
Symposium on

Multidisciplinary Analysis and Optimization
6-8 September 2000 / Long Beach, CA



AIAA-2000-4763

STUDY OF A GLOBAL DESIGN SPACE EXPLORATION METHOD

FOR AEROSPACE VEHICLES

Chuck A. Baker�, Layne T. Watsony, Bernard Grossmanz , Raphael T. Haftkax, and William H. Mason{

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles

Virginia Polytechnic Institute and State University

Blacksburg, Virginia 24061-0203

Abstract

The preliminary design space exploration for

large, interdisciplinary engineering problems is of-

ten a diÆcult and time-consuming task. General

techniques are needed that eÆciently and methodi-

cally search the design space. This work focuses on

the use of parallel load balancing techniques inte-

grated with a global optimizer to reduce the compu-

tational time of the design space exploration. The

method is applied to the multidisciplinary design of

a High Speed Civil Transport (HSCT). A modi�ed

Lipschitzian optimization algorithm generates large

sets of design points that are evaluated concurrently

using a variety of load balancing schemes. The load

balancing schemes implemented in this study are:

static load balancing, dynamic load balancing with a

master-slave organization, fully distributed dynamic

load balancing, and fully distributed dynamic load

balancing via threads. All of the parallel computing

schemes have high parallel eÆciencies. When the

variation in the design evaluation times is small, the

computational overhead needed for fully distributed

dynamic load balancing is substantial enough so that

it is more eÆcient to use a master-slave paradigm.

However, when the variation in evaluation times

is increased, fully distributed load balancing is the

most eÆcient.

� Graduate Research Assistant, Dept. of Aerospace

and Ocean Engineering.
y Professor of Computer Science and Mathematics.
z Professor and Dept. Head of Aerospace and Ocean

Engineering, Associate Fellow AIAA.
x Professor of Aerospace Engineering, Mechanics

and Engineering Science, University of Florida,

Gainesville, FL, Fellow AIAA.
{ Professor of Aerospace and Ocean Engineering,

Associate Fellow AIAA.

Copyright c
 2000 by Chuck A. Baker. Published

by the American Institute of Aeronautics and As-

tronautics, Inc. with permission.

1. Introduction

Previous work [1] has shown that the design
space of the HSCT con�guration is complex. Lo-
cal minima occur because the feasible design domain
is nonconvex. Running local optimizations from
a suÆcient number of starting points distributed
throughout the design space requires a large number
of function evaluations and still does not guarantee
that the promising regions of the design space will be
explored. A global optimizer is needed that is able to
judiciously balance the local and global searches, in-
suring a complete space investigation, while keeping
the number of function evaluations to a minimum.

Global optimization in high dimensional spaces
requires many thousands of analyses, and this may
not be possible without parallel computation. For-
tunately, many global optimization algorithms can
take advantage of analyzing many design points in
parallel, thus allowing relatively simple course grain
parallelization. However, the question of how to best
manage the evaluation and distribution of points on
parallel computers is unresolved for exploratorymul-
tidisciplinary engineering design studies. The objec-
tive of the present paper is to explore several options
for distributing the work among the nodes of a par-
allel computer.

Section 2 describes the aircraft design problem
and Section 3 gives the direct search global optimiza-
tion algorithm. Sections 4 and 5 give parallel load
balancing and termination detection strategies. Par-
allel performance results are presented and discussed
in Section 6. Sections 7 and 8 describe a modi�ed,
more aggressive, global optimization algorithm and
its parallel performance. All the results are for large
SGI Origin 2000 systems. Section 9 summarizes the
results.

2. HSCT Design Problem

The design problem considered is the optimiza-
tion of a HSCT con�guration [10], [11] to minimize
takeo� gross weight (TOGW) for a range of 5500
nautical miles and a cruise Mach number of 2.4,
while carrying 251 passengers. A typical HSCT con-
�guration is seen in Figure 1. The choice of gross

1



Figure 1. Typical HSCT con�guration.

weight as the objective function directly incorpo-
rates both aerodynamic and structural considera-
tions, in that the structural design directly a�ects
aircraft empty weight and drag, while aerodynamic
performance dictates drag and thus the required fuel
weight.

