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SUMMARY

An approach to the conceptual development of aircraft configurations using multidisciplinary
optimization is presented. We combine the Global Sensitivity Equation method, parametric
optimization, and algebraic representations of the various technologies to obtain a PC level
methodology. The result is a powerful yet simple procedure for identifying key design issues. It
can be used both to investigate technology integration issues very early in the design cycle, and to
cstablish the information flow framework between disciplines for use in multidisciplinary
optimization projects using more computationally intense representations of each technology. To
illustrate the approach, an examination of the optimization of a short takeoff heavy transport aircraft
is presented for numerous combinations of performance and technology constraints. We
demonstrated new insight into the effect of the figure of merit (ubjective funcdon) on aircraft
configuration size and shape by examining combinations of several objective functions in the

optimizatgon procedure.
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1. INTRODUCTION

Aircraft conceptual design is becoming an increasingly complicated process. To
achieve advances in performance, each technology, or discipline, must be much more
highly integrated than in the past. In addition, designs of interest often depart radically
from past experience. The designer is forced to confront many issues immediately, and
the initial decisions made will essentially dictate the cost and schedule of the project.
Under these conditions, the designer needs tools that provide good insight into the key
technology integration issues at the earliest possible time. Rapid system evaluation with
good insight into the important design parameters is the key to a successful initial design.

Aurcraft designers are acutely aware of the importance of initial sizing and
optimization. One well known current method for aircratt sizing is ACSYNT (Aircraft
Synthesis), which was originally described by Vanderplaatsl, and is undergoing
continual development2. Although large, complicated sizing routines are extremely
valuable, it would be useful to provide the designer with a simpler, PC level, rapid means
of focusing directly on the issues arising from the integration of different disciplines in
the complete system.

The problem of understanding how to combine different disciplines to achieve
optimum designs has been addressed by Sobieski and co-workers for several years. This
wark has as its long term goal the establishment of a rational means of coupling the most
powerful computational methodology available for each discipline. An overview of the
work has been given recently by Sobieski3, and the key idea of a Global Sensitivity
Equation method to define interactions between disciplines has been described in detail
in Ref. 4. This technique can provide an important altemative to more traditional sizing

programs even though it is intended to address more detailed design problems.




Applications of this methodology have been described in references 5.6, and 7. NASA
experience is described in reference 8.

Analytic teclmology wodels have been demonstrated ro provide an excellent means
of understanding technology integration issues recently by Mason?, Using very sitmle
algebraic models, the key interactions between structures, propulsion and aerodynamics
were demonstrated. Considering the value of both simple and sophisticated analysis in
design, it appears reasonable to combine both levels of simulation in a single design
methodology. This has been done using a concept called “Variable Complexity Design”
by Ungerl, et al. This concept can be applied in numerous ways to specific design
problems. Another example is the “Combined Global-Local Approximation” approach
proposed by Haftkall,

This thesis describes an approach which combines aspects of the metheds described
above for use by designers during early stages of configuration feasibility studies. The
purpose is to provide insight into the key design issues with minimum effort. Analytic
technology models are defined, and the approach js structured so that they can be
replaced by improved models as desired. Sobieski's Global Sensitivity Equation (GSE)
method is then used to deterrnine the interactions between disciplines. With the gradients
of the design available from the GSE analysis, a solution to the numerical optimization
problem can be obtained.

After a review of the mathematical basis of the GSE mothod, the technology
models are defined. Using a short takeoff heavy transport as an example, the results from
both the GSE analysis and the optimization are presented. Due to the simplicity of the
approach, results of nearly a hundred optimizations are used to illustrate the effects of
various design variables, design Mach number, range, takeoff distance, and different

complexity analysis.




2. REVIEW OF A GLOBAL SENSITIVITY EQUATION THEORY

As stated in the introduction, the methodology that leads to the sensitivities for a
highly coupled, nonlinear system is given in detail by Sobieski in Ref. 4. This approach
is known as the Global Sensitivity Equation Theory. The abjective of this thesis is to use
this methodology in conjunction with analytic models to illustrate the interdependence of
various aircraft technologies. We describe the individual technologies, or disciplines, as
the subsystems to the entire aircraft being designed. These subsystems include, for
example, aerodynamics, structures, and propulsion. Within each subsystem are the
individual parameters that are key to the design process. These include such items as
takeoff field length, or wing weight. In the traditional design approach, these subsystems
would be treated individually, allowing little or no communication with the other
subsystems in the process of gradient computations in the optimization process.
However, in order to obtain an optimum design, we must recognize that these disciplines
are highly coupled, and that this coupling must be captured to calculate accurate and
meaningful derivatives.

