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1. Introduction

Multidisciplinary design optimization (MDO) has received considerable attention in the
aircraft industry, Ref. 1, as manufacturers employ concurrent engineering design practices
in an effort to reduce the time-to-market of new products. While there are several com-
puter programs which perform conceptual-level aircraft MDO, e.g., Ref. 2, aircraft system
MDO at the more advanced preliminary and detailed level of design remains computation-
ally intractable. There has been considerable progress in single discipline design methods
at the detailed level, e.g., Refs. 3-6 for aerodynamic design involving Euler/Navier-Stokes
solutions and there is heightened interest in the two discipline MDO problem coupling
concurrent aerodynamic and structural evaluations via Euler/Navier-Stokes and finite el-
ement analyses, e.g., Ref. 7. The detailed-level aircraft system MDO, however, remains
unsolved, mainly because of the computational challenges brought on by the large number
of constraints which must be imposed requiring detailed analyses not only at the design
conditions but also throughout the flight envelope, including detailed performance evalu-
ations, stability and control requirements during takeoff and landing and large numbers
of load conditions required for structural design. Our group has been addressing some of
these issues over the past decade in a sequence of example design problems of increasing
levels of sophistication, Refs. 8-10. We have developed two strategies for dealing with
the computational issues in MDO systems design. The first is what we term wvariable-
complexity modeling, whereby we simultaneously utilize computational models of different
levels of fidelity to reduce the computational effort. The MDO process is performed using
low level models which are periodically corrected using higher-level models in a sequen-
tial approximate optimization. This approach as applied to High-Speed Civil Transport
(HSCT) design, Refs. 9 and 10, is effective in reducing the computational costs of MDO.
However, a number of problems remain. This strategy does not appear to be entirely ad-
equate to include detailed-analysis-level CFD /Structures in a system MDO. Furthermore
we have seen problems in convergence in gradient-based optimization methods for these
applications. The convergence difficulties stem from noise in various parts of the analyses,
Ref. 11, and often lead to the appearance of several local optima.

Our second strategy involves the utilization of statistical techniques including design of
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experiments (DOE), Ref. 12 and response surface (RS) methodologies, Ref. 13, in order
to overcome the computational costs and numerical noise problems inherent in aircraft
MDO. DOE methods can be used to establish a framework for the selection of a limited
number of expensive computational experiments and to provide guidelines for the accuracy
and type of information which can be gained from them. Response surface modeling can
be used to produce models (surface fits) which relate the dependence of the observed
responses to the values of the design variables. These methods may be used effectively in
conjunction with parallel computing.

To demonstrate how DOE and RS methodologies can aid in aircraft MDO, a full factorial
experimental design was used to define an initial batch of HSCT configurations which were
analyzed using the most inexpensive conceptual-level analysis methods. After screening out
any grossly unsuitable HSCT configurations a D-optimal experimental design was used to
identify a select few of the HSCT configurations for which more expensive, detailed analyses
were conducted. Response surface models were then created from this data for aerodynamic
drag and structural weight. The RS models were then used in the optimization process in
lieu of the computationally expensive and noisy analysis methods. Thus, the computational
costs of aircraft MDO were transferred from the optimization stage to the DOE stage of
aircraft design. In this strategy, coarse-grained parallel computing may be applied to
efficiently perform the numerous aircraft configuration evaluations specified by the DOE
methods. The parallel computing methods used in this study are detailed in Ref. 14.
Some preliminary results using response surface models in a simple HSCT wing shape
optimization problem appear in Ref. 15 and for a wing weight problem in Ref. 16.

In Section @ of the paper, we will discuss the computational challenges of performing
aircraft system MDO, particularly in contrast to single discipline design optimization.
We also describe the implementation of variable-complexity modeling. In section 3 we
describe our approach to the design optimization of a supersonic transport aircraft as
a testbed for the development of MDO techniques. We present details of the geometry
parametrization, constraints and our analysis and optimization routines. A few sample
results using our variable-complexity modeling will be described along with the positive
features and drawbacks of this approach. The next section gives some results on our studies
on the effects of code fidelity on design optimization. In particular, we discuss our ongoing
research efforts aimed at incorporating detailed-level Euler/Navier Stokes analyses (Ref.
17) into the variable-complexity modeling method. In Section 5 we summarize our work
on implementing response surfaces in the MDO process. We focus on how this approach
alleviates convergence problems and local extrema associated with noise in the analysis
methods. We indicate how response surfaces can be developed for large dimensional design
spaces using variable-complexity models and how well-suited this approach is for parallel
computation. We then have some concluding remarks on future directions for this research.

