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CERTIFICATION OF A CFD CODE FOR
HIGH-SPEED CIVIL TRANSPORT DESIGN OPTIMIZATION

Duane L. Knill*, Vladimir Balabanov*, Bernard Grossman', William H. Mason?, and Raphael T. Haftka?

Multidisciplinary Analysis and Design (MAD) Center for Advanced Vehicles
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061

An investigation of the aerodynamic modeling requirements for HSCT design has been made. Studies
have been performed to determine the effects of including Euler/Navier-Stokes calculations for the
supersonic aerodynamic performance and structural loading of HSCT designs. Accuracy, computational
effort, and ease of implementation are some of the considerations which are addressed. We quantify the
increase in accuracy of the CFD calculations over linear supersonic methods through comparison with
experimental data. As expected, it was found that the Euler and parabolized Navier-Stokes solutions
are more accurate than those from linear theory. For relatively thick bodies, significant increases in
the accuracy of the zero-lift wave drag prediction can be obtained using CFD in place of slender body
results. However for more slender bodies and wings like those for our HSCT designs, this improvement
is drastically reduced. Investigation into the force and moment data for wings and wing-fuselages show
several consistent patterns. For our HSCT wings, parabolized Navier-Stokes predictions on the viscous
drag matched closely with those predicted from algebraic skin friction estimates. The linear supersonic
theory results consistently overpredict the lift and underpredict the drag as compared to CFD. These
drag differences have a large effect on the HSCT range calculations. Another significant difference
between the CFD and linear supersonic theory results comes in the wing stresses calculated from the
aerodynamic loads. The HSCT carries large amounts of fuel in its wings, and consequently has large
inertia relief that cancels most of the bending moments due to aerodynamic loading. As a result, the
wing bending stresses are very sensitive to the predicted location of the center of pressure. Relatively
small differences in the predicted center of pressure location between Euler and linear theory resulted

in significant differences in the wing bending stresses and the structural weights.

1. Introduction

Procedures for the combined aerodynamic-struc-
tural design optimization of a high-speed civil trans-
port (HSCT) have been developed recently at Vir-
ginia Tech.!=* The detailed aerodynamic analyses in
these studies involve what we term linear supersonic
theory, comprising slender body results for wave drag,
a linear theory panel code modified with leading-
edge suction corrections for drag-due-to-lift and su-
personic loads, and skin friction estimates. These
analyses are used to predict, among other things,
the drag at cruise as well as the supersonic loads
for the structural optimization. The overall pur-
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pose of this paper is to investigate the implications
of supplementing the linear supersonic theory cal-
culations in our HSCT optimization with Euler and
Navier-Stokes computations. To achieve this goal,
we first validate and then certify an Euler/Navier-
Stokes code for HSCT applications at both super-
sonic cruise and at off-design conditions. This pa-
per will concentrate on the supersonic flight regime.
The accuracy of the range estimates based on Euler
and Navier-Stokes results are compared with those
from the linear supersonic theory. We also compare
the accuracy of the loads calculated by Euler/Navier-
Stokes with linear supersonic theory and examine the
effects of the differences of the results on the struc-
tural optimization.

Background

The HSCT design problem considered in Refs. 1-4
involves the minimization of the take-off gross weight
(TOGW) with a range constraint of 5500 n.mi., a
cruise Mach number of 2.4, and 251 passengers. The
optimization uses 70 constraints which can be grouped
into three categories: geometric constraints, perfor-
mance/aerodynamic constraints, and constraints im-



plicit in the analysis. The implicit constraints are a
part of the analysis or geometry definition and are
not handled directly by the optimization. They in-
clude an altitude limit, a fuselage volume constraint,
and wing mean aerodynamic chord and nacelle ori-
entation specifications. The wing shape, fuselage
shape, tail areas, and nacelle sizes and locations are
described using 26 design variables with two addi-
tional variables for the mission profile and another
for the fuel, giving a total of 29 design variables.
To efficiently perform the optimization, a variable-
complexity modeling (VCM) technique (Refs. 1-4)
has been employed. This technique utilizes both
simple and complex models for predicting aerody-
namic performance and structural weights. The sim-
ple conceptual-design-level methods are predominant-
ly used in the optimization due to their very low com-
putational costs. More accurate and more computa-
tionally expensive methods are used to periodically
update the simpler models. In this way, one incor-
porates the accuracy of the higher level codes with
the computational efficiency of the simpler models.

The linear supersonic theory used as our current
detailed model includes the Harris® wave drag pro-
gram, a panel method by Carlson® et al. with attain-
able leading-edge thrust corrections’, and standard
algebraic estimates of the skin friction using the Van
Driest II method. In the present work, we are inves-
tigating the benefits of introducing Euler/ Navier-
Stokes computations as the next level of complexity
in the hierarchy of supersonic aerodynamic predic-
tion models.