To successfully perform aircraft con�guration
optimization, it is important to have a simple,
but meaningful, mathematical characterization of
the geometry of the aircraft. This paper uses a

model that de�nes the HSCT design problem us-
ing the twenty-eight design variables listed in Table

1. Twenty-four of the design variables describe the
geometry of the aircraft and can be divided into six
categories: wing planform, airfoil shape, tail areas,
nacelle placement, and fuselage shape. In addition
to the geometric parameters, four variables de�ne
the idealized cruise mission: mission fuel, engine
thrust, initial cruise altitude, and constant climb

rate used in the range calculation.
For the optimizer used here, upper and lower

bounds had to be set on all n of the design vari-
ables. These bounds form a n-dimensional rectan-
gular shaped set in the design space, referred to as
the design box. In order to ensure that a thorough
design space exploration was being conducted, the

bounds were chosen to include as wide of a range of
designs as realistically possible. The edges of the de-
sign box were set near the limits of physically impos-
sible designs (overlapping geometries, negative chord
lengths) or the assumptions of the numerical analy-
ses being used.

Sixty-eight geometry, performance, and aerody-
namic constraints, listed in Table 2, are included
in the optimization. Aerodynamic and performance

constraints can only be assessed after a complete

Table 1. HSCT con�guration design variables.

Index Description

1 Wing root chord (ft)

2 Leading edge (LE) break point, x (ft)

3 LE break point, y (ft)

4 Trailing edge (TE) break point, x (ft)

5 LE wing tip, x (ft)

6 Wing tip chord (ft)

7 Wing semi-span (ft)

8 Chordwise location of max. thickness

9 LE radius parameter

10 Airfoil t=c ratio at root, (%)

11 Airfoil t=c ratio at LE break, (%)

12 Airfoil t=c ratio at LE tip, (%)

13 Fuselage restraint 1, x (ft)

14 Fuselage restraint 1, y (ft)

15 Fuselage restraint 2, x (ft)

16 Fuselage restraint 2, y (ft)

17 Fuselage restraint 3, x (ft)

18 Fuselage restraint 3, y (ft)

19 Fuselage restraint 4, x (ft)

20 Fuselage restraint 4, y (ft)

21 Nacelle 1 location (ft)

22 Nacelle 2 location (ft)

23 Vertical tail area (ft2)

24 Horizontal tail area (ft2)

25 Thrust per engine (lb)

26 Flight fuel (lb)

27 Starting cruise/climb altitude (ft)

28 Supersonic cruise/climb rate (ft/min)

analysis of the HSCT design; however, the geomet-

ric constraints can be evaluated using algebraic re-

lations based on the 28 design variables.

Methods of varying �delity are used for the

aerodynamic and structural analyses in the con-

straint evaluations. The methods used to calcu-

late the drag components used in the drag calcu-

lation and their corresponding ranges are described

in [6], [7]. The aerodynamics calculations are based

on the Mach box method [4], [3], and the Harris

wave drag code [5]. A simple strip boundary layer

friction estimate is implemented as in [7]. A vor-

tex lattice method with vortex lift and ground ef-

fects included [2] is used to calculate landing angle

of attack. Structural weights are calculated by the

FLOPS [12] weight equations. Each of these anal-

ysis methods uses iterative loops or discretization

methods that can cause di�erences in the computa-

tional time needed to evaluate (calculate the objec-

tive function and constraint values) di�erent HSCT

designs.

2



Table 2. HSCT optimization constraints.