2. Aircraft MDO
2.1. Single-discipline vs. multidisciplinary design

There has been considerable progress in the development of efficient procedures for single
discipline aerodynamic design. These problems are generally either inverse or direct design



problems with a few constraints. They are also single point design problems such as the
determination of the aerodynamic shape to optimize performance at cruise conditions.
For a relatively large problem with N shape parameters where N may be O(100). If we
perform the optimization with numerical sensitivities, then at least (/N + 1) analyses will
be required for each iteration. If the optimizer requires M iterations to converge, where
for a problem this size, M may be O(50), then the number of analyses needed to produce
a design optimization will be O(5000). There are efficient means to reduce the number
of analyses required to calculate the sensitivity derivatives. For example, Jameson and
Reuther, Ref. 3 have effectively used adjoint methods to calculate design sensitivities
at a cost which is approximately independent of the number of design variables. In the
adjoint approach, at each iteration, one flow analysis and one solution to the adjoint
problem is required, where the solution to the adjoint problem may be considered to be
approximately the same order of computational effort as one flow analysis. Thus adjoint
solutions require O(2M) flow analyses or for our example, O(100) flow analyses. Another
class of problems, sometimes called one-shot methods have been proposed, e.g., Ta’asan
et al., Ref. 6. In this approach the flow solution, adjoint solution and optimization are
solved simultaneously. These methods offer the promise of complete design optimizations
in O(2) analyses, however, only very limited cases have been solved so far.

A relatively straightforward MDO problem which has been of recent interest is aerodynamic-
structures system design. The problem is generally stated as the design of the aerodynamic
shape and structural sizes for a specific mission to minimize take-off weight. In order to
estimate the amount of computational effort required we consider N configuration shape
parameters, with again N of O(100) and L structural sizing parameters, with L of O(100).
Calculating numerical design sensitivities will require (N +1) flow analyses and (N +L+1)
structural analyses per iteration. Note that the structural geometry and loads are affected
by the aerodynamic design variables. Furthermore the structural optimization is not per-
formed at the design conditions but is evaluated at off-design conditions. An interme-
diate level design will require the consideration of multiple load cases, perhaps of O(50)
aerodynamic loads, each requiring a flow analysis. All of this must be performed in an
optimization loop which may require O(50) iterations. We may note that adjoint meth-
ods will not be effective for MDO problems which require the transfer of large amounts
of information from one discipline to the other, e.g., sensitivity of structural weight with
respect to aerodynamic design variables.

The situation will be further complicated by the large number of constraints which must
be satisfied. There will be performance constraints at cruise, such as a constraint on
the aircraft range. This will require an integration of the drag throughout the flight
envelope, which may require as many as O(100) aerodynamic analyses at each step of the
optimization. There will also be performance constraints at take-off and landing. These
constraints will require low-speed aerodynamic analyses to determine the stability and
control derivatives Cr_, Car,, Cu, along with their design sensitivities. The structural
optimization also requires a large number of local constraints on stress, strain and buckling,
to be satisfied.

Thus we may roughly estimate that a single discipline aerodynamic design may require



O(100) —O(1000) analyses, whereas a multi-disciplinary systems design is considerably
more complex and may require O(10,000) — O(100,000) analyses. Considering the compu-
tational expense involved in high-fidelity aerodynamic and structural analyses, it appears
that using a brute-force optimization with black-box aerodynamic and structural codes is
not practical in the foreseeable future. Instead, one must look for clever formulations to
perform aircraft systems MDO which significantly reduce the computational burden. This
has been the motivation of our research group for the past 12 years and forms the objective
of the work presented here.

2.2. Variable-complexity modeling

A growing practice in MDO is the use of approximation associated with what we term
variable-complexity modeling (VCM). For example, the structural design of an aircraft is
often performed with a complex structural model, but with loads obtained from simple
aerodynamic models. Similarly, the aerodynamic designer may use advanced aerodynamic
models with a simple structural model to account for wing flexibility effects.

We have employed a VCM approach using both the simple and complex models during the
optimization procedure. Our aim is to take advantage of the low computational cost of the
simpler models while improving their accuracy with periodic use of the more sophisticated
models. The sophisticated models provide scale factors for correcting the simpler models.
These scale factors are updated periodically during the design process. For example, in
Ref. 10 we combined the use of simple and complex aerodynamic models to predict the
drag of an HSCT during the optimization process. Similarly, in Ref. 18 we employed
structural optimization together with a simple weight equation to predict wing structural
weight in combined aerodynamic and structural optimization of the HSCT. We have also
used this approach to handle the estimation of stability and control derivatives, Ref. 19.

The variable-complexity modeling approach is used within a sequential approximate op-
timization technique whereby the overall design process is composed of a sequence of
optimization cycles. At the beginning of each cycle, approximations are constructed using
either scaled, global-local or interlacing approximations.

The scaled approximation, which employs a constant scaling function o, given as

(1)

o(xo) =

where f; represents a detailed model analysis result, and fs represents a simple model
analysis result, both evaluated at a specified design point, xg, at the beginning of an
optimization cycle. During an optimization cycle the scaled approximate analysis results,
f(x), are calculated as

f(x) = o(x0) fs(x). (2)

Thus, the scaled simple analysis is used throughout the cycle until convergence. Then a
new value of the scale factor is computed and the optimization is repeated. Move limits
are imposed during the optimization cycles.



Other approaches that we have utilized in Refs. 10 and 18 include what we term a global-
local approximation which involves estimating the derivatives of the scale factor. For more
expensive analyses the scaled approximation is used, but with the scale factor updated
only every fifth cycle. This procedure, called interlacing, has been used for estimating
structural weight, Ref 18. The implementation of the VCM approach in an MDO problem
for the design of a high-speed civil transport is described next.