By coupling, we mean that the influence of one discipline's output, or key
parameter, on another discipline's output is measured and used to augment that
parameter's gradient with respect to a certain design variable. For instance, a gradient of
takeoft gross weight with respect to a specific design variable would normally involve a
finite difference calling only the weights subsystem. 'This type of sensitivity is known as
alocal derivative. When this approach is taken, however, the important influences of the
aerodynamics subsystem are not considered. The solution for the takeoff gross weight is

an iterative procedure that depends heavily on the relationship between these two

disciplines. As a result, the coupling effects between the two disciplines must be




quantified. The solution to the Global Sensitivity Equations (GSE) provides this
coupling. The GSE sensitivities capture the overall system response by using the local

dertvatives and the computed system coupling to solve for the global derivatives.

2.1 Formulation of the Global Sensitivity Equations
To illustrate the theory of the GSE method, we define a complex, coupled system

as a process whose actions can be described by a solution vector Y that can be obtained
from a set of simnltaneous equations, partitioned into separate subsets. The problem of
sizing an aircraft can be described as the solution to the set of simultaneous equations
given by the various technologies. Thus, we begin considering these technologies as the
subsets to the entire system, the aircraft. For example, if the disciplines chosen were
acrodynamics, weights, and propulsion, the set of equations that describe the entire,

coupled system can be written as follows.

AE:I“O[ X, Ywé ighics Yprop YAsra] 0
WEIghtS[ xa YAero » YProp )= YWefg fu:s]

Pr OP((X- Yaeros Yweighss YProp} 0

0

(1)
where X is the set of design variables, an independent set that is used in cach subset.

The disciplines described above represent separate analysis that can range in
complexity from simple analytic representations to elaborate computational analysis.
These disciplines yield solution vectors in the form of Y;, where i is the identifier for the
subset that produces the solution.

We see from Eqn (1) that the disciplines are conpled hacause the input to one

discipline includes the outputs of the other disciplines. An example of this relationship is
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the need to know the aircraft weight in order to compute the cruise lift coefficient. The

coupling of the entire system can be represented graphically as seen in Figure 1.

¥ Weights Yp,-o 7

Igero / \ );’4&’0
@ YProp YWeigkls

Figure 1. Coupling Representation of Disciplines.

The solution to the systom is the solution to the coupled set of equations. This can

be represented as the solution to the following,
F(Y.X)=0 (2)
If we consider that Y can be described as,
Y =f(X) (3)
then hy the implicit function theoreml?, we can write the corresponding sensitivity

equation to the above set as,

(o)~ 1550 ) -

ar,
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The partitions of the Y vector can be written in terms of the design variables, X, and the

remaining partitions of Y w0 follow the form of Eqn (3).

Ygero = fAero(YWeighmYProp’X) (6a)
YWe:’ghrs =f Weighrs(YAermYPmp’X) (6b)
YProp =f Prop( Yaeror Y Wei ghts'x) (6¢)

We can now linearize the system of equations shown in Eqns (6) in the

neighborhood of the solution, Y;, using a Taylor series expansion. Shown here is only

the Y, ., subset.

ot 3t at
Yaero = Yaera, + e'r ZAX + ¢AYWeights + Ao AYPmp
X aYWeiqus BYProp N

If we then rearrange the set of linearized equations to reflect the form of Eqn (1), we can

write,

a[;[ a[;i afA r
Aero =Yoo — Yacro, — B;{O AX ~ ‘c}—,——eLﬂYWea‘g}us — o AYpy,
Y Weights YPro_p
and, thus,
Acro

F = { Weights } =0
Prop
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We can now apply the implicit function theorem to the linearized set of equations

(8) by differentiating as shown in Eqn (5). This leads to the global sensitivity equations,

given by,
( J faero d fLaero -’ b YAer_a %
1 - - DX X
J YWe.r‘gkzs d YProp
_ Miyeigpss ' _ Ieights | | P Yweighss | _ | IMweighss
aYA(_’ra 3 YPJ"OP DX ax
o1 Jf
B 8yProp _ e Prop I DYPrap a rProp
L Aere Weighrs 1| DX | [ X (10)

The right-hand-side of equation (10) is the sensitivity of each discipline with respect to
the independent variable, or the design variable set. These are local derivatives. There is
a different right-hand-side for each design variable. The solution of the system (10) is
the sensitivity of the partitioned vector Y with respect to the design vartable set X. These
are the global derivatives. The derivatives of Y represent the system sensitivity with all
of the effects of the discipline couplings accounted for.

