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Preface

AEROCAL programs are intended to serve both students and practicing
aerodynamicists. For students, they can serve an important role in supple-
menting theoretical analysis with the actual numerical results so important
in developing engineering skills. In aerodynamics, it has been difficult
for students to solve meaningful illustrative problems, and this difficulty
can now be eliminated by using the new personal computing machines -- either
programmable calculators or microcomputers. I have found that the results
of numerical calculations inevitably provide a few surprises, which force
the analyst to reexamine the theory, leading to a much deeper understanding.
AEROCAL programs can thus be used to prevent the calculation from becoming
an end in itself. Instead, efforts can be concentrated on the actual aero-
dynamic problems, with required calculations assuming their proper support-
ing role. Thus, the availability of the personal computing machines allows
the student to gain an appreciation of the role of computational aerodynamic
simulations, while developing an engineering attitude.

The second purpose of the work is to provide the practicing aerodynamicist
with a readily accessible collection of algorithms designed for use on this
class of machine. The availability of such a set of routines will eliminate
the most tedious aspects of the software development process so that the code
development time can be used to implement the user's unique requirements
rather than wasting time creating the basic building blocks.

The material selected for inclusion is, of course, not intended to
replace the large computational aerodynamics programs. Instead, it allows
students to become familiar with an important part of the set of standard
aerodynamic methods representative of those required in aerodynamics. To
the experienced user, these methods should be extremely useful, providing
results which are more than adequate for a variety of jobs.

The material is organized in workbook fashion, with each program being
essentially independent of the others. An example of the style that we
intend to follow is found in the IBM SSP or other software package user's
manuals. The addition of some examples for each program allows the user to
check that the program is properly executing on his own machine.

The choice of the TI59 format for the programs is one of convenience
only. Program instructions are similar for other calculators and an Appendix
is included to describe the listing nomenclature. Using this information,
conversion to other instruction sets should be relatively simple. Micro-
computers will typically have more advanced instruction sets, such as BASIC.
The information provided in the method description is easily used to write
a set of BASIC instructions.

The author acknowledges the contributions of the many aerodynamicists
and research scientists who have developed the basic material, which forms
the basis for these software paks and with whom he has held discussions on
the relative merits of particular methods for performing various aerodynamics

calculations.

W. H. Mason

Huntington, New York
September 1981
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3.0 INTRODUCTION

The prediction of pressure distributions and forces on aerodynamic shapes
at subsonic speeds provides the basis of most aerodynamic design and analysis.
Programmable calculators and microcomputers cannot as yet compute the flow-
field over entire configurations. But methods which compute the flows over
components can be handled on small machines and provide useful results.

Two methods which give exact results for idealized shapes have been
included. The first is the classical Joukowski airfoil solution, which demon-
strates the use of conformal transformation and can be used to study how pres-
sure distributions change with the variation of geometric parameters. It is
also an excellent shape to use as a check of the solutions produced by more
approximate methods. Some useful airfoil relations are also summarized in
this section. The second exact solution is given for an ellipsoid of revolu-
tion at angle-of-attack. This solution can provide information on the typi-
cal magnitude of pressures and crossflow angles on fuselage-like shapes.

For arbitrary airfoil analysis, Weber's 2nd order analysis method is
included, while design load distributions can be obtained with the camber
line design method described in Section 3.4. These methods provide a solid
basis for 2-D incompressible, inviscid airfoil analysis and design.

For wings, a Tifting line program is described which can be used to
determine 1ift, 1ift curve slope, induced drag and spanload for arbitrary
unswept wings. Finally, a Trefftz plane analysis of the spanload is pre-
sented which allows the user to determine the spanload efficiency 'e'.

The methods can be readily extended using the references and a micro-
computer to treat other situations. Obvious simple extensions include com-
pressibility effects in Weber's method and the addition of sweep effects in
the 1ifting line theory method. Thus, the methods presented here can serve
as a foundation for the use of other methods and to obtain useful information
in a number of cases typical of aerodynamic design and analysis.

The methods are presented in a standard format with the following
information:

Title

Description of what the method does

References

Detailed outline of the method and 1isting of the equations required
User instructions

Sample case

Program description

Program listing.

OCO0OO0OO0O0O0OO0OO0OO

The programs are written in the most direct sequence of instructions
possible in order to make the study of the programs as simple as possible.
This allows the user to incorporate modifications to the programs or convert
them to other systems without difficulty. The use of the TI59 instruction
set is purely a convenient selection. These routines will work on a number
of other calculators, as well as the emerging class of microcomputers. For
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those readers not familiar with the details of the TI59 instruction set, a
description is included in Appendix A. This will allow the non-TI59 user
to convert the codes to his own instruction set with ease.

