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Abstract

In the early stages of the design process of aerospace vehicles, the search for optimal
configurations encompasses a broad range of possibilities, and the use of local optimiza-
tion tools may risk missing the best designs. Therefore, global optimization methods are
attractive for the early design stage. Unfortunately, global design optimization usually
requires the evaluation of a very large number of designs, a formidable computational
challenge. The present work uses a highly effective Lipschitzian global optimization al-
gorithm in the multidisciplinary optimization of a High Speed Civil Transport (HSCT). The
use of massively parallel computers to handle this computational challenge is also demon-
strated. A variety of load balancing methods are evaluated to assess the utilization of the
computer nodes.

1 Introduction

In high dimensional design spaces, the sheer volume involved inhibits the accurate char-
acterization of the space even with an immense number of sampled points. If every vertex
of a box bounding a 28 dimensional design space is sampled, 268 million points must
be evaluated. Using design of experiments (DOE) theory, the number of sampled points
can be significantly reduced. Even using a relatively small data set generated cheaply
from DOE, there may be many important and potentially optimal regions of feasibility left
uncharacterized for a complex design problem.

Previous work [1] has shown that the design space of the HSCT configuration is com-
plex. Local minima occur in many nonconvex, disconnected feasible islands present in
the design space. Running local optimizations from a sufficient number of starting points
distributed throughout the design space requires a large number of function evaluations
and still does not guarantee that the promising regions of the design space will be ex-
plored. A global optimizer is needed that is able to judiciously balance the local and global
searches, insuring a complete space investigation, while keeping the number of function
evaluations to a minimum.

Once the set of points to be evaluated is constructed, either through statistical (DOE)
methods or via a direct search global optimizer, the points in the set can be evaluated
concurrently. The points can easily be evaluated in parallel, but the question of how to
best manage the evaluation and distribution of points on parallel computers is unresolved
for exploratory multidisciplinary engineering design studies.



Figure 1. Typical HSCT configuration.

2 HSCT Design Problem

The design problem considered is the optimization of a HSCT configuration [10], [11] to
minimize takeoff gross weight (TOGW) for a range of 5500 nautical miles and a cruise
Mach number of 2.4, while carrying 251 passengers. A typical HSCT configuration is seen
in Figure 1. The choice of gross weight as the objective function directly incorporates both
aerodynamic and structural considerations, in that the structural design directly affects
aircraft empty weight and drag, while aerodynamic performance defines the drag and thus
the required fuel weight.

To successfully perform aircraft configuration optimization, it is important to have a sim-
ple, but meaningful, mathematical characterization of the geometry of the aircraft. This
paper uses a model that defines the HSCT design problem using the twenty-eight design
variables listed in Table 1. Twenty-four of the design variables describe the geometry of
the aircraft and can be divided into six categories: wing planform, airfoil shape, tail areas,
nacelle placement, and fuselage shape. In addition to the geometric parameters, four
variables define the idealized cruise mission: mission fuel, engine thrust, initial cruise
altitude, and constant climb rate used in the range calculation.

For the optimizer used here, upper and lower bounds have to be set on all n of the design
variables. These bounds form a n-dimensional rectangular shaped set in the design
space, referred to as the design box. In order to ensure that a thorough design space
exploration was being conducted, the bounds were chosen to include as wide of a range
of designs as realistically possible. The edges of the design box were set near the limits
of physically impossible designs (overlapping geometries, negative chord lengths) or the
assumptions of the numerical analyses being used.

Sixty-eight geometry, performance, and aerodynamic constraints, listed in Table 2, are
included in the optimization. Aerodynamic and performance constraints can only be as-
sessed after a complete analysis of the HSCT design; however, the geometric constraints
can be evaluated using algebraic relations based on the 28 design variables.

Methods of varying fidelity are used for the aerodynamic and structural analyses in the
constraint evaluations. The methods used to calculate the drag components used in the
drag calculation and their corresponding ranges are described in [6], [7]. The aerody-
namics calculations are based on the Mach box method [4], [3], and the Harris wave drag



Table 1. HSCT configuration design variables.

