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Abstract
The applied aerodynamics community is struggling to develop a means of incorporating computational fluid dynam-
ics (CFD) into the early stages of aircraft systems design, where it can have the greatest impact on vehicle design.
This paper describes developments in computational design methodology arising from research into multidisciplinary
design optimization (MDO) done recently by the authors that addresses this problem. The premise is that advanced
CFD should be used to precompute a database of solutions which is then interpolated during the design process. De-
sign of experiments theory is used to select the “conditions” or “design points” used to populate the database, and
statistical methods are then used to develop a mathematical model of the CFD solutions which is used to “interpo-
late” the database. The specific models we use, called “response surface models” are quadratic least squares fits to
functions of the CFD results. Populating the database is made possible through the use of coarse grained parallel
computing. We demonstrate the method using a recent example from our MDO work.

                    Introduction* † † † § * * ¶

This paper is intended to alert members of the applied
computational aerodynamics community to develop-
ments in computational design methodology arising
from research into multidisciplinary design optimiza-
tion (MDO) done recently by the authors. After at-
tending the 15th Applied Aerodynamics Conference in
1997, it became clear that this work needed to be
brought to the attention of aerodynamicists. Several
sessions at that meeting touched on the problem of
how to use the power of CFD in the early stages of
design. Nixon1 explicitly identified the need to use
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CFD to develop a database, which would then be in-
terpolated during the design process. Thus it appears
we need to describe the methods developed at Virginia
Tech to incorporate CFD results in the early design
phases.2,3 As such, this paper uses results obtained in
our MDO research, and could be viewed as a survey of
work in one area, with illustrations of how to apply
it to another.

Our MDO research has been addressing the issue
of how to bring the benefits of high-fidelity, compu-
tationally-intense analysis and design to the very early
stages of design.4 The conceptual design stage is the
point where the most freedom is available to change
the design, thereby allowing CFD to make the largest
impact. However, normally, advanced CFD tools
aren’t used until the start of preliminary design at the
earliest. Many of the key early design configuration
decisions such as wing aspect ratio, sweep, and thick-
ness, which require explicit considerations from many
disciplines, are made using simplified models of the
various disciplines. Codes such as ACSYNT5 and
FLOPS6 are examples of MDO methodology em-
ploying simplified models of the various disciplines.

After an introduction to the concepts, terminol-
ogy, and issues of our approach we give a brief re-
view of the aerodynamic design process and the use of
CFD in design. We then discuss some relevant past
work, and describe the process we’ve developed to
incorporate CFD into the conceptual design process,
and present an example from our MDO research.
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Concepts, Terminology and Issues

Obtaining the full benefits of CFD in the conceptual
design process requires using some methodologies
with which aerodynamicists are not generally famil-
iar. We need to define our terminology. To carry out
any systematic design the problem has to be defined
in terms of a goal, which in optimization jargon is
known as the objective function. The designer has to
establish the parameters, called the design variables,
that he can vary to alter the design. A specific set of
design variable values defines a design. Any realistic
design problem will also contain numerous con-
straints. For example, an aircraft must have a speci-
fied range requirement and the wing structure must
not buckle under loading conditions. The objective
function and constraints are functions of the design
variables. For high dimensional design space many
local extrema may exist. Ways to find a global min-
ima are the subject of considerable current research.
These ideas are from optimization theory, and a prac-
tical source of more details is available in the book
by Vanderplaats.7

The region defined by the upper and lower values
of the design variables is known as a design space. A
collection of designs are selected in the design space
to populate the database. The number of designs and
theory for selecting corresponding design variable
values use an approach known as design of experi-
ments (DOE), see Montgomery.8 The result found
from analyzing a particular design is considered a re-
sponse to that set of design variables. A set of re-
sponses found through analyzing many designs with
varying values of their respective design variables
forms a response surface. The response surface can be
approximated by creating a function that relates the
values of the design variables to the values of the
responses, which may represent constraint or objec-
tive function values. These approximations are called
response surface models, see Meyers and Montgom-
ery. 9 The benefits of using response surface models
are clear when one considers the vast number of de-
sign variable combinations (planform shapes, wing
thicknesses, nacelle placements, etc.) that would be
considered in early design. The cost of evaluating the
response surface model is nearly negligible compared
to the expense of a complete analysis. There is a sig-
nificant computing requirement up front to perform
the  analyses necessary to create the response surface
models, but these “one time” calculations are very
amenable to parallel computing.