Related studies®=!! on the use of CFD meth-
ods for supersonic HSCT design have appeared else-
where. For pure analysis, Hollenback and Blom®
compared PNS results with experimental data, Eu-
ler, and linear theory results for a Mach 2.4 HSCT
design. Pittman® et al. obtained Euler equation
solutions for a Mach 3 HSCT concept, and com-
pared the results with linear theory. Their predic-
tions were later verified by comparison to experi-
mental data'®. In each case, linear theory slightly
overpredicted the lift, underpredicted the drag, and
produced poor pitching moment results. However,
Pittman® et al. concluded that linear theory was
still useful in conceptual and preliminary design.

Mann and Carlson!! evaluated the use of Euler

analysis within the design context. Looking at pres-
sure distributions, they proposed a method to over-
come linear theory deficiencies and concluded that
there was no significant advantage to the use of Eu-
ler codes in their wing design procedures.

Fluid Dynamics Code

We are using the General Aerodynamic Simula-
tion Program'? (GASP) version 2.2 for the Euler
and parabolized Navier-Stokes (PNS) calculations.
The PNS equations are a subset of the complete
Navier-Stokes equations valid in supersonic condi-
tions in which the streamwise shear stress terms are
neglected. By suppressing a portion of the stream-
wise pressure gradient the equation type is changed
from elliptic to parabolic, allowing the solution to
be space marched in the streamwise direction. The
PNS equations can predict crossflow separation but
not streamwise separation. For our PNS calcula-
tions, the flow is considered to be fully turbulent,
and the Baldwin-Lomax turbulence model is used.
GASP is a fully conservative CFD code which solves
the Reynolds-averaged Navier-Stokes equations and
many of its subsets. The code uses an upwind three-
dimensional finite-volume spatial discretization. Roe,
Van Leer, Steger-Warming, and full flux functions
are available in each direction. For our calculations,
a fully upwind second order interpolation is used in
the marching direction, and a third order upwind bi-
ased interpolation is used in the other two directions.

The finite-volume formulation of the Reynolds-
averaged Navier-Stokes equations may be written in
terms of the vector of conserved variables, @), the
vector of primitive variables, ¢, the cell volume, V,
and a residual vector, R(q), as

9 <@Q>J <¢>
Jdq ot

V+ R(q) = 0.

The cell average quantity, <> is defined by inte-
grating over the volume of the cell

<@Q>= %//V Q(z,y,z,t)dV.

The residual vector can be written as a function of
the inviscid fluxes, F', the viscous fluxes, F, the unit
normal vector to the cell face, n, and the area of the

cell face, AA, as

nface

R(q) = Z_: (ﬁ-f) T AA.

The norm of this residual vector represents the con-
vergence to the steady state solution or the error
in approximation of the discretized solution. GASP
iteratively solves the system of equations until a pre-
scribed tolerance on the norm of the residual is met.
GASP can implement global iteration techniques as
well as space-marching schemes for supersonic flows.



Due to the large savings in computational time, space-
marching has been performed for all of the supersonic
CFD calculations presented in this report.

CFD Grids

The grids for the space-marching calculations on
HSCT wings and wing-fuselage combinations are cre-
ated using a 3-D grid generator originally developed
by Ray Barger at NASA Langley'®' and modified
in the present work. The original grid generator has
been modified to give better resolution of the wing
leading-edge geometry. In addition, the code has
been improved to be more robust for large planform
variations. The grid generator receives as input the
aircraft configuration stored in the Craidon!® geom-
etry format, extends the wing to join the fuselage,
adds a fillet at the wing-fuselage intersection, and
then creates a grid for a space marching calculation.
Since our HSCT optimization code creates a Craidon
description file from its set of design variables, the
conversion from a set of design variables to a space
marching grid is straightforward. The outer bound-
ary 1s calculated from a Mach cone analysis to ensure
that all shocks are contained within the computa-
tional domain. The grid generator allows for flexible
stretching of the grid points around and normal to
the aircraft for use in grids suitable for both Euler
and Navier-Stokes calculations. Measures are em-
ployed to reduce grid skewness at the wing tip and
wing-fuselage juncture. The grid generator is auto-
mated and robust for large planform changes. These
qualities are required for design optimization appli-
cations.

Structural Optimization

The structural analyses and optimization are per-
formed using the general purpose finite-element (FE)
structural optimization code GENESIS.'® The FE
model used in the structural analysis consists of 451
rods, 383 membrane elements, and 129 shear panels.
The 963 elements are joined together at 193 nodes
with a total of 1032 degrees of freedom. Optimiza-
tions can be performed using the method of Feasible
Directions, Sequential Linear Programming method,
and Sequential Quadratic Programming method. We
use Method of Feasible Directions for our problem.
A coarse-grain parallel version of GENESIS has been
implemented on the Intel Paragon computer at Vir-
ginia Tech (Ref. 17). This is a 28 node parallel
computer with distributed memory. An automated
structural mesh generator'® has been developed to
construct the FE model for the HSCT configuration.
As with the space-marching CFD grid generator, the

FE grid generator uses the Craidon description of the
aircraft.

