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Abstract 
This work presents a theoretical analysis of the actua-
tion energy requirements of a morphing aircraft. 
Morphing aircraft lack discrete control surfaces and use 
distributed actuation of the wing surface for maneuver-
ing. An adaptive camberline is designed that generates 
morphed wing shapes in response to variations in lead-
ing and trailing-edge camber. Aerodynamic energy ex-
pressions are derived from the camberline functions 
using a unique energy computation stemming from the 
vortex lattice method (VLM). Beam theory is applied to 
morphing airfoil sections situated along the wingspan to 
obtain closed-form strain energy expressions. The re-
sulting work expressions are combined and energy op-
timal wing deflections are found using Lagrange multi-
pliers.  In the optimization, total energy is the cost func-
tion and constraints are placed on achieving com-
manded changes in lift and moment coefficients.  The 
functions are numerically implemented to compare 
work expressions for a wing with morphing inputs and 
a conventional wing, with inboard and outboard flaps. It 
is shown analytically that morphing aircraft have the 
capability to outperform conventional vehicles in terms 
of required flight control energy. This work also pro-
vides a theoretically sound methodology for morphing 
wing energy analysis that can be applied in future trade 
studies of morphing vehicles.  
 

Introduction 
Morphing aircraft are a topic of current research inter-
est1 in the aerospace community. Such aircraft allow 
shape   optimization   over   the   entire   flight regime2,3 
  
_________________________ 
* Graduate Student, Department of Aerospace and Ocean 

Engineering, Student Member AIAA 
†  Graduate Student, Department of Mechanical Engineering 
‡ Professor, Department of Mechanical Engineering 
§ Professor, Department of Aerospace and Ocean Engineering, 

Associate Fellow AIAA 
¶ George R. Goodson Professor,  Department of Mechanical 

Engineering 
 
Copyright © 2003 by Christopher O. Johnston.  Published by the 
American Institute of Aeronautics and Astronautics, Inc., with 
permission 

in addition to enhanced  combat performance by allow-
ing arbitrary vehicle orientation while tracking chal-
lenging flight paths.  Of recent interest is the possibility 
of producing minimum energy control deflections by 
using the distributed actuation capability of morphing 
vehicles. 

Petit’s4 work demonstrated an initial morphing 
wing analysis based on conformal mapping. His analy-
sis included a numerical computation of the aerody-
namic energy response in tracking a flight path. This 
work builds upon that analysis but approaches the prob-
lem in a different manner. As opposed to conformal 
mapping, the analysis begins at the camberline in terms 
of a load distribution and derives full analytical expres-
sions for the aerodynamic energy requirements while 
morphing.  

Gern5 used NASTRAN to determine the energy re-
quirements of a morphing and conventional wing in 
rolling maneuvers. As opposed to a numerical calcula-
tion of the energy requirements, this work presents a 
closed-form expression for the aerodynamic and strain 
energy functions allowing theoretical insight to be 
gained into the optimization. 

Other works4,5,6 have investigated the energy rela-
tions of morphing wings but have not presented a gen-
eral method that is comprehensive enough to proceed 
with an in-depth analysis. The design of an adaptive 
camberline function facilitates the use of the VLM en-
ergy method and beam theory to derive general energy 
relations for the vehicle and perform a direct compari-
son with a conventional aircraft.  

The next section covers the analytical design of 
the morphing camberline, followed by the derivation of 
the closed-form strain energy expressions, and the aero-
dynamic energy development.  We then illustrate the 
optimization technique via a simple example problem. 
The paper concludes with numerical work comparisons 
of a morphing and conventional wing.   

 
Adaptive Camberline Derivation 

The first requirement for morphing analysis is the de-
sign of a camberline that will generate morphed wing 
shapes in response to control inputs. A morphed wing 
shape is defined by a wing that exhibits changes in 
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leading and trailing-edge camber. The standard camber-
line equations for a NACA 4-series airfoil are7 
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In equations (1) and (2), c is the chord length while M 
and P are the nondimensional magnitude and location 
of maximum camber, respectively. 

To adapt the camberline functions for morphing 
we attach an additional shape function at some location 
along the chordline, such that the magnitude and slope 
at the connection are equal. The slope at the trailing 
edge is then defined by a separate control input as illus-
trated in Figure 1.  