Several important issues are associated with the
concepts described here. The first is the number of
design variables and the fidelity of the analysis used

to find the objective function and constraints. Statis-
tical methods used here are simplest to apply to low
dimensional design space. Textbook examples typi-
cally use two or three design variables. We have
found in several problems that from 20 to 30 design
variables are required to define the problem meaning-
fully. A 29 design variable problem that we have used
in an HSCT design study used a quadratic model of a
response surface which contained 465 terms, includ-
ing all the cross terms. Accurate determination of the
coefficients of each term required an even larger num-
ber of design evaluations (on the order of 2000). Thus
creating a response surface in high dimensions re-
quires large numbers of analyses and a method of re-
ducing the computational cost is required, even with
the utilization of parallel computing.

Another issue is the quality of the fit to the re-
sponse surface obtained with the approximating func-
tion. Typically, the approximating function is a
polynomial, and most response surfaces we’ve used
are no higher than second order. The true response
may not be quadratic, and care must be taken to en-
sure that the approximation to the response surface is
adequate in the vicinity of the final results of an op-
timization.

In addition, visualizing the design space in more
than three dimensions presents a problem. The prob-
lem becomes more difficult with higher dimension.
Designers would like to be able to “see” the design
space. Research is ongoing into this issue.

Aerodynamics at the conceptual design stage

At the conceptual design stage the aerodynamicist
needs to be able to project the potential of a configu-
ration very rapidly with very limited information.
Perhaps the key requirements are a projection of the
cruise drag, maximum lift at low speed, and a few key
characteristics associated with handling qualities and
flight safety. Maneuver characteristics may also be of
interest. Moreover, although aerodynamic design is
often done at a single point, i.e., a specified lift coef-
ficient with consideration of specific off design condi-
tions, such as buffet or low speed high-lift condi-
tions, the designer actually needs a drag polar. The
design lift coefficient can change with the design
trades carried out early in the design process. The
aerodynamic representation must characterize an op-
timum design, not an analysis of a non-optimum
configuration. Traditionally, the aerodynamicist has
done this using rapid methods that combine linear
theory aerodynamics and past experience. Past experi-
ence includes results of previous studies and computer
programs that reflect past experience in a computa-
tional form, e.g., Refs.10, and 11.



American Institute of Aeronautics and Astronautics

3

Conceptual design embodies two essential charac-
teristics. First, there is no such thing as a purely
aerodynamic design. The design process is inherently
multidisciplinary. Detailed aerodynamic design takes
place as a single discipline only after most key char-
acteristics such as the wing planform and thickness,
and the Mach number and lift coefficient are estab-
lished. The standard multidisciplinary example in
supersonic transport design is the conflict arising
from the choice of wing thickness. Thicker wings are
lighter structurally, yet have more wave drag. As we
shall show below, the relative sensitivities of the
structural and aerodynamic technologies are critical to
making the correct choice. The fidelity of the analyses
used in technology assessment is critical to the selec-
tion. Thus, aerodynamics is never alone in conceptual
design.

The second characteristic is that no one ever does a
design just once, especially in conceptual design.
Numerous alternatives are evaluated. A single point
design is only of interest relative to the effects of
constraint changes, and a myriad of questions about
the relative importance of various design variables.
Typically the design is done with numerous parame-
ters fixed, and the importance of the parameters will
also be studied. Typical parameters might include
aircraft range and/or payload, or assumptions about
the amount of laminar flow on the airplane. Thus,
although computational expense and design cycle
time are critical, it is likely that cases will be run
repeatedly. In the approach advocated in this paper we
shift the computational expense from the optimiza-
tion process, which will be done using algebraic ap-
proximations for the system, to a step carried out
before the optimization where the system response is
established. This provides a means of doing many
optimizations.