There is a full set of these derivatives [or every design variable, therefore, the
system must be solved for each design variable. This can be efficiently done by
decomposing the GSE matrix once, and then solving repeatedly for each right-hand-side.
Once the global derivatives are found, this information can then be supplied to the
optimization routine for search direction calculation.

We note that each component of the GSE matrix is a matrix within itself. 1, for

instance, we have a number of subsystem parameters within a certain discipline, then

that one component within the GSE matrix would look like,




[ Mpere® | Mpero() ]

Mpers aYWefgius(l) . aYWez'g:h:s(”W)

aYWei_ehzs afAe.':o(”A ) afAer:o(’h )
aYWpfghrs(l) aYWe:'ghrg(n W)

(1)

2.2 Normalizing for the Optimization

For numerical accuracy in the use of optimization programs, it is important to
supply gradieats that are all of the same order. For instance, it is numerically inferior to
supply a gradient of one design variable that is on the order of 104 and supply another
gradient that is on the order of 10-4. Instead, the gradients should be normalized by using
the solution to the baseline system, given by Y., O’YWeigiusOs and YPTOPG'

The derivatives are then found, as described in the previous section, and normalized in

the following manner.

Derivatives in the GSE matrix are normalized with respect to the discipline

solutions,

Mpero() | OMgpppli)  YWeights, (1)

aYWeighfs(j) ‘ aYWeigﬁrS(j) fAeroo(i)

and for the local gradient vector, with respect to the baseline design variables,

afAem(i)’ =afAera(i)_ xo(j)
axX(@jy 'e AX(J)  Faeron (1)




3. TECHNOLOGY MODELS

In this analysis, the aircraft takeoff gross weight, W,,, will be the key figure of

merit. W, is defined to consist of:
Wy, = Wwing + quef + Weng + Wﬁxed + chlm + Wcargo (14)

The main purpose of this optimization procedure is to find the wing design, fuel
required, and engine size required to minimize the total aircraft weight for the specified
mission and field performance. Components other than the wing and fuel weight were
taken to be either fractions of the takeoff weight, or prescribed constants. For initial

development, ACSYNT 2 was used to obtain accurate weight fractions.

3.1 Weights

3.1.1 Structures
The wing structural weight can be estimated using wing weight equations. Several

levels of approximations arc available. The equation from  Raymer!? for subsonic

transpors is one example:

(t/c Oégi cos A o5 (15)

Woging =0.0051 K, S264%01

The weight prediction from this equation was checked against data in Torenbeek 14

for typical transports and found to be accurate to within 2-3%.




3.1.2 Fuel Weight

The weight of fuel used in the cruise segment of the mission is found using the

Brequet range equation.

{_ R-sfe }
V(L/D
Wenei = Whnisial} 1—€ (L/D)

(16)

This formulation takes Wy, as the weight of the aircraft at the start of the cruise

segment. Wi, 1S simply the takeoff weight less the weight of the fucl used to climb to

the cruise altitude.
Winitiat = Weo - Weeim (17)

3.1.3 Engine Weight

The engine weight is found based on a required thrust and a specified thrust to

weight ratio for the class of propulsion system selected. Thus the engine weight is found

from,

T,

Weng = _rea
(T/ 4 .)eng (18)

Specific fuel consumption can be constant, or vary if information is available.

3.1.4 Systems | Miscellaneous
The remaining weights can be defined as aircraft structure and systems weight
excluding the wing structural weight. This weight can be expressed as a fraction of the

takeoff pross weight.

10




Wﬁx = Cﬁr Wi (19

Here, we define Cp, as the percentage of the takeoff weight that the system

‘represents. The fixed weight here refers to remaining structural weight, furnishings,
landing gear, etc. By defining the variables that do not change as a direct result of the
changes 1o the design variables in this manner, these aircraft systems are sized
automatically with the changes in the takeoff weight. This method is also used for the

fuel used to climb to the cruise altitude,
Wretm = Creim Wio (20

3.2 Aerodynamics

The aerodynamics technology for an aircraft is given by the drag polar:

2
CL Cruise

CDCruise :CD0+CDwave+ TAR E 21)

The subcritical zero lift drag coefficient is calculated from a skin friction analysis taking
into account the fuselage, wing, vertical tail, and horizontal tail. A form drag coefficient
is applied to the skin friction drag. Additional estimated zero lifi drag contributions from
the after-body drag, or boattail drag, engine pylon drag, and fuselage aft-end upsweep

drag were also included.