Index Constraint

1 Fuel volume � 50% wing volume

2 Wing root TE � Tail LE

3{20 Wing chord � 7:0 ft

21 LE break within wing semi-span

22 TE break within wing semi-span

23 Root chord t=c ratio � 1:5%

24 LE break chord t=c ratio � 1:5%

25 Tip chord t=c ratio � 1:5%

26{30 Fuselage restraints

31 Wing spike prevention

32 Nacelle 1 inboard of nacelle 2

33 Nacelle 2 inboard of semi-span

34 Range � 5500 nautical miles

35 CL at landing speed � 1

36{53 Section CL at landing � 2

54 Landing angle of attack � 12Æ

55{58 Engine scrape at landing

59 Wing tip scrape at landing

60 TE break scrape at landing

61 Rudder de
ection � 22:5Æ

62 Bank angle at landing � 5Æ

63 Tail de
ection at approach � 22:5Æ

64 Takeo� rotation to occur � Vmin

65 Engine-out limit with vertical tail

66 Balanced �eld length � 11000 ft

67{68 Thrust available � thrust required

3. Lipschitzian Global Optimizer (DIRECT)

The global optimizer selected to explore the de-

sign space is a Lipschitzian unconstrained optimiza-

tion algorithm that (e�ectively) uses all possible val-

ues of the Lipschitz constant [8]. By using di�erent

values of the constant, which can be viewed as an up-

per limit on the variation of the function, equal em-

phasis is placed on the local and global search being

performed by the optimizer. This algorithm is called

DIRECT because the algorithm is a direct search

technique and as an acronym for dividing rectangles,

one of the primary operations in the procedure.

The algorithm begins by scaling the design box

to a n-dimensional unit hypercube. The center point

of the hypercube is evaluated and then points are

sampled at one-third the cube side length in each

coordinate direction from the center point. Depend-

ing on the direction with the smallest function value,

the hypercube is then subdivided into smaller rect-

angles, with each sampled point becoming the center

of its own n{dimensional rectangle or box. All boxes

are identi�ed by their center point and their function

value at that point.

0.05 0.1 0.15 0.2 0.25
Rectangle diameter

3.5

4

4.5

5

5.5

6

f�
c�

Potentially optimal
Not considered

Figure 2. DIRECT point selection.

From there the algorithm loops in a procedure
that subdivides each of the boxes in the set in turn
until termination or convergence. By using di�erent
values of the Lipschitz constant, a set of potentially
optimal boxes is identi�ed from the set of all boxes.
These potentially optimal boxes are sampled in the
directions of maximum side length, to prevent boxes
from becoming overly skewed, and subdivided again
based on the directions with the smallest function
value. If the optimization continues inde�nitely, all
boxes will eventually be subdivided meaning that all
regions of the design space will be investigated. The
algorithm [8] is as follows:
1. Normalize the search space to be the unit hy-

percube. Let c1 be the centerpoint of this hy-
percube and evaluate f(c1).

2. Identify the set S of potentially optimal rect-
angles (those rectangles de�ning the bottom of
the convex hull of a scatter plot of rectangle di-
ameter versus f(ci) for all rectangle centers ci)
as in Figure 2.

3. For all rectangles j 2 S:
3a. Identify the set I of dimensions with the

maximum side length. Let Æ equal one-
third of this maximum side length.

3b. Sample the function at the points c � Æei

for all i 2 I , where c is the center of the
rectangle and ei is the ith unit vector.

3c. Divide the rectangle containing c into
thirds along the dimensions in I , starting
with the dimension with the lowest value of
f(c� Æei) and continuing to the dimension
with the highest f(c� Æei).

4. Repeat 2.{3. until stopping criterion is met.
Two important issues in using the algorithm

are how to determine convergence and incorporate
constraint values. For this study, the algorithm
was run for a �xed number of loops or iterations.

3



Since the purpose of the optimization was to iden-
tify promising regions of the design space, it was
unnecessary to tightly converge to a global opti-
mum. Constraints were accounted for through the
use of a simple penalty function, as follows. Let x be
the 28-dimensional design vector, f(x) the TOGW,
and gi(x) � 0 the constraints in Table 2. The con-
strained optimization problem

min f(x) subject to gi(x) � 0; i = 1; :::; 68;

is converted to the unconstrained optimization prob-
lem

min f(x) + 10

68X

i=1

max
�
0; gi(x)

	
:

4. Load Balancing Strategies

As the potentially optimal boxes are sampled in
their respective directions during the DIRECT opti-
mization, a typically large set of new design points,
or tasks, that need to be evaluated is created. It is
these tasks in this set of designs that are load bal-
anced. Processor communications were performed
in the optimization algorithm through the use of
the Message Passing Interface (MPI) [13], a mes-
sage passing standard. MPI was chosen because, as
a communications protocol, it is platform indepen-
dent, thread-safe, and a widely accepted standard.

