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The Problem

Unlike past generations, where design
optimization was performed manually by
seasoned designers, computational design
relies on simulations that may be unreliable
over portions of the design space and/or
computationally expensive. Optimizers
exploit weaknesses in simulation models.
Computational design methods must be
developed to overcome this problem.




An Analysis Example: Wave Drag
Variation for a Supersonic Transport

Harris Wave Drag Program results for
500 values of the semispan design variable

Plotted as an aerodynamicist would

Automated design must cope
with computer ssimulations that
contain fine grain uncertainties
that appear as “noise’
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Optimization exploits model weaknesses |

First calibrate ssimulation models against a “baseling”

Lift of baseline planform as

Baseline” wing planform estimated by four different methods
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Conclusion: compared to the Lamar VLM results which are
considered “truth”, two approximate models appear to be
accurate in the angle of attack range of interest, 10° to 20°.

Example from Hutchison, et al, AIAA Paper 92-4695, 1992



Optimization exploits model weaknesses ||
Optimization using the “equiv. arrow wing” approximation

“Optimized”
Planform
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Post optimization
analysis clearly
shows how the
optimizer exploited
the weakness of
each mode,
producing
nonsensical results.

Example from Hutchison, et al, AIAA Paper 92-4695, 1992




Our Research Objective

By improving automated design procedures
through use of a diagnostic methodology to
help designers handle situations where
computer ssimulations are not exact:

e provide an estimate of design uncertainty
e suggest “repairs’ to improve ssimulations
and thus

e Improve design quality/reduce uncertainty




Our Approach

» Use discrepancies between simulations of
varying fidelity and empirical datato
Identify when the design process is using
poor simulations to make design decisions
— Employ modern statistical methods

e Develop methods to repair the ssmulation
Information used in the design and

Indicate the level of uncertainty to the
designer.




Examples
of initial/preliminary
Investigations carried out
since the start of the grant
(September 1999)



A Model Problem to Identify
Poor Simulation/Optimization

e Consider the minimization of wing structure
bending material weight (WBMW) for a
high speed airplane

» Generate a“database” of resultsto usein

developing a model for multidisciplinary
optimization (a response surface model)

e Useacommercia finite element structural
optimization code

Use statistical methodsto remove bad
optimization results (outliers)




Typical Results of WBMW
Optimization over Design Space
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Use of Statistical M ethods to Remove
Outliers in Computational Design

e Robust Regr on Weight functions of IRLS/NIRLS
- Ordinary least squaresis heavily influenced by s
outliers
- Use weighted least squares for non-Gaussian w0 S
error = %% \
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Results of Outlier Detection by
IRLS/NIRLS for Model Problem

121 design pointsin 5 dimensions on which response surfaces of optimum
wing bending material weight arefit

L ow-fidelity optimization corrected by high-fidelity optimization

NIRL Sidentifies more outliers, typically “corrects’ results by 25%
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Characterizing optimization uncertainty by
modeling and fitting the distributions of
optimization error

High fidelity
optimum

Low fidelity
optimum
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Example of Optimization Differences
Between High- and Low-Fidelity
Optimization Results for the Model Problem

uality of fit
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 “Observation” isthe histogram from the database

 “Fitted” isthe expected frequency by the fitted
distribution function



Method and Model Problem to Illustrate the
Maximum Likelithood Estimate M ethod

For non-Gaussian error distribution, ~ Model Problem: Use a quadratic
MLE is ageneral approach for function and add random error

regression fit: following the exponential distribution
e The structure of error distributionis ¥ =(Yrue); +& where yirye = 0.8+ 0.2x + 0.4x*

fed back into regression randomerrore followsf(g )= 1 expg? OeIOSE
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Research: M DO of Aircraft Configurations

» MAD Center H——

(O MDO Design philosophy
e impracticality of brute-force linking of high-fidelity codes
e variable-complexity modelling (VCM)
e response-surface methodology (RSM)

(O Incorporating CFD and FE Structures into conceptual design
e VCM reduces computational burden
e RSM allows the study of design trade-offs

(O Design space exploration
e RSM in high-dimensional design spaces
e design space visualization with local optima

(O Parallel computing
e Dynamic load balancing reqd. for evaluating millions of configurations
e Distributed load control for scalability




Research (continued): M DO of Aircraft Configurations

» MAD Center T——

(O Global optimization
e Number of processors and choice of algorithm
e Preliminary results with multi-start local and global optimization

(O Protection against modeling and simulation uncertainties in optimization
e Discrepancies in simulations of varying fidelity and empirical data
e Automated diagnostic methodology, robust statistics

(O Problem solving environments
e VRML based VIZCRAFT
e parallel coordinates

(O Design example: Strut-Braced Wing
e MDO crucial to design
e CFD and aeroelasticity still offline
e Transonic transport (Boeing 777 mission): 19% TOGW reduction, 24%
less fuel, 46% fewer emissions
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Continuing Research: MDO of Aircraft Configurations

O MAD Center N

Critical for detailed high-fidelity analyses early in the design process
Impractical to link high-fidelity codes with an optimizer for an MDO tool
Variable-complexity modelling has been shown to significantly reduce the compu-
tational burden
Reponse surface modelling is an effective tool for performing MDO

e codedisaggregation

e parallel computing efficiency

e design trade-off studies

O 00O

Further research needed in MDO to:

() Bring detailed costs and manufacturing into the design process
() Address global optimization and reliability-based optimization
() Fully incorporate advantages of parallel computing

() Effectively utilize problem solving environment in design



SUCCEED

Vertically Integrated and
| nter national Design Education
at Virginia Tech

* We use freshmen in “senior” design teams
* Freshmen added in Spring semester
* Replaces their normal freshman project
 \We have design teams composed of students at
L oughborough University in the UK, working jointly
with Virginia Tech undergraduates
*One week “over there” in the Fall, one week “over
here’ in the Spring
*\Weekly web/telecon meetings in between, daily emall




Fall 1999 Trip to England
Giving up a Thanksgiving M eal
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At Loughborough, in team
meetings, and after the team
nre====jiagl  presentation at the end of