Code Verification and Certification

As CFD technology matured, code verification
became important. In 1988, Bobbitt?? presented a
comprehensive survey of code verification issues, and
AGARD held a conference!? on verification of CFD
codes. Since then, the establishment of a rigorous ba-
sis for verifying and certifying codes has been found
to be more difficult than originally envisioned. An
excellent discussion has been given by Aeschliman?!
et al.

To assess the usefulness of including CFD re-
sults in the variable complexity modeling approach
to HSCT optimization, the guidelines on code certi-
fication procedures outlined by NASA and the Mul-
tidisciplinary Analysis and Design Industrial Con-
sortium (MADIC)??2724 have been followed. First
in this process is the code verification, which estab-
lishes an acceptable level of accuracy in the calcula-
tion. The MADIC/NASA panel defines verification
as “the process that demonstrates the code’s ability
to solve the specific set of governing equations and
boundary conditions posed to the computer by the
code.”?3 Grid refinement studies and comparison to
experimental data are key components in this pro-
cess. The validation step then ensures that the code
properly models the flow physics. The certification of
the code for the specific design applications can take
place only after these steps are completed. Certifica-
tion assesses the adequacy of the code for a specific
class of applications. For optimization, the key is-
sues are accuracy, robustness, computational effort,
and ease of implementation. The trade-off between
accuracy and computational effort is of practical sig-
nificance.

QOutline

We begin to address these issues by comparing
the wave drag predictions from the Harris code and
those from CFD calculations with experimental data
on simple analytic axisymmetric forebodies and on
symmetric wings. Grid and residual convergence stud-
ies are performed to give insight into the mesh sizes
and computational effort required to achieve con-
verged results. Next, we compare the integrated
forces and moments for wings and wing-body com-
binations predicted from the linear supersonic the-
ory and CFD. The impact of the differences in the
forces on the HSCT range calculation is then inves-
tigated. After looking at the effects of the integrated
forces on the HSCT performance, the focus shifts



to the effects of the distributed loads on the struc-
tural analysis. The stresses calculated using loads
determined from linear supersonic theory and from
CFD are compared at the cruise condition and for
other load cases. These loads are then used in the
structural optimization to compare the wing bending
material weights computed using linear supersonic
theory loads and CFD loads. From these investi-
gations we attempt to determine when in the design
optimization process it is advantageous to move from
linear supersonic theory to higher level CFD analy-
ses.

2. Code Verification

Haack-Adams Bodies

Our studies begin by investigating the zero-lift
wave drag prediction for a series of Haack-Adams
bodies.?® Calculations have been performed using two
different fineness ratios: {/dmae = 7 and |/dpar =
10. The equation for the radius, r, of these bodies
with area ratio Apgse/Amar = 0.532 is given as:

r,:M {0.707 [1— (?-1)2]3/2
0.16934(2736—1) [1—(275”—1)2]

) 1/2
+ 0.16934 cos™! (1— Tx> } .

Investigation of the body shape (Fig. 1) reveals that
the nose is blunt. This limits the grid resolution of
the nose to densities that allow a space marching so-
lution. However, following work by Mason and Lee,?
the CFD solutions were space marched as if the nose
was sharp. They showed that the bluntness is so
small for this minimum drag shape that explicitly
including a blunt nose computation does not change
the drag.

1/2

+

The convergence study of the wave drag with
mesh size (Fig. 2) for the Euler equations was per-
formed for the body with !/d,q = 10 at Mach 2.5.
An axisymmetric grid was used for these calcula-
tions, so the total number of cells, N, is the num-
ber of axial cells times the number of normal cells.
Meshes with uniform axial spacing and with distri-
butions clustered at the nose are considered. For the
clustered grids, two different grid aspect ratios are
considered. One has an equal number of axial and
normal points, while the other has twice the num-
ber of axial points as normal points. The clustered
grids with a 1:1 (normal:azial) grid ratio range in
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Figure 1: Haack-Adams Body Shape
0.052
5 . )
[1:1] stretched grid (11x21)
0.050 | —4A—— [1:2] stretched grid
—©— [1:2] uniform grid 1
0.048
CDO\N
0.046
(81x161)
(36x71)
0.044 (71x71)  (41x81)
0.042
10° 10* 10° 107
1/N

Figure 2: Haack-Adams Grid Convergence

size from 11x11 to 71x71. The clustered grids with
a 1:2 grid ratio range in size from 11x21 to 41x81.

The uniform grids with a 1:2 grid ratio range in size
from 11x21 to 81x161.

Clearly, the grids with axial points clustered near
the nose outperform the grids with uniform axial
spacing. Both the 36 x71 and 51x51 clustered grids
produce converged results, where our criteria for con-
vergence 1s computed drag values within one percent
of the extrapolated value as N — oco. Since the
36x71 grid has 50 fewer grid cells than the 51x51
grid, it was chosen for use in the Euler computations.
The drag for these bodies is non-dimensionalized us-
ing the freestream conditions and the maximum cross-
sectional area, A4, of the body.