Index Description
1 Wing root chord (ft)
2 Leading edge (LE) break point, x (ft)
3 LE break point, y (ft)
4 Trailing edge (TE) break point, x (ft)
5 LE wing tip, x (ft)
6 Wing tip chord (ft)
7 Wing semi-span (ft)
8 | Chordwise location of max. thickness
9 LE radius parameter
10 Airfoil t /c ratio at root, (%)
11 Airfoil t /c ratio at LE break, (%)
12 Airfoil t /c ratio at LE tip, (%)
13 Fuselage restraint 1, x (ft)
14 Fuselage restraint 1, y (ft)
15 Fuselage restraint 2, x (ft)
16 Fuselage restraint 2, y (ft)
17 Fuselage restraint 3, x (ft)
18 Fuselage restraint 3, y (ft)
19 Fuselage restraint 4, x (ft)
20 Fuselage restraint 4, y (ft)
21 Nacelle 1 location (ft)
22 Nacelle 2 location (ft)
23 Vertical tail area (ft°)
24 Horizontal tail area (ft?)
25 Thrust per engine (Ib)
26 Flight fuel (Ib)
27 Starting cruise/climb altitude (ft)
28 | Supersonic cruise/climb rate (ft/min)

code [5]. A simple strip boundary layer friction estimate is implemented as in [7]. A vortex
lattice method with vortex lift and ground effects included [2] is used to calculate landing
angle of attack. Structural weights are calculated by the FLOPS [12] weight equations.
Each of these analysis methods uses iterative loops or discretization methods that can
cause differences in the computational time needed to evaluate (calculate the objective
function and constraint values) different HSCT designs.

In previous work [1], it was observed that multiple optima exist within the design space. A
visualization technique was needed to view the topology of the design space to understand
the cause of the local optima, however the dimensionality of the design prevents traditional
techniques from being used. One of the design space visualization methods that was
developed is shown in Figure 2. To construct this plot, three different feasible base point
designs are chosen. The base points are connected to form a plane in 28 dimensional
space and a grid is created in this plane. The values for the objective function and
constraints are then calculated at each grid point.



Table 2. HSCT optimization constraints.

Index Constraint

1 Fuel volume < 50% wing volume

2 Wing root TE < Tail LE
3-20 Wing chord > 7.0 ft

21 LE break within wing semi-span

22 TE break within wing semi-span

23 Root chord t/c ratio > 1.5%

24 LE break chord t/c ratio > 1.5%

25 Tip chord t/c ratio > 1.5%
26-30 Fuselage restraints

31 Wing spike prevention

32 Nacelle 1 inboard of nacelle 2

33 Nacelle 2 inboard of semi-span

34 Range > 5500 nautical miles

35 C. at landing speed < 1
36-53 Section C_ at landing < 2

54 Landing angle of attack < 12°
55-58 Engine scrape at landing

59 Wing tip scrape at landing

60 TE break scrape at landing

61 Rudder deflection < 22.5°

62 Bank angle at landing < 5°

63 Tail deflection at approach < 22.5°

64 Takeoff rotation to occur < Vuin

65 Engine-out limit with vertical tail

66 Balanced field length < 11000 ft
67—-68 | Mission segments: thrust available > thrust required

This plot shows that even in this plane, the design space is complicated and nonconvex.
The range constraint appears to be multiply connected (though it may be connected in the
28-dimensional space), providing three possible locations for local optima.

3 Lipschitzian Global Optimizer (DIRECT)

The global optimizer selected to explore the design space is a Lipschitzian unconstrained
optimization algorithm that (effectively) uses all possible values of the Lipschitz constant
[8]. By using different values of the constant, equal emphasis is placed on the local and
global search being performed by the optimizer. This algorithm is called DIRECT because
the algorithm is a direct search technique and as an acronym for dividing rectangles, one
of the primary operations in the procedure.

The algorithm begins by scaling the design box to a n-dimensional unit hypercube. The
center point of the hypercube is evaluated and then points are sampled at one-third
the cube side length in each coordinate direction from the center point. Depending
on the direction with the smallest function value, the hypercube is then subdivided into
smaller rectangles, with each sampled point becoming the center of its own n-dimensional
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Figure 2. Design space visualization plot.

rﬁctang_le or box. All boxes are identified by their center point and their function value at
that point.

From there the algorithm loops in a procedure that subdivides each of the boxes in the set
in turn until termination or convergence. By using different values of the Lipschitz constant,
a set of Botentially optimal boxes is identified from the set of all boxes. These potentially
optimal boxes are sampled in the direction of maximum side length, to prevent boxes
from becoming overly skewed, and subdivided again based on the directions with the
smallest function value. If the optimization continues indefinitely, all boxes will eventually
be subdivided meaning that all regions of the design space will be investigated.