In the master-slave implementation of dynamic
load balancing, one processor, the master, makes all
of the calculations for box manipulation in DIRECT
and controls the distribution of tasks to be evaluated
by the HSCT code on the slave processors. The mas-
ter processor begins with the set of all boxes, �nds
the potentially optimal boxes, and then samples in-
side of these boxes to generate the set of tasks. It
then distributes one task to each slave processor.
When a slave processor completes the evaluation of
its task it returns the function value back to the
master and receives another task, if available. The
biggest potential drawback to using this method is
that there is a chance for a communication bottle-
neck caused by slave processors simultaneously re-
questing work from the master. To investigate this
e�ect, a version of the master-slave implementation
was also used that distributes the tasks in bins of
10.

For the static load balancing case, the proces-
sors only communicate with each other when �nding
the set of potentially optimal boxes and initially dis-
tributing the tasks. At the start of a DIRECT loop
each processor �nds its own local set of potentially
optimal boxes. The root processor, P0, gathers all of
the local potentially optimal sets from the other pro-
cessors and �nds the global set of potentially optimal

boxes. This processor creates the set of new tasks
from the global set of potentially optimal boxes. The
new tasks are equally distributed to all of the pro-
cessors and the individual processors evaluate every
task in their set of new tasks. The problem inherent
to static load balancing is that di�erences in evalua-
tion times can cause some processors to �nish their
tasks early and sit idle, while other processors con-
tinue to work on their tasks.

The interprocessor communications used for the
DIRECT box manipulation by the fully distributed
version of dynamic load balancing are the same
as those performed by the static version, with the
added capability of task migration to processors that
have �nished their tasks. The dynamic load balanc-
ing algorithm is based on that of previous work [9],
employing random polling for the redistribution of
tasks and token passing to terminate the load bal-
ancing process. Once task evaluation is started by
a processor, it evaluates a single task and then pro-
cesses any messages received during the evaluation
of the task. The cycle of evaluating and communi-
cating is continued until the processor runs out of
work, in which case it begins sending work requests
to a randomly selected processor either until work is
found or the termination is detected. If a work re-
quest is received by a processor, half of its remaining
tasks are transferred to the requesting processor.

A dynamic load balancing strategy is also im-
plemented that uses threads in the fully distributed
version. Multi-threading in the distributed version
is based on the POSIX (pthreads) package. In this
implementation, one thread is a worker responsible
for evaluating tasks and sitting idle when no tasks
are available. A second thread handles all of the
message passing and processing. By exploiting con-
currency at the processor level, messages can be pro-
cessed at the same time as a task is being evaluated,
instead of the purely sequential operations used by
the distributed version without threads.

In the subsequent discussion, these load balanc-
ing strategies are referred to as static (STATIC),
dynamic load balancing with the master-slave par-
adigm|bin size 1 (DLBMS01), dynamic load bal-
ancing with the master-slave paradigm|bin size 10
(DLBMS10), dynamic load balancing with fully dis-
tributed control (DLBDC), dynamic load balancing
with fully distributed control using pthreads (DLB-
DCT).

5. Termination Detection

The termination detection scheme used for
DLBDC and DLBDCT is the standard token wave
algorithm used in [9]. Suppose there are P proces-
sors. Each processor keeps track of its state in a

4



5 10 15 20 25 30 35 40
Iteration

100

200

300

400

500

N
um

be
r

of
ta

sk
s

Figure 3. History of tasks per iteration.

1.5 2.0 2.5
Evaluation time �sec�

500

1000
1500

2000
2500

3000
3500

4000

N
um

be
r

of
ta

sk
s

1.5 2.0 2.5

Figure 4. Time distribution for evaluated tasks.

local 
ag idle. Initially, the 
ag idle is set to false

if a processor has work or true otherwise. If at any

time a processor receives work, the idle 
ag is set to

false. A token is passed around, in ring fashion, to all

processors. If a processor with idle = true receives

the token, the token is less than P , and there are no

pending requests for incoming work, the token value

is incremented and sent to the next processor in the

ring; if the token received is equal to P , then that

processor terminates, and broadcasts a termination

message to all other processors. If a processor with

idle = false receives the token, the token is set to

zero. When that processor �nishes its work, it passes

the (zero) token along and sets idle = true. After all

the tasks on all the processors have been completed,

the token makes two complete circuits of the ring

of processors, terminating at the end of the second

circuit.