Convergence with residual (Fig. 3) is investigated
on the clustered 71x71 grid. Converging the resid-
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Figure 4: Haack-Adams Body I/dpe = 7

ual four orders of magnitude results in a wave drag
prediction within 0.0001 of the extrapolated value.
The order of convergence plotted in the graph refers
to how many orders of magnitude the residual is re-
duced from its value at the first iteration. Mathe-
matically it can be written as

[122]*
|[R[1)

order of convergence = —logig

where || R||(*) is the norm of the residual vector at the
i'? iteration. All other calculations on the Haack-
Adams body are performed with this convergence
criterion.

The Euler wave drag predictions show substantial
improvement over the Harris wave drag code results
(Figs. 4,5) for both the {/dpmar = 7 and {/dpqr = 10

cases. The Harris code performs poorly with increas-
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Figure 5: Haack-Adams Body l/d4 = 10

ing Mach number for this case. While the experi-
mental data and Euler prediction of the wave drag
decrease with Mach number, the Harris code wave
drag prediction begins to increase with Mach num-
ber. As expected, the accuracy of the Harris wave
drag results does improve for the more slender body.

The computational time required for the Euler
analysis of the Haack-Adams forebody is approxi-
mately three minutes (0.07 sec/cell) for the clustered
36x71 grid on a single processor SGI R4000 work-
station. By comparison, the Harris wave drag code
takes less than one second to compute the drag.

Squire Wing

We now investigate the wave drag prediction on
a symmetric delta-wing. The Squire Wing (Fig. 6)
is a delta wing with a biconvex centerline and ellip-
tic cross-section. The thickness of each cross-section
is chosen to match the cross-sectional area of a 9%
thick biconvex wing with a diamond-shaped cross-
section®”. The space marching grid is created with
the grid points clustered near the wing in the same
way they were for the Haack-Adams body. The wing
surface grid is also clustered along the leading edge to
properly define the elliptical cross-section geometry.

Figure 6: Squire Wing
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Figure 10: Squire Wing Wave Drag

Grid refinement studies are performed on the wing
at 0° angle of attack and Mach 2.4. Figure 7 shows
the relative effects of varying the number of grid
points in only one direction. This is done to iden-
tify the dimension to which the wave drag is most
sensitive. The drag coefficient data, based on the
planform area, is given in counts of drag, where one
count of drag is equivalent to Cp = 0.0001. The
coarsest grid considered is 21x21x21. The num-
ber of spanwise, outward, and chordwise points are
increased to 141, 81, and 101 respectively. As ex-
pected, the number of spanwise points is found to
have the largest effect on the drag. Note that the
scale for this graph is very small. The total change in
drag from the coarsest to finest grid for the spanwise
variation is slightly less than one count. With this in
mind, a grid convergence study (Fig. 8) for a [3:2:2]
aspect ratio grid [spanwise: outward: chordwise] is in-
vestigated. The 61x41x41 grid was chosen for our
computations since it gives results within one per-
cent of the extrapolated mesh value as N — oco. The
residual convergence study (Fig. 9) performed on the
61x41x41 grid at Mach 2.4 indicates that converg-
ing the solution two orders of magnitude is sufficient.
This is less stringent than the Haack-Adams result.

Inspection of the wave drag results (Fig. 10) shows
good agreement between GASP and the experimen-
tal data. The Harris wave drag results show the same
overprediction found in the results for the thickest
Haack-Adams body. The Euler computation for the
61x41x41 grid took about 19 minutes (0.012 sec/cell)
on an SGI R4000 workstation.



High-Lift Maneuver Wing

The study will now focus on the force and mo-
ment predictions from our linear supersonic theory
and from GASP. A high-lift maneuver wing?=3! with
experimental force and moment data and pressure
distributions was selected to assess the accuracy of
the codes. The high-lift wing (Fig. 11) is only slightly
cambered in the streamwise sections, but there is
pronounced spanwise cambering. Another feature
of this wing is that, due to its design, inviscid flow
conditions predominate on the upper surface.

The wing was tested at Mach 1.62 and angles
of attack ranging from 0° through 14°. The Eu-
ler calculations are performed with a 77x51x77 grid
(spanwisex outwardx chordwise). This grid was cho-
sen following a convergence study in Section 3. Cal-
culations on this grid took about 18 minutes (0.004
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Figure 12: PNS Grid Convergence Study