3. High-Speed Civil Transport Testbed

The design optimization of the configuration for the next-generation supersonic transport
aircraft called the high-speed civil transport (HSCT), Fig. 1, serves as an effective testbed
for the development of MDO methodology. We consider the design problem to be the
minimization of the takeoff gross weight (TOGW) of a 250 passenger HSCT with a range
of 5,500 nautical miles and a cruise speed of Mach 2.4.

The HSCT external configuration and mission are defined using 29 variables listed in
Table 1. Twenty-six of these variables describe the geometric layout of the HSCT and
three variables describe the mission profile. The airfoil and planform variables are shown
in Figure 2. In this parametrization, eight variables describe the wing planform, eight
variables define the area ruled fuselage shape distribution, five variables define the airfoil
section properties, two variables define the engine nacelle locations, two variables define
the horizontal and vertical tail areas, and one variable defines engine thrust. For this
HSCT design problem the fuselage has a fixed length of 300 ft and an internal volume of
23,720 ft3. More details of the configuration parametrization are in Ref. 10.

The idealized mission profile is divided into three segments: takeoff, supersonic cruise/climb
at Mach 2.4, and landing. The three mission design variables are fuel weight, starting al-
titude for the supersonic cruise/climb segment, and rate-of-climb during the supersonic
cruise/climb segment. If the HSCT reaches the maximum ceiling of 70,000 ft, supersonic
cruise at Mach 2.4 is maintained at that altitude for the duration of the supersonic mission
leg.

Our HSCT design employs 69 nonlinear inequality constraints which consist of both ge-
ometric constraints (e.g., all wing chords > 7.0ft), and aerodynamic/performance con-
straints (e.g., Cr at landing < 1, and range > 5,500 naut.mi.). These are listed in Table
2. A discussion of these constraints may be found in Refs. 18 and 19.

The HSCT design objective is to minimize TOGW, where TOGW is a nonlinear, implicit
function of the 29 design variables. In formal optimization terms this problem may be

expressed as

min TOGW (%)
PR (3)

subject to g;(z) < 0, 1=1,...,69,

where Z is the 29-dimensional vector of design variables, and ¢(Z) is the 69-dimensional
vector of nonlinear inequality constraints.

The take-off gross weight may be written as
TOGW = Wpayload + quel + Wstructural + Wnon—structural 9 (4)



where the payload weight is fixed and the fuel weight is a design variable determined by
the optimization process. As a first approximation we may estimate the aircraft structural
and non-structural weight from a set of algebraic weight formulas given in FLOPS, Ref. 2.
However, based on detailed studies in Ref. 20, the structural weight of the wing may not be
adequately estimated using the FLOPS weight equations. Within our variable-complexity
framework, we have also implemented a crudely modeled finite-element model for the wing
structure using 923 elements, with 193 nodes and 579 degrees of freedom. The structural
optimization uses 5 load cases, and consider 40 design variables involving 26 groupings of
skin thickness, 12 spar cap areas and 2 rib cap areas to model one half of the wing. Details
of the geometry modeling and structural optimization appear in Ref 20. A plot of the
internal wing geometry and the finite-element model appear in Fig. 3.

For these efforts we have developed a suite of conceptual-level or simple analysis meth-
ods and preliminary-level or detailed analysis tools which we utilize within the context
of variable-complexity modeling, Eq. (1). The conceptual level tools consist of mainly
in-house codes described in Ref. 18 involving various algebraic and simplified analysis
methods for supersonic cruise, low-speed performance including stability derivatives for
take-off and landing constraints. At this level, the weight is estimated using the algebraic
relationships given in FLOPS, Ref. 2. The detailed analysis tools, also described in Ref.
18, include the Harris wave drag code, Ref. 21, the supersonic panel code WINGDES, Ref.
22, a subsonic vortex lattice code and an approximate viscous drag routine. Some details
of these codes are also discussed in Ref. 18. In addition we have investigated the effects of
including Euler and Navier-Stokes analyses in the design process, Ref. 17, using the code
GASP, Ref. 23. At the detailed level, structural optimization may be included for the
material bending weight of the wing through the code GENESIS, Ref. 24. The numerical
optimization software is an extended exterior penalty function code NEWSUMT-A, Ref.
25 and a sequential quadratic programming (SQP) method in code DOT, Ref 26. Figure 4
is a flowchart which shows how the analysis and optimization tools are coupled to perform
HSCT design optimization.

We have performed MDO for several related HSCT designs. The most complete description
of the cases considered appears in Ref. 27. Cases are considered for a wing-fuselage design
(with a fixed vertical tail), a wing-body-vertical tail design and a complete wing-body with
vertical and horizontal tail. The latter design is performed with and without the engine
thrust as a design variable, with different balanced field length constraints and with and
without a subsonic leg in the mission profile.

