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The Problem
Unlike past generations, where design
optimization was performed manually by
seasoned designers, computational design
relies on simulations that may be unreliable
over portions of the design space and/or
computationally expensive. Optimizers
exploit weaknesses in simulation models.
Computational design methods must be
developed to overcome this problem.



An Analysis Example: Wave Drag
Variation for a Supersonic Transport

Results as seen by an optimizer
during automated design

Harris Wave Drag Program results for 
500 values of the semispan design variable 
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with computer simulations that
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An aerodynamicist was satisfied
with these results



Lamar VLM

Eq. arrow wng

Nicolai model

Deterich model

Optimization exploits model weaknesses I

First calibrate simulation models against a “baseline”

“Baseline” wing planform
Lift of baseline planform as
estimated by four different methods

Conclusion: compared to the Lamar VLM results which are
considered “truth”, two approximate models appear to be
accurate in the angle of attack range of interest, 10° to 20°.

Example from Hutchison, et al, AIAA Paper 92-4695, 1992



Lamar VLM
equiv. arrow wing

Optimization exploits model weaknesses II
Optimization using the “equiv. arrow wing” approximation

“Optimized”
Planform

Post optimization
analysis clearly
shows how the
optimizer exploited
the weakness of
each model,
producing
nonsensical results.

Lamar VLM

Diederich Model

Optimization using the “Deterich” approx.
“Optimized”

Planform

Example from Hutchison, et al, AIAA Paper 92-4695, 1992



Our Research Objective

By improving automated design procedures
through use of a diagnostic methodology to
help designers handle situations where
computer simulations are not exact:

• provide an estimate of design uncertainty

• suggest “repairs” to improve simulations

and thus

• improve design quality/reduce uncertainty



Our Approach
• Use discrepancies between simulations of

varying fidelity and empirical data to
identify when the design process is using
poor simulations to make design decisions
– Employ modern statistical methods

• Develop methods to repair the simulation
information used in the design and
indicate the level of uncertainty to the
designer.



Examples
of initial/preliminary

investigations carried out
since the start of the grant

(September 1999)



A Model Problem to Identify
Poor Simulation/Optimization

• Consider the minimization of wing structure
bending material weight (WBMW) for a
high speed airplane

• Generate a “database” of results to use in
developing a model for multidisciplinary
optimization (a response surface model)

• Use a commercial finite element structural
optimization code

Use statistical methods to remove bad
optimization results (outliers)



Typical Results of WBMW
Optimization over Design Space
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Use of Statistical Methods to Remove
Outliers in Computational Design

• Robust Regression
- Ordinary least squares is heavily influenced by

outliers
- Use weighted least squares for non-Gaussian

error
- Allows outlier detection/correction

• IRLS
- Fits unbiased noisy data
- Down-weight points with large errors and refit

the process until convergence

• Non-symmetric IRLS (NIRLS)
- Exploits idea that optimization error is biased
- Reduces weighting of poor optimizations

Weight functions of IRLS/NIRLS
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Results of Outlier Detection by
IRLS/NIRLS for Model Problem

• 121 design points in 5 dimensions on which response surfaces of optimum
wing bending material weight are fit

• Low-fidelity optimization corrected by high-fidelity optimization
• NIRLS identifies more outliers, typically “corrects” results by 25%

Outlier detection by IRLS
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 Characterizing optimization uncertainty by
modeling and fitting the distributions of

optimization error
Model

distribution
function

Quality of an
optimization process
in a quantitative sense

 • Understanding of
optimization error

• Regression with fitted
error distribution

 • Optimal IRLS weight
function

True optimum

Low fidelity
optimum

High fidelity
optimum

Empirical distributions
Database/histograms

Empirical
distribution

function

Optimization
error

Optimization
difference

Models of  error
distributions

Expensive or
Impossible to
find

ideal path

practical path



Example of Optimization Differences
Between High- and Low-Fidelity

Optimization Results for the Model Problem
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• “Observation” is the histogram from the database
• “Fitted” is the expected frequency by the fitted

distribution function



Method and Model Problem to Illustrate the
Maximum Likelihood Estimate Method

For non-Gaussian error distribution,
MLE is a general approach for
regression fit:

• The structure of error distribution is
fed back into regression

• Bias error is taken care of

MLE for linear regression
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Model Problem: Use a quadratic
function and add random error
following the exponential distribution

Note the excellent
agreement between MLE
and the true response in
the model problem.
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Research: MDO of Aircraft Configurations
✈ MAD Center

© MDO Design philosophy
• impracticality of brute-force linking of high-fidelity codes
• variable-complexity modelling (VCM)
• response-surface methodology (RSM)

© Incorporating CFD and FE Structures into conceptual design
• VCM reduces computational burden
• RSM allows the study of design trade-offs

© Design space exploration
• RSM in high-dimensional design spaces
• design space visualization with local optima

© Parallel computing
• Dynamic load balancing reqd. for evaluating millions of configurations
• Distributed load control for scalability



Research (continued): MDO of Aircraft Configurations

✈ MAD Center

© Global optimization
• Number of processors and choice of algorithm
• Preliminary results with multi-start local and global optimization

© Protection against modeling and simulation uncertainties in optimization
• Discrepancies in simulations of varying fidelity and empirical data
• Automated diagnostic methodology, robust statistics

© Problem solving environments
• VRML based VIZCRAFT
• parallel coordinates

© Design example: Strut-Braced Wing
• MDO crucial to design
• CFD and aeroelasticity still offline
• Transonic transport (Boeing 777 mission): 19% TOGW reduction, 24%

less fuel, 46% fewer emissions
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Continuing Research: MDO of Aircraft Configurations
✈ MAD Center

© Critical for detailed high-fidelity analyses early in the design process
© Impractical to link high-fidelity codes with an optimizer for an MDO tool
© Variable-complexity modelling has been shown to significantly reduce the compu-

tational burden
© Reponse surface modelling is an effective tool for performing MDO

• codedisaggregation
• parallel computing efficiency
• design trade-off studies

Further research needed in MDO to:
© Bring detailed costs and manufacturing into the design process
© Address global optimization and reliability-based optimization
© Fully incorporate advantages of parallel computing
© Effectively utilize problem solving environment in design
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SUCCEED

Vertically Integrated and
International Design Education

at Virginia Tech

• We use freshmen  in “senior” design teams
• Freshmen added in Spring semester
• Replaces their normal freshman project

• We have design teams composed of students at
Loughborough University in the UK, working jointly
with Virginia Tech undergraduates

•One week “over there” in the Fall, one week “over
here” in the Spring

•Weekly web/telecon meetings in between, daily email
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Curriculum 21

SUCCEED

Fall 1999 Trip to England
Giving up a Thanksgiving Meal

At Loughborough, in team
meetings, and after the team
presentation at the end of
the week