sec/cell) on an SGI Power Challenge XL. A 77x91x77
grid was chosen for the PNS calculations from the
grid convergence study in Figure 12. The PNS grid
contains approximately 40 grid cells in the bound-
ary layer (Fig. 13) with the first cell well inside the
laminar sublayer (y* a1.0). Computations on this
grid took about 2.5 hours (0.017 sec/cell) on an SGI
Power Challenge XL to converge. All PNS compu-
tations were performed on the Power Challenge XL,
which is 4-5 times faster than the SGI R4000 work-
station previously mentioned. Grid converged results
were therefore obtained with meshes having the same
number of cells in the inviscid region for both the
PNS and Euler grids. Converging the residual two
orders of magnitude was found to be sufficient for
both the parabolized Navier-Stokes and Fuler com-
putations on this wing. The results from the Euler
and linear theory codes are adjusted to include an
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Figure 14: Lift Coefficient for Maneuver Wing
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axial friction drag coefficient of 0.0069 to compare
with the experimental data. This viscous correction
was obtained by Pittman3' et al. using the method
in Ref. 32. This viscous term is assumed to be invari-
ant with the angle of attack. The CFD results com-
pare well with the experimental data (Figs. 14-16).

The PNS results show slightly better agreement
than do the Euler, but both outperform the linear
theory results, especially at the larger angles of at-
tack. There is a 7.5% overprediction in the linear
theory lift-curve slope, Cr_. The panel code drag
prediction deteriorates with increasing angle of at-
tack. The pitching moment is taken about the point
z = 16.701,y = 0.0,z = —0.275, where the origin of
the coordinate system is the wing apex. The pitching
moment shows the greatest discrepancy. The Euler
and PNS pitching moment results are significantly
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Figure 18: Load Distributions at o = 12.91°

more accurate than the panel code results, but still
differ from the experimental data.

The load distributions (Fig. 17) for this wing at
5.98° show the CFD results matching well with ex-
perimental data. The distributions computed from
linear theory give the correct general shape, but do
not capture the details as well. This is evident in the
z = 19.9 curve where the peak and drop in AC), near
the leading edge are completely smoothed out.

The load distributions (Fig. 18) for the same wing
at 12.91° angle of attack show a much more dramatic
picture. Again the CFD results do an excellent job
predicting the load distribution. This wing has a
crossflow shock at this condition, which is captured
by the CFD analyses. However, the panel code re-
sults are much worse than those for the lower angle
of attack cases. In particular, the leading-edge sin-



gularity predicted by linear theory does not appear
in the data or nonlinear calculations.

3. Code Certification
HSC'T Fuselage

Now that we have established a level of confi-
dence in the CFD results, we begin investigations
into the prediction of forces, moments, and loads for
our HSCT designs. An axisymmetric HSCT body is
considered first. We create the fuselage for our HSCT
configurations with 8 design variables that define the
axial location and radius of the fuselage at four po-
sitions. The shape of the body between these points
is then determined by considering it as a minimum

wave drag body of a fixed volume!33. The cross-
sectional area is given by
12
-
4
i + 229
2 ; [] A1 T 222
* ;V " (Zu — 229
2294

(9212' — 64232)} 5

where z1; = #+k; —2%k; and 22, = 2k;(1—2)(1—k;).
The quantity V is the fixed volume, [ is the fuselage
length, & is the normalized axial location z/{, and
the k; are the normalized axial locations of the re-
straints. The constants v; are determined by solv-
ing the 4x4 linear system resulting from this equa-
tion applied at the four restraint locations. A typical
fuselage shape is shown in Figure 19. The plot shows
the reduced area in the fuselage mid-section, which
gives improved area ruling of the wing-fuselage de-
signs. This fuselage does not have the bluntness of
the Haack-Adams forebody.
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Figure 19: HSCT Fuselage
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In contrast to the Haack-Adams bodies, which
had fineness ratios of 7 and 10, the more slender
HSCT fuselages have !/dpae = 25. As a result, the
differences between the Harris code and Euler pre-
dicted wave drag (Fig. 20), present in the Haack-
Adams body results, are much smaller. In this case,
the drag is non-dimensionalized using the freestream
conditions and the area of the wing corresponding to
this fuselage. The minimum difference between the
Euler calculations on a 41x81 (normalx azial) grid
and Harris wave drag is approximately 0.8 counts of
drag near Mach 2.0. The maximum difference in the
Euler and Harris code prediction of the wave drag
over this Mach number range is 2.0 counts.

Uncambered HSCT Wing

The first HSCT cranked wing studied is an un-
cambered wing with no trailing-edge sweep. This was
chosen to ensure that the trailing edge of the wing
would be accurately modeled by the space marching
grid, which is created using z = constant marching
planes. The design variables used to describe this
wing are given in Table 1. These wing parameters
are described in detail in Ref. 2.