The routines often make use of the printer. The author has found the
printer to be much more valuable in program development than in program
execution. Nevertheless, several programs do provide printed results. A
description of the printed output is included below the user instructions
for each program.
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3.1 JOUKOWSKI AIRFOIL

This program computes the Joukowski airfoil ordinates and related sur-
face pressure and velocity. The method emplioyed is the one presented by
E. L. Houghton and A. E. Brock, Aerodynamics for Engineering Students, Edward
Arnold, London, 1960, pp. 281-298. This method allows for a slightly more
general form of the airfoil and pressure distribution. Once the foil and
pressure are known, the force and moment integrations are carried out,
together with the arc length calculation. The arc length is mainly useful
in making boundary layer calculations.

METHOD ‘

The Joukowski airfoil is one of the shapes resulting from the Joukowski
transformation:

e
N

g=171+

where ¢ = £+ in represents the physical plane, and Z = x + iy corresponds to
the transformed plane. :

The idea is to relate the flow about a circular cylinder of radius "a
in the transformed plane to the related shape in the physical plane. The
value of a (compared to b) and the displacement of the cylinder from the
origin determine the shape in the physical plane. Basically, displacement
of the cylinder along the x axis controls the thickness, while displacement
above the x axis controls camber.

Therefore, to start the computation, select the geometric parameters:

e: where the thickness t/c & 1.3e
B: where the max camber is about B/2 (B is in radians)
b: where the chord in the physical plane is about 4b
a: for the standard Joukowski foil a =b (1 + e)

and the flow conditions:
a: the angle-of-attack

K: the fraction of the Kutta condition achieved (typically from
.9 to 1.0).

Once these values are specified, the calculation is made at each point in the
plane, moving sequentially around the circular cylinder.



For each 6, the following simple algebraic steps are carried out:

a cos 6 + be

Compute: X

y=asing+8 -b(1+e)

b? b?
€=X{1+m}, n=,¥{]‘m}

£ and n are the coordinates of the Joukowski airfoil.

The coordinates that evolve naturally in the physical plane are not the
usual ones associated with airfoils. The £, n coordinate system in the follow-
ing sketch can be compared with the standard airfoil coordinate system:

—S- \)" > ¢

Spg = 72b Sg= Xg =0 Xrp = C

Joukowski Coordinates Standard Coordinates

Once the airfoil ordinates are known, the surface velocity, ge, and

pressure distribution, Cp, are:
A= -pr &)
2
[x* + y?]
g = 2b% xy
(2 +y2)*

Ge . 2 {sin(p+a)+ Ksin (a+p)}
Uoo [AZ +BZ]]/2

Qe g
p “(D::)

Note that if A% + B2 = 0, the mapping is at a singular point and the Kutta
condition is invoked to automatically set de/U_ = 0.

(]
1]
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SOME TYPICAL SHAPES

A number of special shapes result from the appropriate combinations of
geometric parameters:

i) Flat plate: e=0,a=b,B8=0
ii) Circular arc airfoil: e =0, b = a cos B
jii) Ellipse: e=0,B8=0,b<a
where the fineness ratio (chord/max thickness) is (a? + b%)/(a® - b*).
Note also that the trailing edge of the Joukowski airfoil is cusped.
Although the transformation cannot be manipulated to producz - finite trail-
ing.edge angle, the pgrameters can be adjusted to allow a slightly rounded
trailing edge. This is done by shifting the cylinder less than the full
amount required to place the singular point of the mapping exactly on the
cylinder; i.e., a is larger than it should be:
a=>b(1+Qe)

where Q is greater than one (it is two in the example by Houghton and Brock).
This change also shifts the maximum thickness aft on the foil.

FORCE AND MOMENT CALCULATIONS

Once the pressures are known, the forces can be computed. Generally,
the calculations are made in the airfoil coordinate system (body axis) and
then rotated to the aerodynamic system (wind axis).

L\N D -
=

such that: — U,

CL = CN cos o - CA sin a.
CD = CN sin o + CA coS a.
Conversely, it is occasionally useful to use the inverse relations:

C

N CL cos o + CD sin o.

CA = -CL sin o + CD coS a.



For the 2-D potential flows in aerodynamics, CD =0, CA = -CL sin o and
CL = CN/cos a. : :

In order to obtain C, and C_, the pressures can be integrated by the

trapezoidal rule over the surfac@:

As a check, the analytic result for CL on a Joukowski foil is given by:

CL = 27K (4%) sin (a + B)

where ¢ is the airfoil chord and must be obtained from the ordinate
calculation.

The formulas for the force and moment summation (together with the
formula for the arc length over the surface are given by:

Normal Force:

Cphs + Cps
N _ Pi Pi-1 :
I R

Moment:

Ch.: + Cn.
Mo Pi * *Pi-1 AE An
D { 2 } {A‘E (51-1 M. )* An (”1-1 t 3 )}

Arc Length:

T

Here, N/q must be divided by c and M/q should be divided by c? to
obtain CN and Cm, respectively.