6. Parallel Performance, DIRECT

The parallel runs were conducted on an SGI

Origin 2000 with a total of 256 CPUs. Runs were

made on 4, 8, 16, 32, and 64 processors for each

of the �ve load balancing methods. The DIRECT

optimizer was terminated after 37 iterations, per-

forming 10,077 function evaluations. The history of

total tasks for each iteration is shown in Figure 3.

The �gure illustrates the amount of work that had

to be distributed to the processors during the load

balancing. Figure 4 is a histogram of the evalua-

tion times for the 10,077 tasks. The variation in the

evaluation times is relatively small, with most of the

tasks taking around 1.75 seconds to complete.

10 20 30 40 50 60 70
Number of processors

0.5

0.6

0.7

0.8

0.9

1

E
ff

ic
ie

nc
y

DLBDC

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Figure 5. Parallel eÆciencies.

The parallel eÆciencies for the runs are plot-
ted in Figure 5. EÆciency is calculated relative
to a serial implementation of DIRECT. With static
load balancing, the eÆciency starts high (0.97) for 4
processors and then linearly decreases to 0.83 with
all 64 processors. The master-slave organization
(DLBMS01) of dynamic load balancing starts with
a low eÆciency, and then the eÆciency gradually
increases to be the highest of the load balancing
schemes for 64 processors. The initial low values of
eÆciency are because, even though four processors
are used, only the three slave processors are evalu-
ating tasks. As the number of processors increases,
the increased number of slave processors minimizes
this e�ect. The master-slave organization with a
bin size of 10 (DLBMS10) initially has a low eÆ-
ciency like DLBMS01 then it peaks at 0.80 for 8
processors. From then as the number of processors
used increases, the eÆciency plateaus at 0.57. The
fully distributed version with dynamic load balanc-

ing performs the best up to 32 processors and then
the eÆciency drops to 0.84 when using 64 proces-
sors, slightly below that of DLBMS01 and slightly
above that of STATIC. This is attributable to both
the short average time per task and the relatively
small amount of total work assigned to each of the
64 processors. Also, a peculiarity was observed
in that DLBDC either ran at an eÆciency of 0.84

or 0.78 (shown on plot). The distributed version
with threads performs the worst of all the methods,
rapidly decreasing in eÆciency as the number of pro-
cessors used is increased. This behaviour was not
observed for pthreads on the Intel Paragon reported
in [9], and thus is more likely a re
ection of the SGI
pthreads implementation than of an inherent char-
acteristic of pthreads.

To provide insight into why the distributed ver-
sions of the code were not performing as well as ex-
pected for a large number of processors, a plot of
the individual processor load for a complete opti-
mization was made (Figure 6) for the 64 processor
case. From this plot it is clear that the master-slave

organization (DLBMS) does the best job of load

5



10 20 30 40 50 60 70
Processor number

250

300

350

400

450

500

550

600
T

as
k

tim
e
�s

ec
�

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Figure 6. Processor loads, 64 processor case.

5 10 15 20
Iteration

500

1000

1500

2000

2500

3000

N
um

be
r

of
ta

sk
s

Figure 7. History of tasks per iteration.

1.5 2.0 2.5
Evaluation time �sec�

2500

5000

7500

10000
12500

15000

17500

20000

N
um

be
r

of
ta

sk
s

1.5 2.0 2.5

Figure 8. Time distribution for evaluated tasks.

balancing, the curve being nearly horizontal. The

load distribution for the distributed version without

threads (DLBDC) falls directly on top of the curve

for the static load balancing case (STATIC). This

is due to the variation in function evaluation times

being small enough that no tasks get transferred

between processors, so DLBDC e�ectively becomes

static load balancing. This e�ect does not appear

when the number of processors is small because each

processor has a larger set and with a large set the dif-

ferences in evaluation times are magni�ed enough to

where dynamic load balancing does take place. The

time spent evaluating tasks for the threaded code

DLBDCT is almost double that of all other methods.