 

 

 
 

Figure 1. Trailing-edge wing control 
 

With the addition of a trailing-edge camberline func-
tion, the equations in (1) become 
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where H locates the start of the trailing edge control 
surface. The initial coefficients (ε, κ, σ, β, χ, µ) stay the 
same while the new trailing-edge coefficients are de-
fined as 
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where δ is the trailing-edge control angle measured 
relative to the horizontal axis.  

For a fixed control surface size and maximum 
camber location, equations (3) and (4) define a 
morphed wing shape in response to control inputs of 
maximum camber and desired trailing-edge deflection 
angle. The adaptive camberline equation allows an air-
foil to achieve both a commanded ∆CL and ∆CM irre-
spective of angle of attack. The structure of these ex-
pressions is convenient for the application of traditional 
aerodynamic and beam theory for morphing wing 
analysis. 

  
Morphing Strain Energy 

To perform a complete energy analysis, it is necessary 
to have an analytical strain energy function that corre-
lates to morphing deflections. Using the camberline 
functions from equations (3) and (4), an inverse ap-
proach to beam theory solutions can be used to deter-
mine the required strain energy to create adaptive wing 
shapes. 

From elementary calculus and mechanics of de-
formable bodies8 the beam shape resulting from a dis-
tributed moment is  
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In beam analysis equation (5) is generally solved for the 
resulting beam deflections. As opposed to a beam, 
equation (5) can be applied to a camberline equation 
with an appropriate inertia function that defines the 
airfoil surface. For the present analysis the beam (wing) 
shape is known as a function of control deflections and 
it is desired to find the distributed moment that pro-
duces the commanded morphed shapes. Once the re-
quired moment is determined, it can be applied to the 
strain energy expression for normal stresses in a beam 
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This relationship determines the strain energy induced 
while creating a particular wing shape. Combining 
equations (5) and (6), the strain energy in terms of wing 
shape is 
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A solid airfoil section with an arbitrary modulus of 
elasticity and span thickness will be used to define the 
inertia function in equation (7). Using the airfoil thick-
ness expressions that accompany the NACA 4-series 
airfoils, the inertia function is defined as 
 

Start of Reflex Control Surface, H 

Trailing-edge control input, δ 

(1) 
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where ( )dxdηθ 1tan−= , t is the section span thickness, 
and 
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In equation (9), tc refers to the airfoil max thickness, 
and an are known shape coefficients. 

Making the appropriate substitutions into equation 
(7) and carrying out the piecewise integration corre-
sponding to the camberline function, the closed-form 
strain energy expression for a single wing section in a 
morphed state is 
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The functions f, g and h are highly nonlinear and pri-
marily dependent on H.  For a deviation in morphing 
states from an initial condition, the change in strain 
energy is 
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The function is negated so that a change to a larger dis-
placement will result in negative work (work done by 
the actuators on the wing). It is the negative work that 
we ultimately want to minimize. The strain energy 
function is applied to each airfoil control actuator along 
the wingspan to define a total strain energy cost func-
tion for morphing the wing.  
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Morphing Aerodynamic Energy 

The goal of this section is to derive an expression for 
the aerodynamic work required to change the camber of 
a three-dimensional wing.  This expression will be 
based on a standard vortex-lattice method9; therefore 
the validity of this analysis will be limited to that of a 
VLM (quasi-steady, potential flow, thin wing and small 
angles).   The quasi-steady assumption limits this model 
to relatively slow control surface deflections.   

Along with the camberline variables previously 
defined (M, P, H, and δ), additional nomenclature for 
this section is as follows: 
 
r    = spanwise index (root to tip) 
n    = chordwise index  (leading edge to trailing 

edge) 
R   = number of spanwise vortices on a half-span 
N   = total number of chordwise vortices 

ai,j   = influence of the mean camberline slope j on 
the vortex i 

ψi,j = slope of the mean camber line (dη/dx) at 
the spanwise section i and chordwise sec-
tion j 

Uinf= free-stream velocity 
τ    = represents the time between the initial 

(τ =0) and final deflections (τ=1)  
M1i= magnitude of maximum  at the spanwise 

location i at τ = 0 
δ1ι = trailing edge deflection at the spanwise 

location i at τ = 0 
b    = wing span 

η   = z coordinates of the mean camber line 

c   = mean geometric chord 

 
From a standard VLM, the circulation on a wing 

can be represented as 
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The slope of the mean camber line (ψr,n) will be defined 
at each spanwise section as a function of independent 
camber values (Mr) and trailing edge deflections (δr). 
Defining Ar,n and Br,n, as constants that relate Mr and δr, 
the expression for ψr,n is 
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It is seen in equation (14) that Mr and δr are functions of 
the non-dimensional time τ.  This is done because the 
aerodynamic work must be calculated over a given time 
step, and defining τ  allows the variation of Mr and δr 
during the time step to be defined.  For simplicity, it 
will be assumed that Mr and δr vary linearly between 
their initial and final values, and therefore can be repre-
sented as  
 

rrr

rrr MMM
1

1
10

δτδδ
τ

τ

+∆=
+∆=

≤≤
                      (15) 