We present here one sample result from that report, which we call design 29c. This is a
design which includes all of our options except for the subsonic leg portion of the flight
envelope. Some of the design parameters calculated for this case are listed in Table 3,
along with their initial values. The initial and final planform for this case appear in Fig.
5. For this case the initial data did not satisfy a number of constraints, most notably the
range constraint. The tabulated data indicates that the final design required additional
weight to satisfy this and other constraints. The final design required higher engine thrust,
a heavier propulsion system weight and had minor planform changes including moving the
nacelles inboard.



The main purpose of including a sample design result here is to discuss the convergence
of this procedure. In Fig. 6, we give plots of the takeoff gross weight, TOGW and the
range versus iteration number. Note that each iteration is a cycle within a sequential
approximate optimization and consists of a converged design using the simple (algebraic)
analyses which are multiplied by a constant scale factor. At the end of each cycle the
scale factor is updated from a detailed analysis and the process repeated. We have found
that this process takes typically from 40 to 70 iterations to converge, with the latter value
needed for the sample case in Fig. 6.

We have investigated this process and determined that the slow convergence can usually
be traced to analyses which have a noisy response to small changes in design parameters.
We have found this to occur with our panel-level detailed supersonic aerodynamic analysis
codes, Ref. 15, with structural weight computed from structural optimization, Ref. 16
and from results from CFD analyses, Ref. 28. A typical variation is shown in Fig. 7
where the wave drag is plotted for a wing for different values of the wing semi-span. We
see a high frequency noise in the analysis with an amplitude of the order of one tenth
of a count of drag. For a single analysis, this degree of variation is inconsequential, with
accuracy on the order of one count of drag generally expected. However, this variation can
cause difficulties within an optimization process, where sensitivity derivatives of quantities
such as drag with respect to geometric design parameters are required. The noise in the
sensitivity derivatives leads to slow convergence and even to local extrema in the design
space. These local extrema were discussed in Refs. 11, 18 and an example will be presented
here in Section 5.

Overall the variable-complexity modeling approach outlined here has been very successful
in reducing the computational burden of MDO aircraft design. A typical approximate
cycle uses about 750 simple analyses, and one detailed analysis for a scaled approximation.
Overall, 40-70 approximate cycles are required for global convergence. Since the compu-
tational cost associated with the simple models was at least 50 times smaller than the
cost of the detailed model, very considerable savings are realized using variable-complexity
modeling. However, this type of cost-saving is not adequate to include the most detailed
analysis methods in the MDO process. In the next section we will discuss some of the
implications of including detailed Navier-Stokes analyses in the design optimization. In
Section 5, we will discuss a procedure which will allow us to include higher fidelity analyses
and to avoid some of the problems associated with noisy analysis procedures.

4. Effects of Code Fidelity on Design Optimization

The aerodynamics used in our HSCT design study involved methods based on panel-level
codes including vortex-lattice methods for low speed performance and supersonic-panel
codes, Ref. 22 and slender-body theory, Ref. 21 for high-speed performance. In Ref. 17,
we have performed verification, validation and certification of an Euler and Navier-Stokes
code for HSCT aerodynamic calculations. We have used the code GASP, Ref. 23 for this
purpose.

A careful grid convergence study was for HSCT wings and wing-body combinations was
performed for both Euler and Navier-Stokes grids. Examples of drag convergence versus



the number of grid points is shown in Fig. 8 for the Euler solution and in Fig. 9 for the
Navier-Stokes solution. A plot of the drag polar for an HSCT wing-body at M = 2.4 is
presented in Fig. 10. Results from a PNS calculation along with the Euler results with a
boundary layer correction and the results from the linear supersonic methods which also
have a boundary layer correction are compared in the figure. At a cruise C = .082 the
values of C'p are given in Table 4. We find that there is about a 2 count difference between
the boundary-layer corrected Euler and the Navier-Stokes solutions and an additional 2
count discrepancy between the Euler and linear theory solutions.

These small differences in drag lead to substantial differences when integrated to give
the aircraft range. As given in Table 4, the computed aircraft range values for the three
computation methods presented resulted in range values of 5197, 5367 and 5495 nautical
miles, with the smallest value the PNS result and the largest value the linear theory result.
Since the range is always an active constraint on the HSCT design optimization, it was
surmised that the code fidelity could have a large effect on the MDO results. To verify
this we recomputed our HSCT design optimization, with the parametric addition and
subtraction of up to 2 counts of drag. Results of this study are presented in Fig. 11
which gives the optimized TOGW plotted versus the arbitrary drag increment. We see
that the optimized weight can change from a baseline value of 800,000 lbs. to a value of
820,000 [bs. with a +2 count drag increase and to a value of 740,000 lbs. with a —2 count
drag decrease. The effect of these drag changes on the geometric planforms are shown in
Figs. 12 and 13 with details presented in Ref. 27.

It was also observed that the wing loading distributions were considerably different for the
PNS, Euler and linear theory cases. The structural optimization was then performed with
both the Euler and linear theory loads. Although the differing loads produced a varying
stress distributions, the optimized weights showed minimal effects, with wing bending
material weights agreeing to within 3% as shown in Table 4.