=C C : C
CDo ("Df + Dyt +C'Dnyon + DUpswczp (22)

11
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The friction drag, CDf= is given by,

RC

E{Cf[ 'CForm,- 'Swer,-}

— =1
CDJr =

Sref (23)
where Cropm,,; " is the wing form drag coefficient found from the airfoil thickness at

75% of the span. Typical formulations of this cocfficicat for the wing can be found in

reference 14. An example of this form drag coefficient for the wing is given by,

4
CFarmWiﬂg =1+18(¢/ c 7500 + 501 / ¢ 7557
(24)
The skin friction coefficient for each component is given by(1)
0.074
Cf = Ra02; 1440 2%

which is adjusted for compressibility. Re is the Reynolds number based on the
characteristic length of the particular component.

The transonic wave drag model is based on Lock's empitically based

approximationl®,

a
Cp, e = 20(M— M)

Wi

(26)

which was recently derived theoretically by Ingerl”. When M is less than M, the wave

drag is zero. Using the definition of the drag divergence Mach number,

dc
—Dewe 0.1
M




M..,;, can be found using Eqn (26) as,

C

01107
Moy =Mpp— {_}

80 (28)

The drag divergence Mach number was found using the Korn equation as extended to use

sweep by Mason?,

M _ KA _ (th) _ CL
P cosA cos’ A 10cos’ A (29)

Here x, is a technology factor (range .87 to .95). This expression provides the

relation between the lift, thickness and sweep for transonic drag rise. This expression
also contains the effects of increasing takeoff weight through the cruise lift coefficient.
‘T'his model was employed because of its ability to smoothly reflect the changing drag
divergence Mach number during the design iterations.

Another model that could be used for the transonic drag rise is a two-piece linear

fit. This method employs the use of a shallow linear fit from roughly 10% below M., to
Mpp and a steeper fit from Mpp extrapolated upward. This method was originally used
for the drag rise model, however, it was replaced with Lock's estimate as a result of the
lack of smoothness at the drag divergence Mach number. The discontinuity in the
gradient of the drag rise is not desirable in an optimization environment. Also, this
method ts not as easily adapted to changing critical Mach number.

The comparison of the predictions for both methods against data from ACSYNT is

shown in Figure 2. We see that the linear fit is more accurate near Mpp . however,

13




Lock's fit smoothly models the transition at this point. Furthermore, Lock's fit becomes

very accurate both below and above Mpp,.

0.25
‘ ACSYNT /
0.20 —— /
Lock’s Fit
——
2-Piece Fit
, 015 /
b
S /‘
© 010
0.05
J,
0.00%; 0.75 085 0.95 1.05

Mach

Figuic 2. Wave Drag Model

The aerodynamic model also includes a constraint on {7 based on a prescribed

limit section lift coefficient C;. For this maximum section lift coefficient and assuming

an elliptic spanload distribution, the total aircraft lift coefficient limit is given by,

(1" + l) Limmer (30)

where A is the taper ratio. This connects the section lift coefficient limit defined by the

level of aerodynamic technology to the total aircraft lift limit. By imposing the

14




constraint as a function of a design variable, A, the optimization can exploit the constraint

limit to maximum advantage.

3.3 Performance

3.3.1.Takeoff
The takeoff distance, s, is given by finding a rotation velocity based on the takeoff

weight and the ficld operations acrodynamics, then integrating vver the velocity in the

following equation.

V,

s= ]?r { WTO . d }du
0 U & {Tmax — Drag(v) - u(Wro — Lif(v)}

(31)

Here, the rotation velocity is given by,

ZWrp
Viot =
CLy, PSw (32)

Estimations of the distances covered during the rotation, transition and climbout are also
included. These are simply empirical estimates of the time each of these phases require
multiplied by the rotation velocity to give the distance. This model was based on the

methods in Krenkel and Salzman18.

3.3.2. Landing
Using the methods in Roskam!%, a model for analyzing the landing performance
was developed. The method breaks the landing distance up into two segments, air

distance, and ground roll.

15




The total landing distance is given by
S!dg = Sair + SI_G (33

where S,;. is the air distance from the point over a 50 ft obstacle to the touchdown peint.

_Z_VZ
R :i.{—-——-——( 4 Td)-i-h‘r}

air —
Y 2g (34)

Here, #; is the height of the obstacle, and ¥ is the average aircraft drag-to-weight at

landing, given by,

?sz-NAw}

W (35)
and the touchdown velocity, Vi, is defined by,
=2
Vi = Vayf1-2—
(36)

where the approach speed is typically taken to be 1.2 times the stall speed, found from
the aircraft CLmax in the [anding configuration,

Va =12 Vygair (37)

The ground roll (S; ;) is estimated using a constant deceleration taking into account

antiskid braking, thrust reversing, ground spoilers, and speed brakes. The thrust

reversing model nsed assumes 40% of the maximum thrust available for the reversing

system.