A Navier-Stokes Nightmare
One can envision an attempt to couple a Navier-

Stokes solver (actually RANS) directly into an opti-
mization procedure. It is easy to imagine that over a
hundred cases are run during each optimization (a very
conservative estimate). Now, consider that the opti-
mization is run repeatedly with different variations of
the problem, as described above. In each case RANS
solutions are computed which are within an epsilon
of solutions already computed during previous runs.
Surely there must be a saner way of doing the design!

CFD in Design
The problem of how to use the advances in CFD in
conceptual design has been of interest for some years.
Snyder discussed the problem in 1990.12 More re-

cently, Geising, et al addressed this issue13 and it was
the subject of the AIAA Wright Brothers Lecture by
Paul Rubbert in 1994.14 There have been several
drawbacks to the use of CFD. Probably the most
important is that the aerodynamicist in conceptual
design needs to project the potential performance of
the design after a complete detailed aerodynamic de-
sign has been done. A CFD analysis of a shape that
has not been designed is of no particular value. In-
deed, a detailed wing design may take months to per-
form. Historically, the conceptual design aerodynami-
cist assumes the performance level that can be
achieved, e.g., the percentage of full leading edge suc-
tion that can be achieved after the design process has
been completed. For evolutionary development this is
relatively easy. For radical departures from past de-
signs this approach has more risk. The second prob-
lem is the cycle time for CFD solutions. Until very
recently, it took too long to do analysis and design
using CFD. Considerable effort is being made to re-
duce the cycle time, and progress is being made.
However it may still be too long for most traditional
conceptual design studies, which assume that several
configurations can be evaluated daily.

Perhaps the best recent assessment of the use of
CFD in design is contained in the papers by
Jameson.15,16 His work addresses the issue of pre-
liminary and detailed design, but identifies the keys
issues in using CFD in design in general. His recent
experience came from his work on the detailed design
of the MDXX project, which was canceled before his
team’s wing design was wind tunnel tested. He identi-
fied the serial nature of the computationally intensive
activity as being a major problem.

Key early work

Since aerodynamicists have always used all of the
available computing power to the fullest, the problem
of integrating computationally intensive analysis
methods into the design process is not new. Hints of
the approach we advocate were first proposed many
years ago. At the time they didn’t get the recognition
they deserved. The motivation then was the same as it
is today, a search for methods to overcome the com-
putational expense of high fidelity flowfield simula-
tion.

In 1964 Powers17 addressed the problem of using
results from advanced methods in design using an
approach similar to the one advocated here. He was
interested in finding the minimum drag body of revo-
lution with a hemispherical nose at Mach 7, includ-
ing real gas effects. This required using both a real
gas blunt body program and a real gas method of
characteristics program. In the early ’60s this was an
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extremely challenging computation. He approached it
by finding the optimum values of shape change poly-
nomials, where the effects of changes on drag were
found by using the method of Latin Squares (one type
of experimental design), which required analyzing
nine different shapes. A least squares polynomial sur-
face fit to the results from the nine computations was
then used to find the coefficients of the shape change
polynomials. He then found the minimum drag easily
using the analytically defined response surface model.
Thus the idea was to use solutions from high-fidelity
computationally intensive analysis methods to de-
velop inexpensive models for use in design optimiza-
tion. Powers18 continued to use this approach to
solve a wide variety of problems in industry until his
retirement a year or two ago.*

A similar approach was developed at Boeing in the
early ’70s and is best described in the paper by Healy,
et al19 regarding engine selection in aircraft design.
Subsequently, the procedure was used by Jobe, et al20

to investigate large airplane wing planform concepts.
Three design variables were selected, aspect ratio,
sweep and thickness. Then, a range of values for each
design variable was selected. They picked four values
for each of the three variables. The resulting 64 com-
binations of design variables, i.e., the experimental
design, then were reduced using the method of Latin
Squares to 16 designs. The results from an analysis of
the 16 different designs were then used to develop
approximate functions for the objective function
(TOGW) and constraints. The optimum values of the
design variables were then found using the approxi-
mating functions. The full report shows that the ap-
proximating functions were quadratic polynomials.21

This approach also was used by Jensen, et al22 to
study the effects of using different objective functions
on the configuration of a military transport. No fur-
ther results of studies using this methodology by
Boeing have appeared in the literature.