Our initial exploration of code fidelity on the design optimization of the HSCT in Ref. 12
appears to show a strong sensitivity to the accuracy of the range calculation. The effect on
the computed loads appears to be much smaller for the structural optimization. However,
we need to perform a more thorough study, particularly for transonic loads. The cost
of increasing code fidelity in a system-level MDO is enormous. For example, on an SGI
Power Challenge XL, a single analysis of our linear theory analysis takes between 1 and 2
seconds, the Euler analysis takes 15-20 minutes and the PNS solution takes 1.25-3 hours.
Clearly the previous variable-complexity modeling approach is not adequate to effectively
handle higher fidelity codes. This motivated our group to consider using response surfaces,
which are particularly well-suited to be used in conjunction with coarse-grained parallel
computing as a means of addressing computational costs.

5. Response Surface Approach

We have described some of the difficulties associated with systems level aircraft MDO.
One issue is the huge computational burden associated with the very large numbers of
detailed analyses required in the MDO process. Our approach called variable-complexity
modeling was somewhat successful at reducing the computational expense, but still was



not adequate to allow the implementation of the highest level of fidelity analyses in the
optimization process. In addition we have pointed out that many of the analysis codes
have levels of noise which make the evaluation of accurate sensitivity derivatives difficult
or impossible to obtain. This was seen to lead to slow convergence and a design space
filled with local extrema.

Another issue that we have encountered is the complexity of software engineering with
this approach. We have had to accumulate a large number of black box codes, for aerody-
namics, structures, performance, propulsion, stability and control and optimization into a
single code. This task was very difficult to accomplish in a research environment. Some
of the issues that created software integration problems include: code components were
written in different languages including non-standard ones, new code components required
new interfaces, MDO practitioners have only limited knowledge about disciplinary com-
ponents and optimizers, changes and updates to components affect the entire code, code
components became obsolete due to changes in computer systems and, in general, code
components were written for analysis, not optimization. This led to an ever growing share
of our time being devoted to code maintenance, along with poor reliability of the MDO
code and portability problems.

Our approach to these difficulties is influenced by traditional design approaches, used before
the introduction of high speed computers. An examination of the process of traditional
aircraft design reveals that aircraft designers faced a very similar dilemma to the one we
encountered. The analysis tools available forty years ago were computationally inexpensive,
but often required specialized expertise beyond what could be expected of the generalists
who practiced the art of aircraft design. Therefore the analysis tools were extensively
exercised by their own developers to produce design charts and carpet plots which could
be directly used by designers. That is, when a researcher developed a new method, he
normally produced copious tables and charts, which permitted designers to benefit from the
new capability without needing to master the new technique. Additionally, experimental
results complemented the analytically generated charts, or were used to generate charts
of correction factors to be applied to the analytically generated charts. This process of
giving the designer the results of the analysis tools rather than the tools themselves is
somewhat limited in that design charts and tables are manageable only when the response
is a function of a small number of variables. To reduce the number of parameters appearing
in design charts, researchers put a lot of effort into compressing results with the aid of
nondimensional similarity parameters. The same approach is used to this day in reporting
experimental results. Many experimentalists strive to discover combinations of variables
that will allow them to collapse a large number of experimental observations into a small
number of graphs. This process also filters out much of the noise due to experimental
errors.

We are in the process of developing a similar approach to solve our problem of integration
of analysis software. This approach is based on response surface methods and variable com-
plexity modeling in a combination we call variable-complexity response surface modeling,
VCRSM. Response surface modeling (RSM) is a collection of techniques for approximating
functions based on their values at a number of points. Usually the approximation takes



the form of a low-order polynomial, however, even neural networks can be viewed as a
special case of response surface approximations. RSM can be used to re-introduce the
traditional design paradigm of giving designers the results of analysis tools rather than the
tools themselves.

This can be accomplished by running a large number of analyses for different sets of inputs
on each analysis code. Then, the results are fitted by a response surface (e.g., quadratic
polynomial) in terms of the input variables, and the designer is given the response surface
instead of the analysis code. With the RS being a simple formula instead of a design chart,
the limit of 2 or 3 variables is removed, so that in theory any number of variables can be
used. Additionally, the creation of the RS, which is essentially a curve-fitting operation,
can be used to filter out noise in the data.

This approach does not require tying an optimizer to analysis programs because the op-
timizer operates on the RS rather than the original data. RS techniques are therefore
well suited for working with black-box codes that cannot be incorporated easily into larger
systems. The approach also respects organizational boundaries in that response surfaces
can be generated by various organizations using their preferred computer codes on their
own computers. Finally, with the large number of analyses that need to be executed for
sets of predetermined data points, maximum use can be made of parallel computation with
minimal need to change codes to take advantage of parallelization.

Unfortunately, when the number of variables associated with the response surface becomes
large, we encounter the so-called curse of dimensionality. Even with quadratic polynomials
the number of coefficients increases as the square of the number of variables. The number of
analyses required to evaluate these coefficients increases in a similar manner. Furthermore,
often the accuracy of the response surface deteriorates with increasing dimensionality.
Therefore, the brute-force application of response surfaces to aircraft design is useful only
when the number of variables defining the design is small, typically less than 10. When
the number of variables is larger, a more intelligent use of RS techniques is warranted.