It was found that having the communicator thread

running continuously suÆciently impeded the per-

formance of each processor on the Origin to cause

this noticeable rise in function evaluation times.

An investigation of the two discrete run times

for DLBDC revealed that the cause was the way that

memory is assigned for the Origin. The operating

system assigns processes to memory banks (MLDs)

and to CPUs in nodes. Processes can migrate be-

tween nodes searching for free CPUs. For the slow

runs, about half the MPI processes have almost to-

tally nonlocal memory allocation|the memory used

by those migrated processes is still allocated over on

another node. The detrimental e�ect of nonlocal

memory access is apparent and signi�cant.

7. Aggressive DIRECT

To observe the e�ect of larger sets of tasks for

a large number of processors, a more aggressive ver-

sion of the DIRECT algorithm is implemented. For

the aggressive DIRECT, the idea of using the Lip-

schitz constants is discarded and the box with the

smallest objective function for each box size exist-

ing is deemed potentially optimal and subsequently

subdivided. Consequently, for the example shown

in Figure 2 there will be a total of four potentially

optimal boxes, instead of the three for the standard

DIRECT algorithm . This change in the algorithm

typically results is a much larger set of new tasks to

be evaluated and load balanced at each iteration.

8. Parallel Performance, Aggressive DIRECT

The parallel runs were conducted on the same

SGI Origin 2000 as the standard DIRECT. Runs

were made on 8, 16, 32, 64, and 128 processors for

each of the �ve load balancing methods. Due to the

large number of points generated, the DIRECT op-

timizer was terminated after 20 iterations and per-

forming 48,577 function evaluations. The history of

total tasks for each iteration is shown in Figure 7.

The increase in number of points at each iteration

that the aggressive version provides is clearly illus-

trated in the �gure, from an average of 272 eval-

uations per iteration for the standard DIRECT to

2,429 for the aggressive version. After four iterations

the number of di�erent box sizes becomes saturated;

a new box size is being created while another is be-

ing eliminated, resulting in a plateau in the number

of new tasks. Figure 8 is a histogram of the evalua-

tion times for the 48,577 tasks. It can be seen that

the variation in evaluation time has been increased

as well as the number of tasks with aggressive DI-

RECT. The aggressive version was also able to �nd

a better optimum HSCT design in fewer iterations

than standard DIRECT, although of course the to-

tal number of evaluations and aggregate CPU time

are more (the aggressive case used 86,374 seconds of

6



20 40 60 80 100 120
Number of processors

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
E

ff
ic

ie
nc

y

DLBDC

DLBDC

DLBDCT

DLBMS10

DLBMS01

STATIC

Figure 9. Parallel eÆciencies.

10 20 30 40 50 60 70
Processor number

1340

1360

1380

1400

1420

T
as

k
tim

e
�s

ec
�

DLBDC

DLBMS10

DLBMS01

STATIC

Figure 10. Processor loads, 64 processor case.

serial CPU time versus 17,642 seconds for the stan-
dard DIRECT).

The parallel eÆciencies for the runs using the
aggressive DIRECT are plotted in Figure 9. All the
load balancing methods implemented exhibit simi-
lar trends as when used with the standard DIRECT
except that their eÆciencies have been slightly im-
proved. Due to the increase of variation in evalua-
tion time, DLBDC is now the most eÆcient method
to 64 processors, where its eÆciency is 0.94. The
improvement in load balancing of DLBDC over the
other methods is also shown in Figure 10. The task
time for DLBDCT, not shown in Figure 10, hovered
around 2300 seconds, well above all the other times.
The memory problems experienced with the stan-
dard DIRECT were experienced again here (Figure
9) and a valid run using 128 processors for DLBDC
was not attained.