Recent MDO Developments

Research in MDO has been very active in the last
decade. Keys surveys are by Sobieski and Haftka23 and
Frank, et al.24 The former survey reviews the types of
MDO formulations that have been developed, and the
latter reviews the ways to solve the optimization
problem. A good overview is also contained in the
paper by Kroo.25

                                                
* The first author was told about Powers’ work in the mid
’70s. Because the approach required the use of statistical
methods, and Powers’ references used agricultural exam-
ples, the first author failed to appreciate the potential of
the approach, a significant error in judgment.

At Virginia Tech, in the MAD Center, one of our
projects has been HSCT design. We started by using
a variable-complexity modeling (VCM) concept
combing simple, typically algebraic, approximations
with more detailed numerical methods. Typical aero-
dynamic analyses include wave drag and drag due to
lift predictions. In the VCM approach we do most of
the analyses using the simple models, which are then
improved by adjusting them to agree with the detailed
models occasionally. We use sequential approximate
optimization methods that provide a natural means of
updating the simple methods. The process is carried
out using a sequence of optimization cycles, where
the simple methods are compared with the higher
fidelity methods at the beginning of each optimiza-
tion cycle. We have used several techniques. We call
the most basic approach scaled approximation. There,
we find a constant scaling factor at the beginning of
each cycle. Defining fd(x) to be the result from a de-
tailed analysis, and fs(x) to be the result from a sim-
ple analysis, with x  being the vector of design vari-
ables, the scaling factor σ is defined at the beginning
of the cycle, xo, as

σ ( )
( )

( )
x

x
x0

0

0
= f

f
d

s
,

and during an optimization cycle we approximate the
analysis results as

f fs( ) ( ) ( )x x x≈ σ 0 ,

and a new value of σ is found at every optimization
cycle.

We were able to obtain results using this ap-
proach.26 The most recent example is by MacMillin,
et al.27 However, there were several drawbacks with
the variable complexity method as originally formu-
lated. We had difficulty with the accuracy of the sim-
ple models. Sometimes they weren’t general enough
to predict the correct trends. Next, we found that al-
most all of the numerical calculations (both structures
and aerodynamics) would produce slightly noisy re-
sults as the geometry changed (others have also dis-
covered this problem28). This causes problems, espe-
cially for gradient-based optimizers. Convergence is
poor and many local artificial extrema are selected by
the optimizer. Finally, we found the problem of creat-
ing and maintaining the software associated with
combining many disciplinary codes into a single pro-
gram. This is a problem that has been encountered
previously elsewhere.29 It is impractical to consider
directly incorporating the large CFD and finite ele-
ment codes that would be included in the ultimate
development of an MDO approach. The last two
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problems exist independently of the issue of computa-
tional cost.

Experience with our original approach made us re-
consider our methodology. Two key changes emerged.
First, we decided to represent the results of our analy-
sis with response surface models described generally
above. This led to the next major change. We no
longer had to have high fidelity codes requiring con-
siderable expertise to use embedded directly in our
MDO code. This produced a computing architecture
that has the potential to handle much more general
optimization problems, where other disciplines can be
included. The result is a process that is faster, elimi-
nates artificial noise, and allows the software to be
much simpler, being easier to maintain and modify.
The detailed high-fidelity computationally intensive
work can be much better coordinated, with discipli-
nary specialists working closely with the MDO de-
signers, who specify the locations in design space
where analyses are needed. Using the high fidelity
results a response surface model is created. The opti-
mizer then uses the model of the high fidelity results.
We no longer need a monster code, and the process
becomes manageable both computationally and orga-
nizationally.

This procedure has been demonstrated by Gi-
unta, et al.,3 using linear theory aerodynamics and by
Knill et al.30 using Euler models of the aerodynamics.
We have also used this approach to model pitchup
effects,31 and include detailed finite element structural
optimization results in place of the traditional wing
weight equation methods.32 At the same time that we
started migrating to this approach, other MDO groups
were reaching similar conclusions and have started
using related techniques.33,34,35

The process outlined briefly above has omitted a
key detail. There is still a major problem. The com-
putational cost is still too high. To address this prob-
lem, we have had to introduce several additional con-
siderations. The next section provides a more detailed
discussion of the general approach we advocate, in-
cluding our approach to managing the computational
cost problem.