 

where M1r and δ1r represent the values at the beginning 
of the time step, and ∆Mr and ∆δr represent the change 
that occurs during the time step.  Combining equations 
(13) and (14) allows the circulation on the wing to be 
written explicitly for Mr and δr. 
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The generic work equation is 
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where the force F is integrated over the path of r.  If r is 
a function of time, dr can be written as 
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In calculating the aerodynamic work, it is required to 
evaluate equation (17) on each panel of the wing.  The 
dr/dt term in (18) is the change in the camberline at 
each panel, and can be represented as 
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These values are calculated at the chordwise location of 
the vortex on each panel.  The force term in equation 
(17), obtained from the Kutta-Joukowski Theorem, is    
                       
                                   Γ= infUF ρ                                 (20) 

 

Using equation (20), the lift on each panel can be writ-
ten as 
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From equations (17-21), the aerodynamic work on each 
panel can be expressed as an integral between the initial 
and final τ values. 
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The only term in equation (22) dependent upon τ is the 
circulation.  From equations (15) and (16), this integral 
works out very simply to 
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It should be noted that equation (23) assumes the angle 
of attack remains constant.  Also, the sign convention 
used here means that negative values require that work 
be put into the system.  The aerodynamic work for the 
entire wing (both sides) is 
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Following the above derivation, ∆CL and ∆CM may be 
represented as 
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Minimum Energy Flight Control 

The previous two sections have developed equations for 
the structural and aerodynamic work required to pro-
duce a change in wing shape.  The purpose of this shape 
change is to produce either a ∆CL, a ∆CM, or both.  It is 
clear that a valid optimization problem would be to find 
the change in wing shape that requires the minimum 
work while achieving the desired ∆CL or ∆CM.  Past 
research has investigated planform shapes that mini-
mize the hinge moment of conventional control sur-
faces10.  The problem to be solved here will assume a 
given and fixed P and H.  This narrows the problem to 
finding the minimum energy spanwise distribution of 
∆Mr and ∆δr.  Using Lagrange Multipliers and equa-
tions (12, 24, 25 and 26), one obtains a set of linear 
equations solvable for the minimum energy ∆Mr and 
∆δr values.   
 

Example Problem 
To illustrate the above method of calculating and mini-
mizing the aerodynamic and structural work required to 
achieve a desired ∆CL and ∆CM, a simple example will 
be presented.  For this example, the previously defined 
airfoil shapes will be used assuming that only the mag-
nitude of maximum camber (Mr) is a variable.  There-
fore it is assumed that there is no trailing edge control 
surface.  The problem to be solved is then to find the 
minimum work distribution of maximum camber values 
required to obtain a ∆CL of 0.1 away from an initially 
uncambered wing at zero angle of attack.  The planform 
for this example is shown in Figure 2 (P=0.4, λ=0.5, 
ΛLE=26.56°, b=6 ft, and cr=2 ft, xcg=1 ft, Uinf=500 ft/s).  
A small number of panels are used (R=3, N=2).  Al-
though they do not accurately model the wing, they 
allow for the matrices and vectors from the required 
equations to be illustrated.  
 
 

(23)
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Figure 2. Panel Layout for the Example Problem 
 

To begin, a standard vortex lattice method is ap-
plied to the planform to obtain the a-matrix required in 
equation (13).  It is important to order the terms in a so 
that Γk and ψr,n are consistent with the order of k-values 
shown in Figure 2.    
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The equations for the slope of the mean camber line are 
obtained by differentiating equation (1) ( x  represents 
the x distance along the chord from the leading edge of 
each section and cr is the size of the chord at each sec-
tion).    
 