Figure 21 shows the wing-body along with slices
of the Fuler marching grid. The wing-alone grid was
created from the wing-fuselage design by removing
the fuselage and extending the wing to the center-
line. Grid refinement studies (Fig. 22) for the Euler
computation were performed for this wing at 4° an-
gle of attack in a Mach 2.4 flow. Three grid aspect
ratios (spanwise:outward:chordwise) were considered:
[1:1:1], [3:2:2], and [3:2:3]. For the [1:1:1] aspect ra-
tio, the coarsest grid considered is 11x11x11 and
the finest is 51x51x51. For the [3:2:2] aspect ra-



Table 1: Variables for Wing Definition

Value | Description
1 | 181.00 | Wing Root Chord (ft.)
2 | 156.00 | L.E. Break, x (ft.)
3 | 49.20 | L.E. Break, y (ft.)
4 | 181.00 | T.E. Break, x (ft.)
5 | 64.00 | T.E. Break, y (ft.)
6 | 170.00 | L.E. Wing Tip, x (ft.)
7 | 11.00 | Wing Tip Chord (ft.)
8 | 75.90 | Wing Semi-Span (ft.)
9 | 0.4019 | x-Loc. Airfoil Max. t/c (x/c¢)
10 | 3.6921 | L.E. Radius Parameter
11 | 2.5789 | t/c at Wing Root (%c)
12 | 2.1594 | t/c at L.E. Break (%c)
13 | 1.8039 | t/c at Wing Tip (%c)

Figure 21: HSCT Wing-Fuselage and Grid Slice

tio, the coarsest grid is 17x11x11 and the finest is
61x41x41. Finally, for the [3:2:3] aspect ratio, the
coarsest grid investigated is 17x11x17 and the finest
is 61x41x61. The small scale for the range of the
convergence plot should be noted. The study shows
that the [3:2:2] ratio grids give comparable results to
the other aspect ratio grids with fewer total grid cells.
The 61x41x41 grid gives converged results with the
fewest number of grid cells, and is therefore used for
all Euler computations on this wing. Following the
grid convergence study (Sect. 2) for the high-lift ma-
neuver wing, a 77x91x77 grid was used for the PNS
calculations

The comparison between the Harris code and Eu-
ler predictions for the volumetric wave drag are pre-
sented in Figure 23 As expected, the results for the
zero-lift wave drag on this nominally 2.5% thick wing
show much closer agreement than those for the 9.0%
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Figure 22: Lift Convergence with Grid
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Figure 23: Wave Drag Prediction for HSCT Wing

thick Squire wing. FEuler calculations and Harris
code predictions of the zero-lift wave drag match
within 1.5 counts for Mach numbers ranging from

1.2 through 3.0.

When the integrated force and moment data were
analyzed, many of the same trends that were present
in the maneuver wing were seen again. Linear su-
personic theory results show a 4.2 percent overpre-
diction of the lift curve slope (Fig. 24). The algebraic
skin friction estimate predicted a viscous drag coeffi-
cient of 0.00266. This agrees well with the PNS cal-
culations which give a nearly constant viscous drag
coefficient around 0.00251.  Figure 25 shows the
good agreement between the PNS drag and Euler
drag prediction with algebraic skin friction correc-
tions. The linear supersonic theory drag with vis-
cous corrections compares well to Euler and PNS at
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Figure 24: Lift Coefficient for HSCT Wing
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Figure 26: Pitching Moment Coefficient for HSCT
Wing

lower lift values, but diverges as the Cp increases.
At a typical cruise condition (Cp = 0.08), the lin-
ear theory drag prediction is 8 counts lower than the
PNS prediction. For this wing, the pitching moment
predictions (Fig. 26) from linear theory agree with
our CFD results. For our HSCT wings, the pitching
moment is taken about the wing apex.

The effect of the difference in drag predictions be-
tween linear theory and CFD on HSCT performance
was assessed for this wing. For our baseline HSCT),
the increase in range resulting from an 8 count under-
prediction in the drag predicted from linear theory
was 600 n.mi. This corresponds to a sensitivity of
75 n.mi. per drag count. This is an analysis result.
We have not (yet) performed an optimization using
CFD aerodynamics.

The PNS computation takes close to 3 hours (0.021
sec/cell) on the SGI Power Challenge XL. On the
same machine, the Euler calculation takes approx-
imately 7 minutes (0.004 sec/cell), while the linear
supersonic theory results take one second.

Cambered HSCT Wings

An aft-swept trailing-edge wing (Fig. 27) with
a camber distribution found using the linear the-
ory code WINGDES?* is considered next. The de-
sign variables for this wing are given in Table 2.
The sweep of the trailing edge is significant since
the grid generator creates the marching planes at
x = constant locations. This results in a stair-step
definition of the wing trailing edge. Grid refinement
studies revealed that due to this trailing edge sweep,
a denser mesh than was used for the previous wing
was required to give converged results. A 77x51x77
grid 1s used for all calculations on this wing. As for
the previous studies, a 7T7x91x77 grid is used for the
PNS calculations.