To combat the loss of accuracy associated with high dimensionality we customize the
response surface to a small region in design space tailored to a specialized design problem.
For example, while old design charts provide drag coefficients for what was considered to
be all likely planforms, we need information only for planforms which are reasonable for
a particular flight Mach number. In that way we imitate traditional designers. Unlike
modern optimization programs, traditional designers did not waste time analyzing designs
which are patently nonsensical.

To limit the design space we employ the simpler analysis tools of the previous generation
of designers, tools which have lower accuracy than their modern counterparts, but which
require only minuscule amount of computation on present-day computers. These tools
may not be accurate enough to identify optimal or near optimal designs. However, they
can identify vast regions in design space which correspond to nonsense designs that should
not be analyzed by more expensive modern techniques.

We have been working on response surfaces for several components of our HSCT code.



The following description of the construction of a response surface for evaluating supersonic
cruise drag from Ref. 29 illustrates the principles of VCRSM. A description of this approach
applied to developing a response surface for structural weight appears in Refs. 16 and 30.
A description of the strong compatibility of this approach with parallel computing appears
in Ref. 14.

Experimental design theory, Ref. 12, is a branch of statistics which provides the researcher
with numerous methods for selecting the independent variable values at which a limited
number of experiments will be conducted. The various experimental design methods cre-
ate certain combinations of numerical experiments (analyses) in which the independent
variables are prescribed at specific values or levels. The results of these planned experi-
ments are used to investigate the sensitivity of some dependent quantity, identified as the
response, to the independent variables. Other statistical techniques known as regression
analysis and analysis of variance (ANOVA) are employed in the response sensitivity in-
vestigation. They are used to perform a systematic decomposition of the variability in
the observed response values and to assign portions of the variability to either the effect
of an independent variable or to experimental error. In using ANOVA with numerical
experiments, numerical noise takes the place of experimental error.

RSM is a formal process combining elements of experimental design, regression analysis,
and ANOVA, Ref. 13. RSM employs these statistical methods to create functions, typically
polynomials, to model the response or outcome of a numerical experiment in terms of
several independent variables, e.g., wave drag expressed as a function of several wing
planform variables. In many RSM applications, either linear or quadratic polynomials are
assumed to accurately model the selected response. Although this is certainly not true for
all cases, RSM becomes prohibitively expensive when cubic and higher-order polynomials
are chosen for experiments involving several variables. Giunta et al., Ref. 11, concluded
that quadratic polynomial models were sufficiently accurate for HSCT configuration design.

A quadratic response surface model has the form

Y=co+ Z ¢+ Z CjkTjTh, (5)
1<j<m 1<j<k<m

where y is the response, z; represents the m design variables, and c,, ¢;, and cj; are the
unknown polynomial coefficients. Note that there are n = (m + 1)(m + 2)/2 coefficients
in this quadratic polynomial. To estimate the unknown polynomial coefficients in the RS
model, at least p response values must be available, where p > n. Under such conditions,
the estimation problem may be formulated in matrix notation as Y ~ Xe¢, where Y is the
p by 1 vector of observed response values, X is a p by n matrix of constants assumed to
have rank n, and c is the n by 1 vector of unknown coefficients to be estimated. The least
squares solution to Y ~ Xc is ¢ = (XTX)~1XTY. Typically values for p of at least 1.5n to
2.5n are required to produce response surface models which accurately model the trends
in the calculated data, Ref. 11. A discussion on using statistical methods to measure the
effectiveness of response surface fits is discussed in Ref. 29.

The problem of selecting the design variables where the analysis will be performed in order
to perform the response surface fit is called the experimental design. In Ref. 29, we describe



two methods, full factorial design and D-optimal design. Prior to experimental design, the
allowable range of each of the m variables is defined by lower and upper bounds. The
allowable range is then discretized at equally-spaced levels. For numerical stability and for
ease of notation the range of each variable is scaled to span (—1,1), Ref. 13. The region
enclosed by the lower and upper bounds on the variables is termed the design space, the
vertices of which determine an m—dimensional cube or hypercube. If each of the variables
is specified at only the lower and upper bounds (two levels), the experimental design is
called a 2™ full factorial. Similarly, a 3™ full factorial design is created by specifying the
lower bound, midpoint, and upper bound (three levels) for each of the m variables.

The construction of a quadratic response surface model in m variables requires at least
n = (m + 1)(m + 2)/2 response evaluations. A 3™ full factorial design provides ample
response evaluations to permit the estimation of the RS model coefficients. For example,
fitting a quadratic response surface model in three variables (m = 3) requires at least ten
evaluations, and a 33 full factorial design provides 27 evaluations. However, as m becomes
large the evaluation of both 2 and 3™ full factorial designs becomes impractical (e.g.,
210 =1,024 and 3'° =59,049). A full factorial design typically is used for ten or fewer
variables.

RSM typically employs a full factorial or similar experimental design. However, full fac-
torial designs are intended for use with rectangular design spaces and not the irregularly
shaped (even nonconvex) design spaces that may arise in the HSCT design problems con-
sidered here. Previous studies, Refs. 11, 15, found that the D-optimality criterion, Ref.
13, provides a rational means for creating experimental designs inside an irregularly shaped
design space.