2a (38)

16




Here, a is the average deceleration. Although this is a conceptual level model, the
results for landing analysis of similar transport class aircraft using this method as

compared 1o published data are accurate to within 10%.

17
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4. INTEGRATING THE TECHNOLOGY MODELS AS SUBSYSTEM
VECTORS INTO THE GSE MATRIX

Euch of the above wchnologies is considered analyses that contribute 1o the overall
system. These technologies are represented by simple analytic expressions for the
purpose of illustration. However, they could be large, complicated, and somewhat
independent analysis routines that represent the most sophisticated computational
methods for that discipline. The key is the relationship between the input and the output
information required for these technologies, and what each technology requires in terms
of system information (i.e. design variables).

To properly capture the relationships between disciplines, the Global Sensitivity
Equations must be written in the format described in  Eqn. (10). This requires the
selection of the most important outputs from each discipline. The selection must be
made carefully, however, so that the order of the GSE matrix is kept low, and thus the
gradients can be computed quickly. If non-coupled outputs, those that have little or no
elfect on the overall sysiem, are selected, the GSE matrix becomes unnecessarily large,
and the solution to find the system gradients at each iteration in the optimization process
becomes expensive computationally.

The coupling effects between weights and aerodynamic performance at the
conceptual aircrafi sizing level were the main interactions desired in this research. It
became obvious that the aerodynamics diseipline output vector should include the cruise
performance parameters, along with the critical field performance parameters. The
weights discipline vector was simply the component weights.

It was found that W;,, was required to be grouped separately from the other weights
because of the dependence on the component weights.  Even though the takeoff weight

is simply the sum of the component weights, it is a separate suhsystem because it must

18




have the coupling effects of those components. The takeoff weight is coupled to the
components weight in the most basic forms because it is simply a linear combination of
the components. The nature of the process requires that the disciplines be treated as
analysis that depend on only the design variable set and the outputs of the other
disciplines. It is crucial, therefore, that not only are the proper discipline ocutputs chosen,
but the proper disciplines themselves.

Thus, the technologies were placed in three separate subsystems for use in the

calculation of the global sensitivities. The contents of each subsystem vector are:

[ Wﬁ;el ]
LC'rm'sc me
Veor W
- _ enhg
Yacro =3 Chepise ¢ Yyeigius = W, Ywio={Wo!
Sio
s Weeim
ldg J W
cargo |
(39)
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5. TRE OPTIMIZATION PROBLEM

5.1 Problem Statetnent

It is important to properly define the optimization problem and the constraints
before the computation of the solution is started. Traditionally, the aircraft designer
chooses to minimize the takeoff gross weight of the aircraft. This has several benefits.
First, W,, is related to the cost of the aircraft. Secondly, W,, is a measure of the cruise
perfortnance. A heavy aircraft is an indication of large fuel weights, i.e. higher tequired
thrust, hence, poor cruise performance. Finally, the fleld performance is clasely coupled
with the takeoff weight. A heavier aircraft requires a longer takeoff distance. There are
benefits to choosing other figures of merit20, as will be discussed later. However, for the
current optimization statement, we chose the takeoff gross weight as the figure of merit.

With the proper objective function selected, and suitable constraints chosen, the

appropriate optimization problem statement can be given by,

min f(x) xe®”

g;{ny=0,  j=l...m,,

gx)z0, i=m, +1,...,m
X} stxu (40)

Where f{x) is the objective function, taken here to be the takeoff weight, and g(x) is the

set of constraints imposed on the system. According to appropriate technology

limitations in the field of structures and aerodynamics, suitable lower (1;) and upper {(x,)

hounds were placed on the design variables.

20
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The takeoff gross weight was selected as the objective function for the optimization
problem, although any of the components (or a combination) of the Y's can be selected as
the figure of merit. In addition to the objective function, the constraints chosen were the
takeoff distance and the attainable section lift coefficient in the cruise phase, as discussed

previonsly.

5.2 Design Variable Set
The design variables were chosen to include both aircraft geometry and flight
performance values. Seven design variables were chosen as a representative set available

for optimization:

&

L
I
- X o

- =

]

e (41)

5.3 Baseline Configuration

An example was selected to illustrate the method. In this case, a short takeoff,
medium range heavy transport was used. Table 1. shows the specified mission along
with a suitable candidate for the propulsion system. For this example, the range was

fixed, along with the engine thrust.