Figure 27: HSCT Wing-Fuselage



Table 2: Variables for Wing Definition

Value | Description
1 | 169.47 | Wing Root Chord (ft.)
2 | 143.34 | L.E. Break, x (ft.)
3 | 37.73 | L.E. Break, y (ft.)
4 | 176.05 | T.E. Break, x (ft.)
5 | 30.39 | T.E. Break, y (ft.)
6 | 189.83 | L.E. Wing Tip, x (ft.)
7 7.02 | Wing Tip Chord (ft.)
8 | 74.33 | Wing Semi-Span (ft.)
9 | 0.4800 | x-Loc. Airfoil Max. t/c (x/c¢)
10 | 3.2000 | L.E. Radius Parameter
11 | 2.1400 | t/c at Wing Root (%c)
12 | 1.7300 | t/c at L.E. Break (%c)
13 | 1.5100 | t/c at Wing Tip (%c)
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Figure 28: Lift Coefficient for HSCT Wing

The same trends in the force and moment data
found previously are seen for this wing (Figs. 28-
30). There is a 3.1% overprediction in Cr_ and a
5.0% underprediction in Cy,_ , but there is also a dis-
crepancy in the forces and moments at zero angle
of attack that was not present for the uncambered
wing. The algebraic skin friction estimate predicts a
friction drag coefficient of 0.00248. This is within 2
counts of the viscous drag predicted from the PNS
calculations. As with the previous wing, the drag
polar shows good agreement between the PNS drag
predictions and the Euler drag predictions with the
viscous correction. In addition, we see the same dete-
rioration in the linear supersonic theory drag as the
lift increases. At the cruise C'p of 0.08, the difference
between the PNS drag and the linear supersonic the-
ory drag is 10 counts.
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Figure 30: Pitching Moment Coefficient for HSCT
Wing

The Euler computations took approximately fif-
teen minutes (0.003 sec/cell) while the PNS calcu-
lations took nearly three hours (0.021 sec/cell) to
converge on the SGI Power Challenge XL. The in-
crease in the computational cost per cell for the PNS
calculations is mainly due to the smaller time step
required to converge the solution.

HSCT Wing-Fuselage

In the next step, the forces and moments pre-
dicted by linear theory and Euler analysis for an
HSCT wing-fuselage design are compared. The fuse-
lage and uncambered wing from the previous wing-
alone study are considered. Grid refinement (Fig. 31)
suggests that a 7T7x51x77 grid is sufficient for the
force and moment prediction. The grid refinement
was run using the wing-fuselage design at 4° angle
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Figure 32: Lift Coefficient

of attack at Mach 2.4. The force and moment
predictions (Figs. 32-34) for the Euler and linear su-
personic theory show the same trends as the wing-
alone case. There is a 4.2% overprediction in the
linear theory prediction of Cr_ compared to Euler
calculations. At Cr = 0.08, the linear theory drag
prediction is 7.5 counts lower than the Fuler predic-
tion with the same algebraic friction drag of 0.00327
added. PNS calculations were not done for this case.
The pitching moment computed from linear theory
and the Euler equations again compare well.

The Euler code takes approximately forty min-
utes (0.008 sec/cell) to compute a solution at & = 0°
on the SGI R4000 SGI machine. This time increased
to about an hour (0.015 sec/cell) for non-zero angles
of attack. The linear theory predictions again only
take about one second.
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Figure 34: Pitching Moment Coefficient

Loads and Structural Optimization

We now turn our attention to the distributed
loads used for the HSCT structural optimization.
In a multidisciplinary design optimization, the con-
straints for the structural optimization are evaluated
at a number of load cases. In Ref. 18, load cases in-
cluding transonic climb, low-speed pull-up, and high-
speed pull-up are considered. Some of these load
conditions will now be examined using the cambered
HSCT wing with aft swept trailing edge previously
used in the wing study. The structure is assumed to
be rigid for the determination of aerodynamic forces.
Previous studies indicated that structural flexibility
did not have a large effect on the loads for our HSCT
configurations (Ref. 18). The three load cases con-
sidered in this report are a Mach 2.4 cruise, a Mach
1.2 cruise, and a 2.5g pull-up at Mach 2.4. The
stresses in the wing were computed from the loads



Table 3: Center of Pressure Predictions

Predicted y-Location of
Center of Pressure (ft.)

Load Case Linear Theory | Fuler
Mach 2.4 Cruise 26.55 24.88
Mach 1.2 Cruise 31.88 30.43
Mach 2.4 2.5g pull-up 29.13 27.31

predicted by both linear theory and the Euler equa-
tions. The computed wing bending stresses show sig-
nificant discrepancies between the two cases. There
is a 15% — 20% difference in the stresses computed
from the Euler loads and those from linear theory
loads for each of the three load cases. It was surpris-
ing that the Mach 2.4 cruise condition had compared
so poorly for a small value of the lift coefficient of

about 0.08.

The search for the cause of the stress differences
led to investigations into the center of pressure pre-
dictions. For all of the load cases run on this wing,
the spanwise location of the center of pressure pre-
dicted from linear supersonic theory and Euler had
significant differences (Table 3). We see from the
table that the Mach 2.4 cruise condition actually
had one of the largest differences in predicted cen-
ter of pressure locations of 1.67ft. When a simple
beam stress analysis was performed, 1t was found
that the difference in spanwise location of the cen-
ter of pressure accounted for a large portion of the
difference in predicted stresses. Structural optimiza-
tions were also performed using the linear theory and
Euler loads. The ratio of the wing bending mate-
rial weights computed in the structural optimization
from Euler loads and from linear theory loads was
0.875. A lighter wing was obtained using the Euler
loads since the center of pressure was located inboard
of the value predicted by linear theory.