An Approach for Incorporating CFD in
Conceptual Design

As discussed above, the large computational and cal-
endar time expense associated with high-fidelity
methods prohibits their serial use in an arena where
there is a strong emphasis on reducing the design
cycle time. Even heroic efforts, such as those cited by
Jameson,15 will not be sufficient. Here we describe
the approach we are currently advocating. As we learn
more our approach evolves. The exact details are nec-

essarily problem dependent. However, the framework
described here should form the basis for any attempt
to use detailed CFD in the conceptual design process.

Step 1: First, the design geometry has to be repre-
sented parametrically by a set of design variables. We
have found that perhaps twenty design variables can
be used to define a wing planform and airfoil thick-
nesses. Adding design variables to allow for area rul-
ing of the fuselage, sizing of the vertical and horizon-
tal tails, and placement of engine nacelles, as well as
mission variables led us to use 29 design variables in
our HSCT work.27 An upper and lower bound of each
variable is selected, creating a design “box.” If a pro-
jection of the performance(drag) is required, the cam-
ber will have to be designed. Essentially, the camber
design will become a sub-problem, requiring  a sepa-
rate design problem be solved for many of the various
designs requiring evaluation at the top level. This is
essentially the problem addressed by Jameson.15 For
our work in supersonic flow we have made use of a
modified linear theory code to obtain the camber
shape and associated minimum drag for each design.
We have addressed ways to handle this design problem
previously.36

Step 2: Once the design variables are selected, a
number of designs using various combinations of the
design variables must be evaluated. The specific selec-
tion of these design variable combinations requires
the use of design of experiments theory. Figure 1
presents a conceptual representation of a three variable
problem with each design variable taking three differ-
ent values. This type of a design is known as a full-
factorial design. While this is an effective way to set
up a database for a small number of design variables,
the resulting number of cases that need to be com-
pleted to obtain results for our twenty nine design
variable problem is too big to be considered (hundreds
of millions). The drastic increase in the number of
designs required to construct an adequate database as
the number of design variables grows is known as the
curse of dimensionality. A reduced number of cases
must be evaluated. Various subsets of the full facto-
rial experimental design; such as the central compos-
ite (Fig.2), small composite, and D-optimal experi-
mental designs can be used to supply adequate infor-
mation with a reduced number of required evalua-
tions.9 Figure 3 shows an actual result of generating
different designs using design of experiments theory
for an HSCT study. As many different designs should
be generated as is practical for the computational re-
sources available. Software is available for aerody-
namicists to use that makes this task relatively
straightforward. SAS is one source for the software.
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Figure 1. Example of a Full Factorial Design

Figure 2. Example of a Central Composite Design

Figure 3. An Example of the range of planform
shapes contained in the design space after applying
the design of experiments ideas illustrated above.

Step 3: At this point the number of designs needs
to be reduced. This is done in three stages. First we
eliminate clearly ridiculous designs based on geome-
try (many combinations of design variables produce
geometries that are clearly unreasonable). Then we
use very approximate analyses of the constraints to
reduce the design space still further, e.g., if a design
grossly violates the range constraint, we eliminate it.
We call this the creation of a reasonable design space.
Finally, based on the number of terms that will be
required in the response surface model, we select a
subset of the remaining points to analyze. Because we
use a least squares fit to the surface, we need more
points than we have coefficients. We have found that
about 1.5 times the number of terms are required  for
a 5 design variable problem, progressing to about 3.5
times the number of terms for a 20 design variable
problem. We use the D-optimal method to select
these points. The D-optimal method works well with
the irregular design space that results from the crea-
tion of the reasonable design space. D-optimal meth-
ods concentrate points on the outside edges of the
design box.