( ) P
c
x

c
xP

P
M

xd
cd

rr

rrr ≤≤






















−= 022/

2
η       (28a) 

 

( )
( ) 122
1

/
2 ≤≤























−

−
=

rr

rrr

c
xP

c
xP

P
M

xd
cd η      (28b) 

 

The control points are located at x /cr equal to 0.125 
and 0.6125 on each spanwise section of the wing.  It is 
seen in equation (14) that ψr,n may be written in terms 
of Ar,n , Mr, Br,n , and δr.  For this example, only Mr is 
used to define the camber line, so Br,n , and δr are set to 
zero.  From equations (14, 28a and 28b), Ar,n is 
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Each row in (29) corresponds to a spanwise section, 
with the first row corresponding to the wing-root.  The 
rows in (29) are identical because the same equation for 
the mean camber line was used for each section.  From 
equation (15), Mr is represented as 
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In (30), the first row corresponds to the wing-root, 
and the last row to the wing-tip.  The Ck,r term in (16) 
can be calculated from (27) and (29).  The Dk,r and Ek,r 
terms are not calculated because α is fixed at zero 
and δr is not being considered in this example. 
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The Γ equation in (16) can be written using the evalu-
ated terms in (31) as 
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For this example α is being held zero, so in (25) and 
(26), ∆CL = ∆CL camber and ∆CM = ∆CM camber.   
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Before the aerodynamic work at each panel is cal-
culated from equation (22), it is first necessary to 
evaluate equation (19) at each panel.  Equations (35a) 
and (35b) represent the distance moved at each panel 
between τ equal to zero and one.  It is important to note 
that these terms are calculated at the chordwise location 
of the vortex at each panel, and not at the control point 
(as was the case with ψr,n).   
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From equations (35a) and (35b), the Tr,n values in equa-
tion  (19) are evaluated to  
 

(31) 
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















=
0.859527.0
0.859527.0
0.859527.0

,nrT                         (36) 

 

Equation (19) also requires the chord length at each 
section (cr), which evaluates to the following 
 














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=
17.1
50.1
83.1

rc                          (37) 

 

Equations (32), (36) and (37) are combined with equa-
tion (22) to obtain the work (this expression will not be 
presented because of its size). 

The strain energy function (11) was defined by se-
lecting a hard rubber as the actuator material with a 
modulus of 1.24x105 psi. Each actuator section is a unit 
width and applying equation (11) results in the follow-
ing strain energy expression 

 

42
3

2
2

2
1 10)M6.58+M10.8+M2.61()( ×∆∆∆−=⋅ ftlbWs   (38) 

 

Now, with expressions for the aerodynamic and struc-
tural work, the optimization procedure mentioned pre-
viously may be executed.  To begin this procedure, a 
Lagrange expression is formed with constraints on ∆CL 
and ∆CM. 
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The negative signs on the work terms are present be-
cause it is desired to minimize the negative work.  From 
(39), the equations to be satisfied for minimum energy 
are  
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The solution to the equations in (40) for a ∆CL desired of 
0.1 and ∆CM desired of zero are  
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where ∆Μ1 corresponds to the root. For these deflec-
tions, the total non-dimensional work (W~ ) is -0.0768.  
If the ∆CM constraint is not enforced, the resulting ∆M 
values are 
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In this case, W~ is -0.0095 and ∆CM equals -0.04.  The 
effect of removing the ∆CM constraint is not surprising 

considering the difficulty in producing lift without pro-
ducing pitching moment.   

The above example assumed that the angle of at-
tack remained constant between the initial and final 
states.  If it is assumed that this is a flying wing, the 
minimum energy deflections can be found that account 
for angle of attack.  If the aircraft is trimmed at the ini-
tial and final states, then ∆CM equals zero, and from 
equation (26) 
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If it is assumed that this change in α occurs slowly and 
linearly between the final and initial states, then the 
following term is substituted for α in equation (23) 
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Applying this to the previous example and solving for 
the minimum energy ∆M’s required for a ∆CL of 0.1 
results in 
 

0066.0
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0013.0
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The change in angle of attack produced by these deflec-
tions is 1.9°, and the W~ required is -5.73x10-4.  It is 
seen that the lift is produced entirely with angle of at-
tack, and the ∆Μ’s produce the pitching moment that 
allow the aircraft to change angle of attack.  It should 
be mentioned that this is a stable flying wing, and the 
above results depend heavily on the static margin of the 
aircraft. 
 