The reference location for the origin of the moments is the origin of
the &, n coordinate system. The moment about any other point can be obtained

as follows:

i) Convert to the standard airfoil coordinate system and define the
moment origin as:

_ R
SLe " STE

R _ SLE - SR Yy
C
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where

X 3 : y
- = R . LE__ R,
SR N T

ii) Define the coordinates about which the moment is desired:

X Yo
c® ¢/’

jii) The moment about xq» ¥q is then given by:

CmQ=CmR+<_)iQ-_XER_>CN-<IQ-1R_> Cye

c c C

For the Joukowski airfoil YR = (0, CA = -tan o CN and the moment transfer
reduces to:

i *Q_*R . 7q
CmQ = CmR + ( c c + tan a c CN .

Two other quantities are also of interest; the aerodynamic center and the
center of pressure.

The aerodynamic center (ac) is the point about which the moment is con-
stant (i.e., it does not change with angle-of-attack). The location of Xac
is usually approximated as:

Xac _ R _ %M
C c HCL '

The moment about the aerodynamic center can be estimated by assuming that it
is approximately equal to the value of CmR at CL =0:

Cmac A CmR (CL =0) = Cm_.

The center of pressure (cp) is the point on the airfoil about which the
moment is zero. 1he position of the cp is usually computed approximately as:
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USER INSTRUCTIONS -- PROGRAM 3.1

STEP ENTER PRESS DISPLAY

1. x-offset, e
e .77 Ggﬂ e A -189.

2. Y-offset, B°*

FB° ~ (360 (ZCAMMAX>
YA c 8

Default is 8 = 0°. (Degrees) B B
3.” Transform constant, b

[c ~ 4b]

Default is b = 1. b c' a

4. Radius, a
{input only if a#b(1+e)} a D' a

5. Fraction of Kutta condi-
tion, K (default is K=1) K E' K

6. Starting pbint for solu-
tion [default is 6{=-180°,
the lower surface trail-

ing edge]. 05 A 04
7. Step size for solution
[default A6 = 9°]. A B 6;-46
L 2
8. Angle-of-attack, o a C
9. Solution at 6; - D Cp
j ' RCL 24
| ~ Repeat Step 9 until all
: ~+.'8's are computed. Note RCL 18
| that solution moves forward RCL 19
| on lower surface, around RCL 35 S
; .~ 1.e. and back upper surface
to the trailing edge. RCL 34 ICL
Ic, and ICEl are the force RCL 36 Ien
summations and are

usually only of interest
when the calculation is
completed all the way
around.

* A1l angles are entered in degrees.

NOTES: (Continued on next page.)
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USER INSTRUCTIONS -- PROGRAM 3.1 (Continued)

NOTES:

—
.

The 1st 5 steps have to be completed in order for each case.
Steps 6 and 7 can be reset to study local effects.

The 1isting assumes that the printer will be used.
not used, Steps 353, 354 and 355 should be deleted.

If the printer is used, unlabeled output is generated in the
following order: each input value is echoed, followed by
9, £, ny Cp, s for each step. Finally, if the printer is
used, Step 9 is required only once and the program automatically
steps around the foil.

If it is

SAMPLE CASE: e = .1,b=1.,a=1.1, K=1.
B.i = -]80°, Aei = 90, a = 60
B = 0.0 B =4.6°
8° £ n Cp € n Cp
-180. -2.000 0.0000 1.0000 -1.992 .0007 .1801
-162. -1.882 -.0036 .1927 -1.933 .0109 .2845
-144, -1.548 -.0261 L1729 -1.634 .0384 .3620
-117. - .756 -.1051 .1056 - .818 .0422 . 3562
- 90. .182 -.1984 .0353 .197 -.0328 .3145
- 63. 1.054 -.2375 .0479 1.119 -.1194 .2869
- 36. 1.698 -.1841 .3321 1.756 -.1260 .4995
- 18. 1.948 -.1021 . 8649 1.979 -.0689 .9890
- 9. 2.012 -.0524 .9273 2.025 -.0246 .3068
0. 2.033 0.0000 - .8724 2.029 .0273 -2.0112
9. 2.012 0.0524 -2.5229 1.991 .0839 -2.4330
18. 1.948 .1021 -2.3040 1.912 L1422 -2.1898
36. 1.698 . 1841 -1.5561 1.641 .2514 -1.7670
63. 1.054 .2375 - .9037 .999 . 3565 -1.3359
90. .182 .1984 - .41 .170 .3527 - .9282
117. - .756 .1051 - .1576 . 706 .2472 - .5205
144, -1.548 .0261 + .0518 -] 469 .1035 - .1592
162. -1.882 .0036 + .1371 -1.8234 .0312 + .0340
180. -2.000 0.0000 1.0000 -1.992 .0007 + .1801
¢ = 4.033, s = 8.2260 c = 4.021, s = 8.2397
N M N M
—_ = . s — = . - = ,O sy — = .
3 2.864 3 2.859 3 5.0399 3 3.032
CN = .710, CL = 714 CN = 1.253, CL = 1.260
Cm = .1758 Cm = 1875
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3.2 ELLIPSOID OF REVOLUTION