9. Conclusion

A variety of parallel load balancing strategies
were successfully integrated into a global design
space exploration method applied to a meaningful,
complex aircraft design problem. The load balanc-
ing methods implemented ranged from simple static
load balancing to fully distributed dynamic load bal-
ancing via threads. It was observed that the master-
slave load balancing method was the most eÆcient
for a large number of processors, when the varia-
tion in function evaluation times for the test problem
was small. When the variation in function evalua-
tion times is signi�cant, as is the case for the ag-
gressive DIRECT algorithm or inherently in other

aircraft design problems [9], or as here when using
a small number processors, the fully distributed dy-
namic load balancing method is most eÆcient. The
use of pthreads greatly facilitates programming, but
the execution eÆciency of pthreads varies greatly be-
tween system implementations|from nearly invisi-
ble on the Intel Paragon to a factor of two slower on
the SGI Origin.

Acknowledgements

Support for this research e�ort was provided
through the NASA Ames Research Center grant
NAG-2-1180.

REFERENCES

[1] C.A. Baker, B. Grossman, R.T. Haftka, W.H.
Mason, and L.T. Watson, HSCT con�guration
design space exploration using aerodynamic re-
sponse surface approximations, in Proceedings

of 7th AIAA/USAF/NASA/ISSMO Symposium

on Multidisciplinary Analysis and Optimization,
Saint Louis, MO, 1998, pp. 769{777.

[2] J. Bertin and M. Smith, Aerodynamics for Engi-

neers, Prentice Hall, 1989.
[3] H. Carlson, R. Mack, and R. Barger, Estima-

tion of attainable leading edge thrust for wings
at subsonic and supersonic speeds, Technical Re-
port NASA TP-1500, 1979.

[4] H. Carlson and D. Miller, Numerical methods
for the design and analysis of wings at super-
sonic speeds, Technical Report NASA TN D-
7713, 1974.

[5] R. Harris Jr, An analysis and correlation of air-
craft wave drag, Technical Report NASA TM X-
947, 1964.

[6] M.G. Hutchison, W.H. Mason, R.T. Haftka, and
B. Grossman, Aerodynamic optimization of an
HSCT con�guration using variable-complexity
modeling, AIAA 31st Aerospace Sciences Meet-
ing and Exhibit, Reno, NV, AIAA Paper 93-
0101, 1993.

[7] M.G. Hutchison, E.R. Unger, W.H. Mason, B.
Grossman, and R.T. Haftka, Variable-complexity
aerodynamic optimization of a high-speed civil
transport wing, Journal of Aircraft, Vol. 31, No.
1, 1994, pp. 110{116.

[8] D.R. Jones, C.D. Perttunen, and B.E. Stuckman,
Lipschitzian optimization without the Lipschitz
constant, Journal of Optimization Theory and

Application, Vol. 79, No. 1, 1993, pp. 157{181.
[9] D.T. Krasteva, C. Baker, L.T. Watson, B. Gross-

man, W.H. Mason, and R.T. Haftka, Distributed
control parallelism in multidisciplinary aircraft
design, Concurrency: Practice and Experience,
Vol. 11, 1999, pp. 435{459.

7



[10] P. MacMillin, O. Golovidov, W. Mason, B.
Grossman, and R. Haftka, Trim, control, and
performance e�ects in variable-complexity high-
speed civil transport design, Technical Report
MAD 96-07-01, Virginia Polytechnic Institute
and State University, Blacksburg, VA, 1996.

[11] P.E. MacMillin, O.B. Golovidov, W.H. Mason,
B. Grossman, and R.T. Haftka, An MDO inves-
tigation of the impact of practical constraints on
an HSCT optimization, AIAA 35th Aerospace
Sciences Meeting and Exhibit, Reno, NV, AIAA
Paper 97-0098, 1997.

[12] L.A. McCullers, Aircraft con�guration optimiza-
tion including optimized 
ight pro�les, in Pro-

ceedings of a Symposium on Recent Experiences

in Multidisciplinary Analysis and Optimization,
NASA CP-2327, 1984, pp. 395{412.

[13] M. Snir, S. Otto, S. Huss-Lederman, D.W. Wal-
ker, and J. Dongarra, MPI: The Complete Ref-

erence, MIT Press, 1996.

8