A structural analysis was performed on another
HSCT wing to test our conclusion about the impor-
tance of the center of pressure prediction. This wing
(Fig. 35) has an unusual forward swept trailing edge.
The difference in stresses predicted by linear theory
and Euler are much lower for this wing. The Mach
2.4 cruise showed a 1 —5% difference in stresses, and
the other two load cases had slightly larger 5 — 10%
discrepancies. As expected, the center of pressure
predictions (Table 4) for this wing were much closer
than they were for the previous wing. The largest dif-
ference between the Euler and linear theory predic-
tions of the center of pressure location is only 0.35 f%.
This difference occurs for the Mach 1.2 cruise con-
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Figure 35: HSCT Wing-Fuselage

Table 4: Center of Pressure Predictions

Predicted y-Location of
Center of Pressure (ft.)

Load Case Linear Theory | Fuler
Mach 2.4 Cruise 23.92 23.75
Mach 1.2 Cruise 26.35 26.01
Mach 2.4 2.5g pull-up 23.93 22.94

dition. The ratio of wing bending material weights
resulting from the structural optimization was also
much closer to unity for this wing (1.015). Due to
the large amounts of fuel in the HSCT wing, there is
a large amount of inertial relief which cancels much
of the bending due to aerodynamic loading. As a
result, the bending stresses in the HSCT wing are
sensitive to small differences in the predicted center
of pressure location.

4. Conclusions

The effects of including Euler/Navier-Stokes cal-
culations in our variable-complexity HSCT design
optimization process have been assessed through com-
parison of CFD and linear theory predictions of the
supersonic aerodynamic forces and moments and struc-
tural loading of HSCT configurations. The accuracy
of the CFD computations and linear theory results
was assessed through comparison with experimental
data. Euler analysis 1s more accurate than the Har-
ris wave drag results in its prediction of the wave
drag for relatively non-slender forebodies and wings.
But for a slender HSCT wing, the results of the two
methods were found to match within 1.5 counts for
Mach numbers from 1.2 through 3.0. Linear super-
sonic theory consistently overpredicts the lift coeffi-



cient. The viscous drag predictions from PNS cal-
culations and the algebraic skin friction estimates
matched within 2.0 counts for the HSCT wings con-
sidered. When the algebraic skin friction estimate
was added to the inviscid drag predicted from Euler
analyses for these wings, the results differed by only
2 counts at cruise (Cr = 0.8). In contrast, the drag
at cruise predicted from linear supersonic theory was
less than that computed from the PNS equations by
as much as 10 counts. This corresponds to a 750
n.mi. overprediction in the range, out of the nomi-
nal 5500 n.mi. range of the aircraft, when using lin-
ear supersonic theory drag predictions. The pitching
moments predicted from PNS, Euler, and linear the-
ory match well for the uncambered HSCT wing, but
this agreement becomes worse when cambered wings
are considered.

Another significant improvement in moving to
CFD comes in the prediction of the distributed loads
used in the structural optimization. Euler and PNS
calculations capture the details of the pressure vari-
ations across the wing better than linear supersonic
theory. This is especially true for large angles of at-
tack where the leading-edge singularity in the panel
method does not predict the pressures near the lead-
ing edge accurately. These errors have a significant
effect on the wing stresses and wing bending mate-
rial weight predictions from structural optimization.
The wing bending stresses and structural optimiza-
tion are very sensitive to changes in the spanwise
location of the center of pressure. Differences in the
predicted center of pressure location between Euler
and linear theory, which are on the order of 1.5 feet
on a 74 ft. semi-span wing, can translate to a 20
percent difference in the wing bending stresses and
more than a 10 percent difference in the structural
weight.

As expected, significant differences in computa-
tional effort for HSCT calculations were seen for PNS,
Euler and linear theory. For HSCT wings, the PNS
calculations took approximately 3 hours, the Euler
calculations required 15 minutes, and linear super-
sonic theory took one second to compute on an SGI
Power Challenge XL. The increase in computational
effort for CFD calculations will require that only a
small number of CFD computations be used to sup-
plement the lower order predictions in our variable-
complexity approach to multidisciplinary design op-
timization. A method must be developed which uses
a small number of CFD analyses to update the less
accurate and less expensive linear supersonic theory
results. Research to achieve this goal through re-
sponse surface methods®>3% is currently in progress
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as part of our MAD Center activities. In the future,
we plan to investigate the use of Euler/Navier-Stokes
codes for transonic load cases. We expect to see a
much larger increase in accuracy from using CFD
results for transonic loads, but with a concomitant
increase in the computational effort.
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