This program computes the surface flow over an ellipsoid 'of revolution
at angle-of-attack. The notation for this class of bodies is shown in the
sketch. They are more formally known as prolate spheroids. This particular
formula is from the article by Cebeci, T., Kattab, A. H. and Stewartson, K.,
"On Nose Separation," Journal of Fluid Mechanics, Vol. 97, Pt. 3, pp. 435-

454, 1980.
A
r
/—'m E’x N
ag/v
U
@ t—— £

GEOMETRY NOTATION

METHOD OF CALCULATION

i) Specify the fineness ratio, a/b, and the angle-of-attack a.

.. . b
ii) Define t = 3 and compute V0 (t) and Vqq (t):

(1 - t*)

vV (t) = = 2
0 ('l - t2)2 _%
and

2 V., (t)
Von (t) = ©
90 (t) 2V, (t) -1

_ t2)1/2
(- t2)1/2



iii) Given (x/£), define £ = 2 (%) - 1 and compute:

iv)

alln

and

(- e’

[1 -2 (1 - 1:2)]1/2

where if £ > 0, B is negative.

Cos é =

Given 6, compute the surface velocity components:

u

Ui =V, (t) cos o - cos B - Va0 (t) sin o sin B cos 9
We
T - Vg (t) sin a sin o

oo

Finally, compute the pressure coefficient

U 2 W 2
- e e
=1 (u—) (fr)

and cross flow angle relative to the x axis of:

W
g = tan™! (—53)
Ue .



USER INSTRUCTIONS -- PROGRAM 3.2

STEP ENTER PRESS DISPLAY
1. Input the fineness ratio %— A Vo (t)
2. Input angle-of-attack in o B a
degrees
3. Input fuselage station X C E
L
4. Inpu? circumferential 6 D B
station RCL 13 Ue/Um
RCL 14 we/uw
RCL 15 Cp

NOTE:

i) For a constant X/£, repeat Step 4. for each 6.
ii) For a .new X/£&, repeat Step 3. and 4.

If the printer is employed, unlabeled output is generated in the follow-
ing order: input from Steps 1-4 is echoed, followed by Ue/Um, we/u“,cp and B.

* When Ue = 0, B is undefined without additional analysis and the display

k . ,. h—. ; &h

-

flashes. The rest of the program output is still valid.
SAMPLE CASE: 2 =4, o = 40°
X/L Cp (6 = 0°) (6 = 90°) (6 = 180°)

0.000 -.42N - .429] - .4291
0.010 .8355 - .7019 -1.1033
0.015 .9336 - .7731 -1.0473
0.040 . 9880 - .9397 -0.7417
0.250 .5785 -1.1015 0.0183
0.500 .3136 -1.1155 0.3136
0.750 .0183 -1.1015 0.5785
0.970 -.8508 - .8946 1.0000




3.3 AIRFOIL ANALYSIS USING WEBER'S 2ND ORDER METHOD

This program computes the pressure distribution over arbitrary airfoil
shapes in incompressible inviscid flow. The method employed was presented
by J. Weber in two British reports, "The Calculation of the Pressure Distri-
bution Over the Surface of Two-Dimensional and Swept Wings with Symmetrical
Aerofoil Sections," British ARC R&M 2918, July 1953 and "The Calculation Of
the Pressure Distribution On the Surface of Thick Cambered Wings and the
Design of Wings with Given Pressure Distribution," ARC R&M 3026, June 1955.
A related report which provides a great deal of information on this class
of methods 1is by M. D. van Dyke, "Second-Order Subsonic Airfoil Theory
Including Edge Effects," NACA R-1274, 1956. The theory underlying Weber's
approach is described in detail in the text by E. L. Houghton and R. P.
Boswell, Further Aerodynamics for Engineering Students, St. Martin's, New
York, 1969, pp. 77-89. These references should be consulted for the theor-

etical background.

In the particular example program presented, the airfoil coordinate sub-
routine is for the NACA 4 digit airfoils. Different airfoils will require a
new subroutine. The code has been designed so that the airfoil routine is
independent of the method and using the code description presented, new
routines can be easily generated.

Once the pressure distribution is determined, a second program can be
used to integrate the pressure to obtain the 1ift and moment.

a) Pressure Calculation

At the points X, =-% (1 + cos %F), the pressure is given by the formula

. icos o [1+RY(X) + R*(X)] + sina - /OXI/X [1 + R3(X)]}2
1+ [R3(X) + R%(X))? '

c

p

Here, the plus sign is for the upper surface and the minus sign for the
lower surface. N is the number of points for the calculation (actually N-1).
N can be selected to be 8, 16 or 32, however, 16 is a reasonable upper limit
(1 hour computing time on a TI59).