21




Table 1. Mission Requirements/Constraints

Cargo Weight 150,000 1bs

Range 3000 nm

Takeoff Distance 5000 ft

Landing Distance 4000 ft

Maximum C, 93

Maximum Section C; 1.0

Propulsion 4 CF6 class Turbofans
(TfWerLg: 6)

Although not necessary, ACSYNT was used to establish a baseline model from the
data. Because ACSYNT is a fully developed and well tested sizing software package, it
was used not only for the baseline estimates, but also as a comparison code throughout
the development of the multidisciplinary process. An ACSYNT input file was created
using published data for similar aircrafi?l. A mission profile was specified for the
candidate aircraft based on a 3000 nm cruise range. This cruise range accounted for the
base mission range plus an extra distance to account for reserve fuel requirements. The
given initial estimates for the takeoff gross weight and fucl weight came from this
analysis. ACSYNT also gave estimates of the zero lift drag that were used to verify the
analytic aerodynamic models.

Because the individual disciplines are actually sets of nonlinear, coupled equations
(Sobieski4), a solution to these equations must be obtained initially before the global
sensitivity equations can be calculated. This coupling is evident in the relationship

between the wing weight and the gross weight. The wing weight is a function of the




gross weight, which is a function of the wing weight. Fixed point iteration was used ta

converge the set of equations for a given cruise range and set of design variables.

5.4 Solving the Global Sensitivity Equations

Once the subsystems were defined in terms of the technology models, and all the
discipline interactions calculated in the GSE matrix, the global derivatives were
computed. Table 2. shows the actual GSE matrix that was computed fur the bascline
aircraft. The shaded portions of the matrix illustrate the structure and the relative sizes of
each analytic subsystem used for this example. Table 3. shows the local and global
derivatives, as described above. Notice that the local gradient of W, is zero for every
design variable. This comes from the formulation of the takeoff gross weight as a
separate subsystem. As specified, the Y3 subsystem does not have design variables
explicitly in the formulation, rather, it is simply the sum of the elements in the Y2
discipline (the componeat weighis). As a tesull, when a derivative of W, with respect 1o
any of the design variables is computed using finite differencing on that discipline alone,
the gradient is zero. When the interactions of the aerodynamics and component weights
subsystems are taken into account, however, the resulting global derivatives then reflect
the actual function gradient.

Table 2. Actual Partitioned GSE Matiix for 3 Subsystermn Design Problem.

Global Sensitivity Matrix

L Frot ch Seo Sidg Wjfuel Wwing Wewp Wfcim Wfix Wearge Wio
CL LOGO0  0.0000 00000 00000 00000 | 0.0000 00000 00000 0.0000 00204 0.000C | 1004
Frof | 0.0000 10000  0.0000 00000 0.0000 | 00000 0000 -0.0000 00000 00000 ¢.0000 | -0.49%%

Sin Q000N NOM0 00008 100D 0.0000 | 0.0000 00000 40000 00000 0.0000 00000 | 17383
Sidg | 0.0000 0.0000  0.0000 00000  1.0000 | 0.1375 00000 00000 00000 00000 (0000 09514
Wfuel | 08185 0.0000 08318 00000 00000 10000 00000 00000 0000 00000 0.0000 =1.000¢
Wwing | 0,0000  0.0000 00000 GOOOC D0000{ 00000 LOOD 00000 00000 00000 0.0000 -0.8383
Weng | 0.0000 00000 00000 006000 00000 0.0000 00000 10000 00000 00000 0.0000 0.0000
Wiclm | 00000 00000 0.0000 40000 ©.0000| 0.0000 00000 €O 10000 0.0000 ©.0000 | -1.0000
Wfir | 00000 00000 QL0000 00000 (.0000] 0.0000 00000 00000 G0000 1.0000 0.0000 -1.0000

Wio | 00000 00000 0.0000  0.0000  0.0000 [-5:3891 -0:0956 00473 -02950 -zmmn -0:33] 1:0000
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Table 3. Local and Global Sensitivities

1.ocal Derivatives Global Derivatives

Ar Sw Aft Mach  Sweep i Taper Ar Sw Al Mack  Swrep rie Taper
TG.0000 09756 15205 -10074 00000 00000 CO0000| CL |-0.1609 -1.2263 22503 L4592 0.255% 02177 0.00M
00000 -0.4908 0.0000 0.0000 00000 0.0000 0.0000| Froe |-0.0800 -0.6154 03627 16828 -0.1I70 01057 00315
6372 -1.3673 0 21832 0.6591 03121 0.4803 00000 | €D 07672 -17256 33263 54994 06TTE 07E4T 0.0%06
L0996 0.9278  0.0000  0.0000 0.0000 0.0000 ODOOG | Ste | 03794 -13636 L2688 58870 - add2 097 01102