Step 4: We are now ready to analyze the remain-
ing designs using linear theory and Euler model aero-
dynamics to create response surface models. We need
to define the precise form the response surface models
will take. As noted above, the models are generally
best limited to linear or quadratic functions, and some
intelligence must be added to the process to formulate
the response surface so that it is as close to a constant
as possible. This is similar to the formulation of
CFD problems so that behavior of dependent vari-
ables is well behaved. In predicting the drag, as noted
above, we need to model the polar using response
surfaces, not just the drag at a specific lift. We have
found this to be a key consideration previously even
in aerodynamics-only optimization.36

Here, we address the problem of defining drag po-
lars, and make use of our knowledge of the problem
from linear theory. Thus, rather than model the drag
explicitly, we model the shape parameters of a drag
polar. We can use either:

C C KCD D L= +
0

2

or,

C C K C CD D L Lm m
= + −( )2

where we actually represent CD0 and K or CDm, K and
CLm as functions of the design variables. To do this
we must do either 2 or 3 analyses for each design.
This is required to find the values of CD0 and K or
CDm, K and CLm for each design. We then construct

  

X1

X2

X3

  

X1

X2

3X
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models of the variation of CD0(x) and K(x) or CDm(x),
K(x) and CLm(x) with the design variables, x.

We have obtained good results with either form.
Figure 4 shows one example. Here we have the polar
corresponding to a single design. The quadratic fit to
the Euler solution is compared to the actual Euler
results at a number of angles of attack and a linear
theory analysis of the same configuration. Both the
linear theory and quadratic fit to the Euler solutions
compare well qualitatively to the Euler results. How-
ever, the Euler response surface is better than the lin-
ear theory, with the results being virtually indistin-
quisable from the actual Euler solutions near typical
cruise lift conditions.

Figure 4. Example of a supersonic polar compar-
ing Euler Analysis, a response surface model and lin-
ear trheory for an HSCT design.

Step 5: Evaluate the D-optimal designs selected in
step 3 with a cheap method, typically linear theory.
Then create a response surface model in the form se-
lected in Step 4.

Step 6: Do a regression analysis of the response
surface model obtained in Step 5. In addition to pro-
viding the basis for choosing the functional form of
the drag polar, linear theory results also provide a
means to reduce the number of Euler evaluations re-
quired to construct an accurate interpolation database.
A relatively densely populated database of linear the-
ory solutions can be created because the evaluations
are so inexpensive. Using the linear theory database,
statistical techniques are employed to determine the
terms in the response surface models that have a sig-
nificant effect on the aerodynamic quantity of interest.
By eliminating these unnecessary terms from the
CFD response surface models, the number of CFD
evaluations required is drastically reduced. Figure 5
from Ref. 30 shows how many terms can be ellimi-

nated in our HSCT work. The regression analysis
will identify which terms in the response surface
model are important. As a sanity check, examine the
results and verify that the statistical analysis is select-
ing terms that the aerodynamics would suggest are
important. Our experience is that regression analysis
works!

Figure 5. The number of terms required in the re-
sponse surface model to obtain an accurate good drag
predictions compared to the number of terms in the
full polynomial (from Ref. 30).

Step 7: Assume that the important terms from
Step 6 are also the important terms using the Euler
analysis. This allows us to use a the reduced size
model and thus requires many fewer Euler calculations
than linear theory calculations. Use a subset of the D-
optimal points used for the linear theory analyses.
With parallel computing, it is possible to evaluate
thousands of designs using an Euler analysis in a few
days. At Virginia Tech, we use an Intel Paragon with
over a hundred nodes, although we typically use only
about sixty at a time. We use parallel computing in a
very coarse, yet highly effective way. Because we
need to evaluate numerous geometries using the same
procedure, we can simply run many cases simultane-
ously. The critical contribution of the use of a paral-
lel computer is to reduce the calendar time from
weeks or months to a few days.

Step 8: Next, assess the accuracy of the Euler re-
sponse surface model. This can be done by comparing
the predictions of the response surface model with
results of Euler calculation using D-optimal points
not used to create the model.

Step 9: Once the response surface model is created
and its accuracy assessed, a large range of conceptual
design can be evaluated almost instantly (Figure 3
showed a typical range of planforms used to study
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potential HSCT configurations). Furthermore, for a
particular design study, the resulting database can be
used many times, with additional cases run to fill out
a particular area as required.

Step 10: Finally, the result of the important op-
timization results need to be checked by making an
Euler calculation for the design that was found by the
optimizer.