The R's are determined from the airfoil thickness and camber:

., = 5 (Z )

t =2 Vup T L om

1
c §'(Zup * Z]ow)



and the following summations:

N-1
RU(K) = 25 %, 7,

N-1
R (Xy) = Z Sauv Ly * Sy J?Bc"

u=1 H
N-1
4 - %
R*(X,,) Sy s,
p=1
N-1
RE(Xy) = D, 8%z, =
u='l H H dx

where p is the leading edge radius and the S functions are given below.

Note that if the airfoil is not cambered R* and R® are not needed, and
that if the derivatives of the foil are known analytically, it may be better
to supply them to the program directly.

The S functions depend on series analysis and, hence, numerous sines
and cosines. Defining

— =1 . -
eu = cos™' (2Xy - 1) and 6, = COS 1 (2%, - 1)

we also introduce Ty = (cos 6y - cos ev).

R-22




The S's thus become:

S1)HV L 1
S1, = (-1) 1. 2sin 6y PN
N T2uv
- N H=v
sin 8y
-2 (-1)¥V sin 6
52, = (_ )" " sin &y LV
sin 8,, Tyy
_ Cos By L=y
S'in2 6\)
2R (1) Lk 1
Sau\)=slu\)+_ ( ) v Uf\)
sin 8y Ty
= Slyy EE
g = 2[(_])u-v -1] . 1-cos 6, cos 6, _ 2[(-N¥ -1]
Hv : 2 . u#v
N sin 8, Tuv N sin 6, (1-cos 6y)
- - \)_
= N 21 -1] 1 ey
sin o, N sin 6, (1-cos 8y)
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-2 (=1)H°V
55Uv = &l H# v
Tuv
= =Sy H=wv

A special formula is required for S® at p = N:

1 + cos 8y

In computers with some storage space, the S functions can be computed
once and then stored for the rest of the calculation. However, most program-
mable calculators do not have that much storage and the S functions must be
continually recomputed. This is the step which uses much of the computing

time.

b) Force and Moment Calculation

Once the pressures are calculated, a second program is used to perform
the integration for CL and Cm:

1
CL= ,/O-ACP dX

and
1
G = - f 2Cp (KXggp) ax.
Using X =-% (1 + cos 8), these integrals become:
T AC
C, = —§9 sin 6dé
and

O

0
TTA
_— [ —~4—Q [cos 6 - cos eREF] sin oads.

3-24
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Note that the C; integral is made assuming that the small angle approxi-
mations are used. Using the trapezoidal rule and assuming AC, = 0 at
X =0, 1 (where the information is not available anyway) and A6 = n/N, the

summations are:

N-1
AC
= T -_P 3
CL = N ( > > sin en
n=1 n
N-1 AC
=_T =P 3 o
Cn T ( . ) sin 8, (cos 6, - COS eREF)'
n=1 n '

NACA 4 DIGIT AIRFOIL SUBROUTINE

The NACA foils are denoted as m )] tc
Maximum camber 4 ,
Location of maximum camber

Maximum thickness

Example: NACA 2472 ~ ZCMAX = .02

ch = .40
MAX

t/c = .12

The thickness envelope is given by:
Z, = t [ ao VX - a; X -a; X2 +a; X? - a, X“]
with a Teading edge radius of

= 2
Me = 1.1019 t

where normalization by ¢ is understood. The values of the a's are included
in the register contents list.



The camber line is:

m 2
c ;; (2pX-X?)

N
1]

= M
(1-p)?

[(1-2p) + 2pX-Xx2]

USER INSTRUCTIONS -- PROGRAM 3.3(a)

X>p

STEP ENTER PRESS DISPLAY
1. Select airfoil
o Thickness t/c STO 28
0o Maximum camber m STO 29
o Location of maximum
camber p STO 30
2. Choose the number of
solution points N STO 00
3. Start calculation* A
4. Choose angle-of-attack a C Cpup
RCL 21 Xy
5. Get Tower surface - R/S Cp
pressure Tow
NOTE: Repeat 4 & 5 for
each a required.
6. Go to next X - D -

When calculation stops,
go back to 4 and repeat
4 & 5,

* If the printer is used, go to modified instructions.
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MODIFIED INSTRUCTIONS FOR PRINTER VERSION OF 33(a)

STEP ENTER PRESS DISPLAY
3. Input angle-of-attack a STO 20 a
4, Start calculation - A Printer dis-

Repeat 3 & 4 for each
angle-of-attack.

plays X,

Cpup’ Cpyow
at each X.