DIRECT's behavior on a simple 2-D test function is shown in Figure 3. The test function
has local minima at (0.4,1.0), (0.9,1.0), and (0.4,0.3) with the global minimum at (0.9,0.3).
The figure shows the optimizer starting from the center of the box and the division of the
subsequent sub-boxes through 10 iterations. After five iterations DIRECT is beginning
to converge to the local minimum at (0.4,0.3). However, due to its local-global search
characteristics, by the end of 10 iterations DIRECT has refocused its search in the area
of the global optimum at (0.9,0.3) where it ultimately converged.

Two important issues in using the algorithm are how to determine convergence and incor-
porate constraint values. For this study, the algorithm was run for a fixed number of loops
or iterations. Since the purpose of the optimization was to identify promising regions of
the design space, it was unnecessary to tightly converge to a global optimum. Constraints
were accounted for through the use of a simple penalty function, as follows. Let x be the
28—dimensional design vector, f(x? the TOGW, and gi(x) < 0 the constraints in Table 2.
The constrained optimization problem

min f(x) subject to gi(x) <0,i=1,...,68,
is converted to the unconstrained optimization problem

68
min f(x) + 10 ) ~max{0,gi(X)}.

i=1
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Figure 3. DIRECT behavior with test function.

4 Load Balancing Strategies

As the potentially optimal boxes are sampled in their respective directions during the
DIRECT optimization, a typically large set of new design points, or tasks, that need to be
evaluated is created. It is these tasks in this set of designs that are load balanced.

Processor communications were performed in the optimization algorithm through the use
of the Message Passing Interface (MPI) [13], a message passing standard. MPI was
chosen because, as a communications protocol, it is platform independent, thread-safe,
and a widely accepted standard.

In the master-slave implementation of dynamic load balancing, one processor, the master,
makes all of the calculations for box manipulation in DIRECT and controls the distribution of
tasks to be evaluated by the HSCT code on the slave processors. The master processor
begins with the set of all boxes, finds the potentially optimal boxes, and then samples
inside of these boxes to generate the set of tasks. It then distributes one task to each
slave processor. When a slave processor completes the evaluation of its task it returns
the function value back to the master and receives another task, if available. The biggest
potential drawback to using this method is that there is a chance for a communication
bottleneck caused by slave processors simultaneously requesting work from the master.

For the static load balancing case, the processors only communicate with each other
when finding the set of potentially optimal boxes and initially distributing the tasks. At the
start of a DIRECT loop each processor finds its own local set of potentially optimal boxes.
The processor with the highest rank gathers all of the local potentially optimal sets from
the other processors and finds the global set of potentially optimal boxes. This processor
creates the set of new tasks from the global set of potentially optimal boxes. The new
tasks are equally distributed to all of the processors and the individual processors evaluate
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Figure 4. History of tasks per iteration.

every task in their set of new tasks. The problem inherent to static load balancing is that
differences in evaluation times can cause some processors to finish their tasks early and
sit idle, while other processors continue to work on their tasks.

The interprocessor communications used for the DIRECT box manipulation by the fully
distributed version of dynamic load balancing are the same as those performed by the
static version, with the added capability of task migration to processors that have finished
their tasks. The dynamic load balancing algorithm is based on that of previous work [9],
employing random polling for the redistribution of tasks and token passing to terminate
the load balancing process. Once task evaluation is started by a processor, it evaluates a
single task and then processes any messages received during the evaluation of the task.
The cycle of evaluating and communicating is continued until the processor runs out of
work, in which case it begins sending work requests to a randomly selected processor
either until work is found or the termination token is received. If a work request is received
by a processor, half of its remaining tasks are transferred to the requesting processor.

A dynamic load balancing strategy is also implemented that uses threads in the fully
distributed version. Multi-threading in the distributed version is based on the POSIX
(pthreads) package. In this implementation, one thread is a worker responsible for eval-
uating tasks and sitting idle when no tasks are available. A second thread handles all of
the message passing and processing. By exploiting concurrency at the processor level,
messages can be processed at the same time as a task is being evaluated, instead of the
purely sequential operations used by the distributed version without threads.