The objective of the D-optimality criterion is to select the set of p locations in a design
space from a pool of ¢ candidate locations (¢ > p), such that the quantity | X7 X| is maxi-
mized. Note that the pool of ¢ candidate locations is defined a priori by the user, and the
p locations which maximize | X7 X| are found iteratively using a numerical optimization
method. The set of p locations for which |[X?X| is maximum is called a D-optimal ex-
perimental design. The statistical reasoning behind the creation of a D-optimal design is
that it leads to response surface models for which the maximum variance of the predicted
responses is minimized. In non-statistical terms, the D-optimality criterion ensures that
the p locations are selected at points in the design space which will minimize the error
in the estimated coefficients, ¢, in the response surface model. A discussion of several
methods to create D-optimal experimental designs is given in Ref. 29.

The construction of the response surface models may be viewed as a series of steps to be
completed before the aircraft system optimization is performed. We call this methodology,
which takes advantage of the computational savings of using both simple analysis methods
and detailed analysis methods, variable-complexity response surface modeling, VCRSM.
Starting from an initial HSCT configuration, a very large number of candidate designs,
(20,000 in Ref. 29 and 50,000 in Ref. 30), are selected with the initial HSCT at the center
of the design space. These may comprise a full-factorial design, Ref. 29, or a subset of a
full-factorial design as implemented in Refs. 16 and 30, which is appropriate for designs



with more than 10 parameters. These design points are evaluated using the computa-
tionally inexpensive conceptual level analysis tools, and the HSCT analyses are screened
to eliminate any grossly infeasible HSCT configurations from consideration. Next, the
D-optimality criterion is applied to select a subset of the remaining HSCT configurations
for evaluation using the preliminary level analysis tools. Response surface models for the
aerodynamic quantities are then constructed using the preliminary level analysis data. In
the final step of the VCRSM method the response surface models are used in the HSCT
optimization software to replace the noise producing aerodynamic analysis methods. Thus,
optimization is conducted without the problems associated with numerical noise.

We illustrate the effectiveness of the VCRSM approach with a simplified five variable HSCT
wing design problem. This five variable problem is based on the 29 variable HSCT MDO
problem described in Section 3. The five variables are wing root chord (Cjoot), wing tip
chord (Cl;p), thickness-to-chord ratio (t/c ratio), inboard leading edge sweep angle (Arg, ),
and fuel weight (Wyyer). All the remaining (24) design variables are kept fixed at baseline
values. The mission profile and constraints are simplified resulting in 42 constraints applied
to the example 5 design variable problem. Complete details are given in Ref. 29.

We performed design optimization for this problem with the variable-complexity response
surface methodology used for all components of the drag. For comparison we also used
the VCM approach described in Section 3, which did not involve response surfaces. We
performed each design optimization starting from 3 different initial conditions. The results
are tabulated in Table 4. The optimized planforms for the three cases without the response
surface are plotted in Figs. 13 a, b and c. The optimized planforms for the three cases
with the response surfaces are plotted in Figs. 14 a, b and c. The cases optimized without
the response surfaces clearly result in 3 different minimum weights, 636057, 636559 and
647035 lbs., respectively. The cases optimized with the response surfaces all converged to
the identical value of 622804 [bs.

From this simple example we see that VCRSM was effective in addressing convergence
issues associated with noisy analyses. Computational cost of this procedure was greatly
alleviated through the use of parallel computing. Since the points in design space which
are used to establish the response surface are determined a priori, coarse-grained paral-
lelization is easy to implement on a distributed memory parallel system. We have utilized
28 and 100 node Intel Paragon computers and have achieved parallel efficiencies on the
order of 90%, see Ref. 13. Using a master-slave paradigm, a coarse-grained parallelization
is effectively obtained, provided that the analysis has minimal internal input/output, Ref.
14. Applications of this approach for 10 design variables also is described in Ref. 29.
Plans are underway to solve the complete 29 variable HSCT problem using response sur-
faces. In addition this approach has been applied using weight equations and finite-element
structural optimization in Refs. 16 and 30.

6. Concluding Remarks

In this paper we have expounded our view that aircraft systems MDO is computationally
challenging and that at this time it is impractical to link the highest fidelity codes repre-
senting each discipline directly to an optimizer to perform MDO. We have established a
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somewhat restricted HSCT design model problem as an effective testbed for MDO research.
For HSCT design we have shown that variable-complexity modeling can be effective in re-
ducing the computational burden of MDO. We have also found that aerodynamic code
fidelity can have a pronounced effect on HSCT design results.

Furthermore, we have established that a response surface approach is well suited for MDO.
In particular we have seen that response surface methods are appropriate to take advantage
of coarse-grained parallel computing. We have realized many advantages of RSM, including
the alleviation of problems associated with computational noise and the mitigation of soft-
ware issues associated with coupling disparate codes from different disciplines. Response
surfaces result in simplified MDO code integration which may lead to better optimization
procedures including global optimization, multicriterion optimization and reliability based
optimization.