Design Example

Figure 6, from Ref. 30, contains three plots
showing a trade study for an HSCT configuration,
comparing the results of linear theory and Euler aero-
dynamics for a change in the inboard leading edge
sweep, holding the other design variables fixed. In
this case, the wings are cambered using Carlson’s
attainable leading edge thrust methods37 as imple-
mented in the code WINGDES.38 WINGDES provides
a camber distribution which minimizes drag-due-to-
lift and provides the maximum leading-edge suction
parameter near the design lift coefficient.  The various
planforms are shown on the middle figure. As dis-
cussed above, the linear theory results are generally
optimistic, and the fuel weight required to do the mis-
sion is higher using the Euler aerodynamics. Interest-
ingly, the Euler results show that as the inboard
sweep increases, resulting in a larger cranked tip, the
fuel weight increases much faster than the results
using linear theory. This occurs because the cruise
drag penalty for the unswept tip is larger when using
Euler analysis than when using linear theory.

The middle plot shows the variation in wing
weight with inboard sweep. Here, because the con-
figuration weight is higher for the Euler aerodynam-
ics, the structural weight is higher. Note that there is
very little variation with the sweep angle.

The bottom plot shows the combined results,
which suggest that for an airplane with a given span
the inboard sweep from Euler analysis should be
lower than that from linear theory due to the penalty
associated with the outboard section.  For this class
of configuration, the one degree of sweep at this large
values leads to significantly different planforms.
These studies are essentially trivial to carry out once
the response surfaces are constructed, and allow the
aerodynamicist to provide design insight into the con-
figuration using the very best available analysis
methods.

Figure 7 provides another example from our MDO
work. In this case we compare the final results of a
complete MDO optimization for a simplified five
design variable case. Here the inboard planform sweep
is found to be slightly less using Euler aerodynamics
compared to linear theory, however, the primary find-

ing focuses on the thickness. Because the linear the-
ory drag results tend to be optimistic, the trade be-
tween structures and aerodynamics picks a thickness
that is higher than that found using Euler analysis.
Since the Euler predictions have a higher drag, the
optimal design has a slightly thinner, and therefore
heavier, wing. This example illustrates both the im-
portant coupling between disciplines and the impor-
tance of using high fidelity analysis.*

Figure 6. Parametric trade study of an HSCT us-
ing response surface models (Ref. 30).

                                                
* This result was exactly counter to the hopes of the first
author, who has been an advocate of approximate meth-
ods in aerodynamics.
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Figure 7. Comparison of MDO results using linear
theory and Euler aerodynamics.

Conclusions
We have illustrated a rational method of using high-
fidelity computationally-intense CFD methods very
early in the design process, where the benefits of
high-fidelity analysis and design can have the biggest
impact in both vehicle performance and design cycle
time. In effect, we develop a database of solutions and
then interpolate the database. In higher dimensions
(thus far as many as 29 design variables) the devel-
opment of the database requires use of design of ex-
periments theory and statistical methods. When cou-
pled with a problem formulation that makes use of
what we know based on linear theory, such as the
form of the drag polar, good results can be obtained.
We have shown that, around HSCT cruise conditions,
it is virtually impossible to distinguish between the
representation of the drag polar using our response
surface model of the drag (computed using the Euler
analysis) and the actual results from Euler solutions.
In the same figure we showed that the response sur-
face was better than using linear theory, where linear
theory methods are usually employed in early design.
While results from linear theory have inaccuracies,
they do provide basic information as to which vari-
ables and combinations of variables play an important
role in the prediction of aerodynamic quantities. This
important information is used to significantly reduce
the number of expensive CFD analyses needed to
construct an accurate interpolation database. The ex-
ample HSCT optimization presented, which was from
an MDO problem that included the effects of wing
structural weight, demonstrated that the minimum
weight airplane found using the Euler results had a
thinner wing than the results using linear theory to
model the aerodynamics. Traditional design paradigms
would likely make the change to a thinner wing diffi-
cult.

The method is even more effective because of
the ease with which it can be incorporated into a par-
allel computing environment. Course grained parallel
computing is relatively simple to implement and the

computing resources required are beginning to be
widely available.

We believe that aerodynamicists engaged in
conceptual design should use the powerful methods
described here. Further research into the issues associ-
ated with the creation of the database (point selec-
tion)and interpolation (response surface construction)
is required. However, even at this stage of develop-
ment our process has proven effective at including
high-fidelity CFD solutions in the early stages of
aircraft systems design.
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