Morphing and Conventional Comparison 
 To compare the energy requirements of morphing 
and conventionally actuated aircraft, the above method 
is implemented numerically.  The planform parameters 
for the test aircraft are shown in Table 1.  The morphing 
aircraft has ∆δ and ∆M capability on the outboard wing 
section as shown in Figure 3.  There are five independ-
ent spanwise sections on the outboard section (R=5).  
The maximum camber (P) is located at 40% of the 
chord, and the trailing edge surface (H) begins at 60% 
of the chord.  The conventional aircraft is equipped 
with an outboard and inboard flap as shown in Figure 4.  
The flaps are 20% of the chord.  The conventional air-
craft does not require structural work for flap deflec-
tions.  The freestream velocity for this comparison is 
600 ft/s. 
 The control energy required for the morphing and 
conventional aircraft to obtain a ∆CL while allowing α 
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to change will be examined.  This method is applied 
because it allows the aircraft to obtain the lift in the 
most natural way possible.  As mentioned previously, 
this method assumes a slow and linear deflection proc-
ess through the time-step.   

 

Table 1. Vehicle Parameters 
 

Span 30 ft 
Sweep 34.9 ° 

Taper Ratio 
Distribution 0.308,0.461 

Root Chord 18.14 ft 
 
 

 
 
Figure 3. Morphing Aircraft Control Layout 
 
 

 

 
 
 

Figure 4. Conventional Aircraft Control Layout 
 

 Figure 5 shows the variation in the required aero-
dynamic work for the conventional and morphing air-
craft.  These are the resulting work values from the 
minimum energy deflections required to obtain a ∆CL 
of 0.1 away from an initially uncambered aircraft.  The 
positive values for the morphing aircraft indicate that 
the airstream produces forces in the direction of the 
required change in wing geometry.  If there were no 
structural stiffness in the morphing aircraft, this would 
imply that no work would be required to obtain the 
change in lift.  

A particularly interesting result seen in Figure 5 is 
the potential for the morphing aircraft to ‘harvest’ en-
ergy from the air-stream. Depending on the c.g. loca-
tion of the vehicle, the airstream does aerodynamic 
work on the aircraft while generating a ∆CL. In addi-
tion, from equation (23) we see that the aerodynamic 
work is a function of the squared velocity. As this ve-

locity increases, the aerodynamic work approaches the 
structural work in overall weighting. Given appropriate 
internal actuators, a morphing vehicle might be flown 
that can gain energy from the airstream. 

The modulus of elasticity used for the structure of 
the morphing aircraft was 1.24x105 psi, the common 
value used for hard rubber.  The resulting structural 
work values for the morphing aircraft with various c.g. 
locations are shown in Figure 6.  It is seen that, cur-
rently, the structural work far exceeds the aerodynamic 
work.  As high compliance morphing designs become 
available, these values will decrease. It should be kept 
in mind that, for this analysis, an arbitrary structure is 
used with the primary purpose of holding the optimum 
morphing deflection values as small as possible. In ad-
dition, the strain energy acts as a restoring element for 
displacements back towards equilibrium.  

Figures 5 and 6 show that as the aircraft approach 
neutral stability, the required work to change the lift 
becomes very small (accounting for the structural work 
in the morphing case).  This is a result of the CMα ap-
proaching zero, which from equation (41) implies that a 
small ∆CM Camber value produces a very large change in 
angle of attack.  Therefore, with the aircraft producing 
the majority of the ∆CL with angle of attack, very little 
control deflections are necessary. 
 

 
Figure 5.  Effect of changing the CG location on the aerodynamic 
                 work required for a ∆CL of 0.1 

 

Figure 7 shows the spanwise distribution of trail-
ing edge deflections, camber, and aerodynamic work 
required from the previous example with the c.g. at 7 ft.  
This is the optimum c.g. location for minimum aerody-
namic work for the conventional aircraft, and near the 
worst c.g. location, in terms of required work, for the 
morphing aircraft.  The inability of the morphing air-
craft to obtain large positive (favorable) aerodynamic 
work is due simply to the fact that the deflections are 
held small by the overwhelming influence of the struc-
tural work.  The large values of the structural work 

Independent Outboard Actuators 

Outboard Elevon Flap 

Inboard Elevon Flap 

MORPHING 

CONVENTIONAL 
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overshadow the aerodynamic work in the optimization 
procedure.   
 

 
Figure 6.  Effect of changing the CG location on the structural 
                 work required for a ∆CL of 0.1   

It is seen in Figure 7 that the morphing aircraft re-
quires more trailing edge deflection than the conven-
tional aircraft.  This is counterintuitive to the notion that 
the structure in the morphing aircraft supposedly mini-
mizes the deflections.  This is a result of the chordwise 
distribution of the trailing edge deflection angle.  For a 
conventional vehicle, the entire flap is deflected at the 
same commanded angle, whereas for the morphing de-
flection, only the trailing edge achieves the control an-
gle. As seen in Figure 1, the entire trailing-edge control 
surface deflects in a distributed manner with the com-
manded angle realized only at the tip. 