Note that if the printer is not used, the calculation is best performed by
doing several angles-of-attack at each X, while, if the printer is used,
all X's are calculated at a fixed o before going to the next a.

USER INSTRUCTIONS -- PROGRAM 3.3(b)

STEP ENTER PRESS DISPLAY
1. Enter number of N A
solution stations.
2. If XREF # .25, set XREF B
XReF-
3. Enter pressures cpup C
Co1ow D C
RCL 04 Cm

Repeat 3. until all
pressures are used.




SAMPLE CASE: NACA 4412 airfoil at a

(t/c = .12, m= .04, p = .4) Us

From Program a)

From Program b)

—_— et d b e
O O —~ N W S o

— N W A, o0y

eN

3-28

4°.
16.

CF’u

.9895
. 1301
.1457
.1496
.1165
.0385
. 8888
L7274
.5919
.4621
. 3346
.2068
.0754
.0595
.1628

.8372
.4087
.2661
.2320
.2307
.2374
.2233
.2083
.2076
.2069
.2049
.2042
.2071
2212
.2025

-

s T . T+

= p—
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3.4 CAMBER LINE DESIGN USING LINEAR THEOQRY

This program computes the camber line required to produce a specified
load distribution, ACp, on an airfoil. The method is based on thin airfoil
theory and uses the scheme given by C. E. Lan, "A Quasi-Vortex-Lattice Method
in Thin Wing Theory," Journal of Aircraft, Vol. 11, No. 9, September 1974,
pp. 518-527. It is also useful in determining the modification to a camber
line required to produce the specified change in load distribution.

METHOD

The governing equation for thin wing theory is:

&
dz _ 1 fACde'
dX 4TT A X_xl

where dz/dx includes the angle-of-attack. The original Lan theory was used
to find ACp (in a slightly more elaborate form), but it can also be used to
obtain dz/dx from AC,. To do this, the following summation is used to obtain
the slope and once tﬁe slope is known, it is integrated to obtain the camber

Tine.
Start with:
N
AC
dz _ _ 1 PK Xe (1= X)
& ¥ ) p K K
K=1 Xi - XK
where
xK=%[1-cos{M}] K=1, 2, N
2N
and

"
o
—
=

] im )
X. = 511 -—cos {— i

Here N + 1 is the number of stations on the foil at which the slopes are
obtained.

Given dz/dx; , ﬁhe camber line is then computed by the trapezoidal rule
(marching forward starting at the trailing edge):

X,y - X
7. =7, .| X1 dz_ + 4z
i+ 7 4 [ 2 LU



The design angle-of-attack js then:

The camber 1ine can then be redefined in standard nomenclature; i.e.,
Z(X=0) = Z(Xx = 1) = 0.0,

Zi = Zi - (1 - Xi) tan %pEs -

Note that Lan's original equation contains a leading edge suction term.
Since ACp cannot be specified to be infinite, this term is not necessary.
It is important to note that -formally, a finite load cannot be specified at
the leading edge in thin airfoil theory. This fact is reflected in an infinite
slope of the camber Tine at the leading edge when a finite load is specified.
In practice, a finite load is often specified at the leading edge even though
it is not actually correct. This practice was probably accepted because the
NACA 6 series camber lines employ a finite load at the leading edge.

In this program, ACp is required at arbitrary locations and linear inter-
polation is used to obtain ACp's at points other than the input locations.
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USER INSTRUCTIONS -- PROGRAM 3.4

STEP ENTER PRESS DISPLAY
Store(the ACp distribu- X;=0.0 STO 11
tion (10 X, AC, pairs _
maximum) . Xz ST0 12
Xy=1.0 STO 10+M
ACp STO 21
1
ACp STO 22
2
ACpM STO 10+M
Initialize Calculation - A 21.
Enter number of points N B dz
at which camber line is dx X=1.0
desired and start cal- _ T
culation (N=24 maximum X2t X
and 34 if the partition-
ing is set to 7 OP 17). RCL 34 Z
Go to next X station. - R/S dz/dx
X3t X
Repeat 4. until X=0. RCL 34 VA
When X=0, compute design - R/S ADES
angle-of-attack.
To c?ange stored Z's to s C 0.0
Z's (starting at the =
tail and moving forward) RCL.34 Z(XT])
RCL 35+N Z(X=0)

If the printer is used, unlabeled output is generated as X, Z, dz/dx

during the calculation. During the 7 calculation, X, Z are output. Note
that deleting steps 239 and 291 will eliminate the R/S commands and the pro-
gram will automatically cycle all the way through the calculation.



SAMPLE CASE: The NACA 6 Series mean line with a = .4, Cey = 1.0.