000 07941 00000 0.0000 0.0006 0.0000 €.0000 | Sidg |-0.0613 -0.9388 04844 22476 01593 01073 00484
L0000 00000 00442 03203 0.0000 00000 0.0000 | Wfuel | 0.6673 06823 15773 70868 -0.6098 0.0909 0.0869
10000 04760 00000 00000 02269 -07437 0.1385 | Wwing | 08651 02668 04119 23391 00127 0554 01917
Q0000 00000 Q0000 0.0000 Q4000 DOOOD 0000 | Wemg N A00G0 G0D00 000G a0 00KK 00000
Q0000 0.0000 00000 00000 00000 00000 O.0000| Wicm |-0.1609 -0.2507 07208 33866 D285 0.2127 0064
0.0000  0.0000 00000 0.0000 00000 00000 00000| Wfir (01609 -0.2507 07299 33866 -D.2956 02127 00634
00000 0.0000 00000 00000 00000 00000 00000 |Wearge| 0.0000 00000 0.0000 00000 00000 00000 00000
Q.0000 00000 00000 00000 00000 00000 CO000 | Wee |-0.1609 -025G7 07209 33866 0255 02127 00634

5.5 Sequential Quadratic Programming (NLPQL Routine)

The optimization was performed using NLPQL?2, a FORTRAN implementation of
a sequential quadratic programming (SQP) method for soiving nonlinearly constrained
optimization problems. At each itcration, the search direction is a solution of a quadratic
programming subproblem. NLPQL uses gradients of the objective function and the
constraint functions obtained from the solution of the global sensitivities as described in
Eqn (10).

The underlying methodology of the SQP algorithm is the formulation of a
quadratic subproblem. A brief description of the problem and the main assumptions

follows.

Let x; be the current itcrate, vy, the approximation of the optimal Lagrange

multipliers, and By a positive definite approximation of the Hessian matrix of the

Lagrange function. Then, we can write the Lagrangian function in the following manner,

24




L{x,u) = f(x)= Y u;g;(x)
i1 (42)

where y e R" L u =(u1,...,um,)1‘ e R™ and m' is defined as (m+2n). We can also

define the constraint functions as,

gj(x)=x(j_m)“x1(j_m) j=m+1,. .. .m+n

g;(X) - xu(i—m—n) —x (i—-m-n)

’

I=man+l.om (43)

When the constraints from the original optimization problem posed in Eqn. (40) are
linearized, and the approximation to the Lagrangian function (42) is posed as a

minimization prablem, we have the following suhproblem,

min%dTBkd—i—Vf(xk)Td

V() d+gi(x)=0  j=1..,m,,
Vei(x)Td+gi(x)20  ism, +1..,m
deR" X —xp<d<x,—x; (44)
[f d is the solution to the above subproblem, and w; is the vector of Lagrange

multipliers, then the new iterate is defined by,

Xpe1 =X +akdk (4:,)

where ay is the steplength parameter, found to satisfy a sufficient decrease in a given

ple) = W?'k ({.::}+a{uk£i_’cvk }J (46)

merit function,
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6. DESIGN VARIABLE SENSITIVITIES
Before a complete optimization of the baseline aircraft was carried out, each design
variable was examined to study typical sensitivity of the objective function. Because the
direction each design variable will take is not known in the full optimization, by first
examining the individual parametrics, the fina. olution to the completely optimized
aircraft will provide greater insight. Four of the seven design variables along with the

GSE derivatives compuled using the methuds descibed previously, are examined in

Figure 3.1- 3.4,

6.1 Aspect Ratio
Over the range of aspect ratio, with all other design variables fixed, there exists a
minimum weight value of AR. The computed denivative from the GSE method

accurately captures the minimum point as the derivative passes through zero.

590,000
0.0
=3 -
j= dWrto/dAr
% . ;" E550,000
< o B
* | o
- 2
< =
el
:Oj -1.0 530,000
=
3 ~T
| \\_‘\.\ /,/"’A-”/ - 510,000
2.0+ T T T T T T T T T T 49(),()00
4 8 12 16 20 24
Aspect Ratio

Figure 3.1 Aspect Ratio Sensitivity,
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6.2 Wing Area

We can see from the computed derivative that the minimum weight wing area for this
range, all other variables fixed, lies close to the selected lower bound. As the wing
continues to grow, the structural weight begins to increase. With increasing wing area,

however, the fuel weight decreases. A larger wing allows for a smaller cruise C; and

thus a smaller Cpy.