 

 
 

Figure 7.  Spanwise distribution of the control deflections and aero- 
                 dynamic work required for a ∆CL of 0.1 
 

 Figure 8 shows the change in the spanwise distri-
bution of minimum work ∆δ and ∆M values when the 
modulus of elasticity is changed.  It is seen that the 
trailing edge deflections near the tip decrease slightly 
with the increase in modulus and the camber values 
become slightly negative to account for this change. In 
general, the low modulus of elasticity permits greater 
control surface deflections. When the modulus of elas-
ticity is low, the optimization algorithm attempts to 
minimize the negative aerodynamic work. That ex-
plains the work and deflection trends illustrated in Fig-
ure 8. The larger control surface deflections, camber in 
particular, induce greater (favorable) aerodynamic 
work.  
 

 
Figure 8. Spanwise distribution of the control deflections and aero- 
                 dynamic work required for a ∆CL of 0.1 at two different 
                 modulus of elasticity values 
 

Conclusions 
A complete, analytical model has been derived to pre-
dict the control energy requirements of morphing air-
craft. The model required the development of unique 
aerodynamic and strain energy functions applied to 
adaptive wing shapes. Lagrange multiplier optimization 
was applied to minimize the energy functions under the 
constraint of achieving a particular change in lift coeffi-
cient. The final energy results were compared with a 
conventional vehicle in terms of variable c.g. location 
and optimized aerodynamic energy. Although morphing 
vehicles induce strain energy not produced by conven-
tional aircraft, the independent spanwise deflection al-
low minimization of the aerodynamic energy require-
ments. At higher flight speeds and with advanced wing 
structures a morphing wing might supercede a conven-
tional wing in flight control energy.     



 
American Institute of Aeronautics and Astronautics 

9

References 
[1] Henderson, J.A., et al., “Integrated Wing Design 

with Adaptive Control Surfaces,” 42nd AIAA/ 
ASME/ASCE/AHS/ASC Structures, Structural 
Dynamics and Materials Conference, Seattle, WA, 
April 16-19, 2001. 

 
[2] Spillman, J., “The use of variable camber to reduce 

drag, weight and costs of transport aircraft,” 
Aeronautical Journal, January 1992, v 96, pp1-8. 

 
[3] Greff, E. “The development and design integration 

of a variable camber wing for long/medium range 
aircraft,” Aeronautical Journal, November 1990, v 
94, pp 301-312. 

 
[4] Pettit, G., et al, “A Model to Evaluate the 

Aerodynamic Energy Requirements of Active 
Materials in Morphing Wings,” Proceedings of 
DETC’01, 2001 ASME Design Engineering 
Technical Conferences, September 2001. 

 
[5] Gern, F.H., Inman, D.J., and Kapania, R.K., 

“Computation of Actuation Power Requirements 
for Smart Wings with Morphing Airfoils,” AIAA 
Paper 2002-1629, 43rd AIAA/ASME/ASCE/AHS/ 
ASC Structures, Structural Dynamics, and 
Materials Conference and Exhibit, Denver, CO, 
April 22-25, 2002. 

 
[6] Prock, B.C., Weisshaar, T.A., and Crossley, W.A., 

“Morphing Airfoil Shape Change Optimization 
with Minimum Actuator Energy as an Objective,” 
AIAA Paper 2002-5401, 9th AIAA/ISSMO 
Symposium on Multidisciplinary Analysis and 
Optimization, Atlanta, GA, September 4-6 2002. 

 
[7] Mason, W.H., “Geometry for Aerodynamics,” 

Department of Aerospace and Ocean Engineering, 
Virginia Tech, http://www.aoe.vt.edu/aoe/faculty/ 
Mason_f/CAtxtTop.html 

 
[8] Beer, F.P. and Johnston, Jr. E.R.  Mechanics of 

Materials, Second Edition.  McGraw-Hill:  New 
York, 1992 

 
[9] Katz, J., and Plotkin, A., Low Speed Aerodynamic-

Form Wing Theory to Panel Methods, McGraw-
Hill , 1991. 

 
[10] Jones, R.T. and Cohen, D., “Determination Of 

Optimum Plan Forms For Control Surfaces”, 
NACA TN No. 585, 1942. 