Store ACp: X = 0.0 STO 11 AC, = 1.42857 STO 21
0.4 STO 12 1.42857 STO 22
1.0 STO 13 0.0 STO 23
N = 20
X z dz/dx z
1. 1.0000 0.0000 -.1719 0.0000
3. .9755 .0044 -.1884 0.0030
5.  .9045 .0187 -.2102 0.0131
7. .7939 .0425 -.2187 0.0304
9. .6545 .0721 -.201 0.0517
1. .5000 .0992 -. 144 0.0698
13.  .3455 124 -.0153 0.0739
15.  .2061 1071 L0911 0.0604
17. .0955 .0912 . 2041 0.0380
19, .0245 .0717 .3709 0.0143
21.  .0000 .0635 .9806 0.0000
oppg = 3.37°

For this camber Tine, the analytical results are available for comparison.
For example, the analytical Opgs = 3.46°. Thus, the numerical results are
within a tenth of a degree. Similarly, the camber line is within .74%

of the exact result at X = .5.
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3.5 WING ANALYSIS USING LIFTING LINE THEORY

This program computes the 1ift, drag and spanload on unswept wings using
1ifting Tine theory. The technique employed is known as Multhopp's Method
and was selected because the solution matrix is well posed for iterative solu-
tion procedures. It is interesting to note that the classical "monoplane
equation" (which uses Fourier analysis completely) produces a matrix which
is not diagonally dominant and, hence, the monoplane equation cannot be solved
by iterative methods. Primary references on Multhopp's Method are the text
by R. L. Bisplinghoff, H. Ashley and R. L. Halfman, Aeroelasticity, Addison-
Wesley, Reading, 1955, pp. 229-243 and "Theoretical Symmetric Span Loading
at Subsonic Speeds for Wings Having Arbitrary Planform," by J. deYoung and
C. W. Harper, NACA R-921, 1948. The present program uses Gauss-Seidel itera-
tion to obtain the solution, allowing up to eight spanwise solution stations
on the semi-span.

METHOD

Given the aspect ratio, AR, the taper ratio, A, the twist, A9 (as a sub-
routine), and the section 1ift curve slope, a,, then the problem statement
is completed by specifying the root angle-of-attack, ao.

Therefore, define the span station n,, = cos §,,, where ¢ = ;Z and
a spanload variable:

1

G =P

2AR Ca

where Cp is the section 1ift coefficient, C is the local chord, and CA is
the average chord. M is the total number of solution stations.

The solution is obtained by solving a matrix equation written in the
form:
N

(a0 + 28,) = 35 a, G v=1,2...N

n=1

where M = 2N-1 and represents the contraction due the symmetrical loading
assumption. Here:

v T L 0+ 2) AR forn=v
4 sin g, ao [1+ (1 - 1) cos 4,]
a, = - an forn # v



where Bun = by * bv’ Mt1-n - forn#N

= bvn for n = N
and
- sin gn ;[ 1 - (D]
VI Teos g, - cos g,]° 2 (M+1)
The equation is then solved by iteration:
N
G\) =a_ |:(a0+AeV)-}: a6 v =] N
W n=1

/
where the 2: denotes summation excluding n = v. In addition, Gauss-Seidel
iteration implies that the latest values of G, are used when available
(which is the natural scheme when using computer instructions). In general,
6-8 iterations are sufficient to obtain convergence.

Note that to start the solution, N must be picked. Allowable values
are 4, 6 or 8. In general, a value of 4 is adequate for finding the 1ift
and drag coefficients. The appropriate convergence tolerance must be selected.
The program default is ECONV = .1 X 10-° and may be unnecessarily strict.

Once the G's are determined, the 1ift and drag are determined from:

N-1
- AR .
CL=Tr [GN+22 Gns1n¢n]
n=1

2N
and
N N-1
CD1=NAR [GN(%GN+Z/ BNnGn>+ Zzev{bw 6,
2N n=1 V=T

/ X
+ 3 By, Gn } sin ¢v ] .

n=1
The span efficiency is then found from: e = CLZ/wAR Cp; -
Finally, note that the program is written with explicit labels for clarity,

but could be rewritten using direct addressing. This would result in a signifi-
cant reduction in execution time.
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USER INSTRUCTIONS -- PROGRAM 3.5

STEP ENTER PRESS DISPLAY

1. Define Wing*

i) Aspect Ratio AR A AR
ii) Taper Ratio A B X
iii) Angle-of-Attack Qo c a0=2m
(degrees) (default)
iv) Section 1ift curve ao E' ao

slope if not 27
(in radian-?!)

2. Choose convergence E D' E
criterion if not CONV CONV
default (.1 X 10-°)

3. Choose number of points N D CL
on semi-span (4, 6 or 8) RCL 19 o

.i

4. Get spanload (if desired) - c' Ny

X2t ~cee/cy

NOTE: Repeat 4. N times.

* Twist subroutine must be supplied if wing has twist: Label E, n, is in
display and A8,, in radians is returned.