However, we have still not reached our goal of performing aircraft systems level MDO
with high-fidelity analysis codes. In order to achieve this goal we envision the need for a
formulation which incorporates: O(10)-O(100) of the highest fidelity analyses including
Navier-Stokes aerodynamics, detailed finite-element structures, and perhaps even some ex-
perimental data; along with O(100)-O(1000) mid-level analyses including Euler methods,
panel codes, elementary finite-element structures, beam models; along with O(10,000)—
O(100,000) low-level analyses which are mainly algebraic or data bases models. We are
currently exploring the applicability of formulations based on Bayesian statistics, e.g., Ref.
31 to accomplish this task.
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Design | Baseline Configuration Parameter
Variable| Value Description
1 181.48 Wing root chord, ft Constraint Geometric Constraint
2 155.9 LE break point, = ft Number Description
3 49.2 LE break point, y ft 1 Fuel volume < 50% wing volume
4 181.6 TE break point, x ft 2 Airfoil section spacing at Ct;p, > 3.0ft
5 64.2 TE break point, y ft 3-20 Wing chord > 7.0ft
6 169.5 LE wing tip, = ft 21 LE break < semi-span
7 7.00 Wing tip chord, ft 22 TE break < semi-span
8 75.9 Wing semi-span, ft 23 Root chord t/c ratio > 1.5%
9 0.40 Chordwise max. thk. location 24 LE break chord t/c ratio > 1.5%
10 3.69 LE radius parameter 25 Tip chord t/c ratio > 1.5%
11 2.58 Airfoil t/c ratio at root, % 26-30 Fuselage restraints
12 2.16 Airfoil t/c ratio at LE break, % 31 Nacelle 1 outboard of fuselage
13 1.80 Airfoil t/c ratio at tip, % 32 Nacelle 1 inboard of nacelle 2
14 2.20 Fuselage restraint 1, z ft 33 Nacelle 2 inboard of semi-span
15 1.06 Fuselage restraint 1, r ft Constraint | Aero. & Performance Constraint
16 12.20 Fuselage restraint 2, z ft Number Description
17 3.50 Fuselage restraint 2, r ft 34 Range > 5,500 naut.mi.
18 132.46 Fuselage restraint 3, z ft 35 Cp, at landing < 1
19 5.34 Fuselage restraint 3, r ft 36-53 Section C; at landing < 2
20 248.67 Fuselage restraint 4, x ft 54 Landing angle of attack < 12°
21 4.67 Fuselage restraint 4, r ft 55-58 Engine scrape at landing
22 26.23 Nacelle 1 location, ft 59 Wing tip scrape at landing
23 32.39 Nacelle 2 location, ft 60 LE break scrape at landing
24 697.9 Vertical tail area, ft? 61 Rudder deflection < 22.5°
25 713.0 Horizontal tail area, ft2 62 Bank angle at landing < 5°
Design |Baseline Performance Parameter 63 Tail deflection at approach < 22.5°
Variable| Value Description 64 Takeoff rotation to occur < V,in
26 39,000 Thrust per engine, [b 65 Engine-out limit with vertical tail
27 322,617 Mission fuel, Ib 66 Balanced field length < 11,000 ft
28 64,794 Starting cruise/climb altitude, ft 67-69 Mission segments:
29 33.90 | Supersonic cruise/climb rate, ft/min thrust available> thrust required

Table 1. Design Parameters

Table 2. Constraints




Design Variable Initial | Final
Gross Weight (lbs) 732,741 772,981
Fuel Weight (lbs) 376,454 | 403,346
Fuel Wt / Gross Wt 51.4% | 52.1%
Wing Area (f2) 12,612 | 13,191 P T E——
Wing Weight (ibs) 103,247 [ 113,086 T Tc? "+C;
Aspect Ratio 188 | 199 Cy at cruise | 0.00803]0.00774| 0.00753
Vertical Tail Area (ft?) 514.3 | 454.1 Range, n. mi r197 | 5367 5495
Vertical Tail Weight (lbs) 2,077 | 1,898 Opt. Wing Struct,
Nacelle 1 position, y (ft) 8.26 7.08 Weight, Ibs. 92144 | 22,794
Nacelle 2 position, y (/) 21.37 | 14.41
Horz. Tail Area (ft?) 778.9 | 747.2 Table 4. Code Fidelity Comparisons
Horz. Tail Weight (lbs) 8,608 8,346
Time to rotate (sec) 5.07 5.27
Engine thrust (lbs) 46,480 | 49,258
Nacelle length (ft) 35.18 | 37.40
Nacelle diameter (ft) 6.53 6.95
Propulsion system weight (lbs)| 77,884 | 82,791 Case | Initial Design | VCM Design | VCRSM Design
Range (n.ma.) 5,373.5 | 5,502.9 TOGW lbs. |(no resp. surf.)| (resp. surf.)
Landing angle of attack 10.85° | 10.58° a. 639,851 636,057 622,804
Balanced Field Length (ff) | 11,094 | 10,922 b. 712,961 636,559 622,804
(L/D)maz 9.132 9.155 671,823 647,035 622,804

Table 3. Sample Design Case 29c

Table 5. Five Variable Design
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