In the subsequent discussion, these load balancing strategies are referred to as static
(STATIC), dynamic load balancing with the master-slave paradigm (DLBMS), dynamic
load balancing with fully distributed control (DLBDC), and dynamic load balancing with
fully distributed control using pthreads (DLBDCT).

5 Optimization Results and Parallel Performance

The parallel optimization runs were conducted on an SGI Origin 2000 with a total of 64
CPUs. Runs were made on 4, 8, 16, 32, and 64 processors for each of the four load
balancing methods. The DIRECT optimizer was terminated after 37 iterations, performing
10,077 function evaluations. The history of total tasks for each iteration is shown in Figure
4. The figure illustrates the amount of work that had to be distributed to the processors
during the load balancing. Figure 5 is a histogram of the evaluation times for the 10,077
tasks. The variation in the evaluation times is relatively small, with most of the tasks taking
around 1.75 seconds to complete.
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Figure 6. Optimum HSCT planform for 28 d.v. configuration.

The resulting optimum HSCT design configuration is plotted in Figure 6. The optimum
design had a TOGW of 753,900 Ibs and was similar to designs found in an earlier study [1]
using a local optimizer. While more computational time was spent finding essentially the
same design using the global optimizer as the local optimizer, an assurance was gained
that the optimum found was the global optimum.

The parallel efficiencies for the runs are plotted in Figure 7. Efficiency is calculated relative
to a serial implementation of DIRECT. With static load balancing, the efficiency starts high
(97%) for 4 processors and then linearly decreases to 83% with all 64 processors. The
master-slave organization of dynamic load balancing starts with a low efficiency, and then
the efficiency gradually increases to be the highest of the load balancing schemes for 64
processors. The initial low values of efficiency are because, even though four processors
are used, only the three slave processors are evaluating tasks. As the number of proces-
sors increases, the increased number of slave processors minimizes this effect. The fully
distributed version with dynamic load balancing performs the best up to 32 processors
and then the efficiency falls to 73% when using 64 processors. This is attributable to both
the short average time per task and the relatively small amount of total work assigned
to each of the 64 processors. The distributed version with threads performs the worst
of all the methods, rapidly decreasing in efficiency as the number of processors used is
increased. This behaviour was not observed for pthreads on the Intel Paragon reported
in [9], and thus is more likely a reflection of the SGI pthreads implementation than of an
inherent characteristic of pthreads.

To provide insight into why the distributed versions of the code were performing poorly
for a large number of processors, a plot of the individual processor load for a complete
optimization was made (Figure 8) for the 64 processor case. From this plot it is clear
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that the master-slave organization (DLBMS) does the best job of load balancing, the
curve being nearly horizontal. The load distribution for the distributed version without
threads (DLBDC) falls directly on top of the curve for the static load balancing case
(STATIC). This is due to the variation in function evaluation times being small enough
that no tasks get transferred between processors, so DLBDC effectively becomes static
load balancing. This effect does not appear when the number of processors is small
because each processor has a larger set and with a large set the absolute differences in
evaluation times are magnified (though relative differences may shrink) enough to where
dynamic load balancing does take place. Since the distributed version DLBDC degrades
to static load balancing STATIC for the 64 processor case and there is also computational
overhead associated with the message passing, the overall efficiency is reduced. The
time spent evaluating tasks for the threaded code DLBDCT is almost double that of all
other methods. It was found that having the communicator thread continuously running
sufficiently impeded the performance of each processor on the Origin to cause a noticeable
rise in function evaluation times.

6 Conclusions

A Lipschitzian global optimization algorithm and a variety of parallel load balancing strate-
gies were successfully integrated into a design space exploration method applied to a



meaningful, complex aircraft design problem. The globally optimum HSCT design was
found in sll?htly more than 10,000 function evaluations using an optimization algorithm
that was able to thoroughly explore the design space. The load balancing methods imple-
mented ranged from simple static load balancing to fully distributed dynamic load balancing
via threads. It was observed that the static load balancing method was the most efficient
for a large number of processors, due to the lack of variation in function evaluation times
for the test problem. When the variation in function evaluation times is significant, as is the
case for some other aircraft design problems [9], or as here when using a small number
processors, the fully distributed dynamic load balancing method is most efficient. The use
of pthreads greatly facilitates programming, but the execution efficiency of pthreads varies

reatly between system implementations—from nearly invisible on the Intel Paragon to a
actor of two slower on the SGI Origin.
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