If the printer is used, the G's at each iteration are printed as they are
computed, followed by E after each iteration is completed. Once the solution
has converged, CDi and CL are printed,all as unlabeled output.



SAMPLE CASE: AR =10
A =.6
Qg = 10°
N=14 N==¢6 N=28
n, CC[_/CA n, CCE/CA n, CCK/CA
4 0.000 1.1314 6 0.000 1.1263 8 0.000 1.1239
3 0.383 1.0081 5 0.259 1.0576 7 0.19 1.0791
2 0.707 0.8278 4 0.500 0.9506 6 0.383 1.0059
1 0.924 0.5656 3 0.707 0.8274 5 0.556 0.9214
2 0.866 0.6740 4 0.707 0.8273
CDi = ,02664 ] 0.966 0.4296 3 0.831 0.7172
2 0.924 0.5700
CL = ,90275 CDi = 02664 1 . 981 0.3431
CL = ,90091 CDi = ,02661
CL = ,90012
N Computing Time (TI59)
4 33 min. (8 iterations)
6 100 min. (11 iterations)
8 4 hr. (13 iterations)

NOTE: A reduced tolerance criterion (ECONV increased) would reduce execution
time without an appreciable change in the answer. Some experimentation

on the part of the user is required.
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3.6 INDUCED DRAG ANALYSIS

For a given spanload, this program determines the 1ift induced drag.
The method is valid for a single planar lifting surface or two surfaces if
they are in the same plane and the spanload is the sum of the spanloads.
The analysis also gives the 1ift coefficient. It is assumed that the span-

load is symmetric.

The method is based on a Fourier Series representation of the spanload,
and thus, is based on the analysis due to Glauert. The book by Houghton, E. L.
and Brock, A. E., Aerodynamics For Engineering Students, Edward Arnold, London,
1960, pp. 335-369, provides a good presentation of the Fourier Methods for

1ifting line theory.

It is important to note that the method actually computes the span "e"
and not the drag coefficient. In order to compute Cp, the Aspect Ratio must
be specified. However, it is important to remember that the actual drag is
inversely proportional to the span squared and not the Aspect Ratio. In
addition, for arbitrary wings, "e" is not a constant, but may vary with Tift
coefficient. This fact has not been brought out clearly in several recent texts.

METHOD

Assuming that the spanload is described by a Fourier Series:

cc, N
T - 2 a, sin ‘[(Zn-l)e] ,
A n=1

then the a,'s are given by

/2 ec
- 4 £ - -
a, = - J{/ o (8) sin [(Zn 1)6] do

0
The spanwise location n = y/(b/2) is related to 6 by n = cos 6.

The rest of the results are then computed from:

- I,
=72
C 2
e = 4 and CD1 = L
2 TARe
Z (2n-1) { @n
n=1 a,
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The numerical operation then consists mainly in integrating for the a,'s.
Although many methods have been applied to this problem, a simple trape-
zoidal rule and 4 or 5 terms in the series are usually more than sufficient
to provide a good estimate of e.

The first step in the procedure is to provide a means of interpolating
the prescribed spanload for arbitrary values of 6. In this particular cal-
culator program, a linear interpolation is used and this representation (with
a maximum of 15 values of spanload) restricts the Fourier Series analysis to

T

e—— ——— -

g

5 or 6 terms. For more terms, a better interpolation should be used.

To carry out the integration, the trapezoidal rule is used:
P (b)
I = ff(x) d( = aX 9f(a+aX) + . . .+ f(b-aX) + DL
a

where a zero loading on the tip has been assumed.

A A8 is picked which depends on the term in the series:

so = T2
Q
where
Q=A(2N - 1) - (N-n)
and A - number of trapezoidal panels in 1/2 cycle of N.

N - number of terms in series.
Typical values of A are 3 or 4, while N = 4 is usually satisfactory.
Finally, note that CA = SREF/b and is the average chord. This is the

normalization that is employed because it leads to the simple
result:

which is valid for the symmetrical spanload case.
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SAMPLE CASES

1. Elliptic Spanload:

cc, — Ca
_ 2 I
T, -~ Vvi-m
A 1. 0.00 1.0
2. 0.20 0.9798
A4 3 0.40 0.9165
4. 0.60 0.8000
N =4 5. 0.80 0.6000
6. 0.90 0.4359
7. 0.96 0.2800
8. 1.00 0.0000
Result: ay, = -.0115
a; = -.0096
a, = -.0108
a, = .9907
e = ,998
C = .778

L

1, all others zero, e = 1.0.

Where the analytic result is a,

2. Linear Spanload: CCZ n_ EE&
L ‘A
A=14 A N
N =4 1 0.0 1.0
2 1.0 0.0
Results:
Numerical Analytical
ay -.0307 -.0303
as .0428 .0424
as -.2126 -.2122
a .6370 .6366
e = ,728
CL = ..500
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