0.300
_ - 650,000
£,
§ 0.200
3 / I _
@ ) £
T e by
2 e
@ 0100 =
5 / 550,000
= -
= Z/"/ dWto/dSw
0.000 —
J /( Wto -
-0.100+ , . . I 450,000
3000 5000 7000 9000
Wing Area (ft ~2)

Figure 3.2 Wing Area Sensitivity.

6.3 Wing Sweep
The objective function for a range of wing sweeps shows that at a fixed Mach
number sweep is necessary to alleviate the effects of the transonic drag rise. However, as

the wing is swept heyond what is needed, the penalty of the structural weight begins to

. exceed the payoffs from the transonic drag reduction. The minimum weight solution
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exhibited in the sweep parametric is highly dependent on the cruise Mach number that is
specified.  For the case shown, the cruise Mach number was .78 and the resulting

optimum sweep was 30 deg. For lower Mach numbers, the minimum weight solution

would be found at lower wing sweeps.
0.12 r —  S30,000

dWio/dSweep

/

0.08 \

[

2 520,000

% N

[:}]

g 0.04 / -

E - / 510000 o

j
0.00

- X j

£

£ N oo

N

-0.084 T T T f T T 49(),
0 10 20 30 40 0000
Sweep (deg.)
Figure 3.3 Sweep Sensitivity.
6.4 Mach Number

T'he behavior of Wy, with Mach number shows limitations both at low and high Mach

numbers. The high Mach limitations are a result of the transonic drag rise, whereas the

low Mach number limitations can be explained by examining the range factor,

M(L /D)
e (47

At Mach numbers below 0.55, the cruise performance is greatly affected by poor lift

to drag ratios, for a fixed altitude, as well as the reduced speed.
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Figure 3.4 Cruise Mach Number Sensitivity.




7. RESULTS

In order to compute the subsystem coupling effects in the sizing process, a
computer code was written to incorporate the technology models into the GSE structure.
This code has the capability to run many different cases ranging from simple analysis to

complete optimization, See the Appendix for a complete description of the code.

7.1 Full Set Optimuzation

Using the analytic models for the technology, many (hundreds) of optimization
cases can be computed. For the general case, Table 4. shows the design variables,
objective function, and constraints before and after the optimization. Figure 4. shows the
convergence history for the optimization using all seven design variables. Note that even

though the weight is nearly converged at 17 iterations, the design variables are still

clhanging until 24 itciations.




Table 4. initial Point vs.

Optimized Solution.

Initial Final
Aspect Ratio 7.00 22.65
wing Area (ﬂZ‘) 3800 3957
Cruise Altitude (ft) 39,600 35,936
Mach Number 0.78 0.61
Mid-Chord Sweep (deg.) 214 1.0
Thickness Ratio (t/c) 10 18
Taper Ratio 10 27
Takeoff distance (ft) -6301 5000
Landing distance (ft) 2713 2355
Cruise Cj. 8431 9621
Cruise Cpy 0714 0400

-Weights-

Fuel (Ib) 167,677 96,614
Wing (ib) 50,771 64,512
Engine (1b) 30,000 30,000
Fixed (1b) 136,455 116,824
Climb Fuel (Ib) 10,916 9,345
Cargo (Ib} 150,000 150,000
Gross Weight (1b) 545,820 467,298
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Table 4. shows how the optimization process results in a low speed (M=0.61)
design when all of the design variables are available to the optimization. The objective
function was reduced by 15%, and the results shifted from a moderately swept design to
that of a high aspect ratio, no-sweep design. The high aspect ratio is a result of a reduced
penalty in the wing weight equation. The validity of the wing weight equation becomes
questionable at this aspect ratio. This design also has a high cruise lift coefficient

(0.9621) however, the cruise drag was reduced 44%. The section lift coefficient limit

was 1.0 for this case.

7.2 Optimized Solutions For a Range of Mach Numbers

The results shown in Figure 4. give information for one design. Much more insight
can be obtained by examining optimum results over the range of a specified parameter.
Mach number is a good example. The effect of a mission-specified Mach number, as
would be given in a typical design request for proposal, can be observed by fixing the
Mach number and optimizing the aircraft with respect to the reduced design variable set.
By implementing the optimization in this manner, we can easily identify the tradeoffs of
petfutmance, acrodynamics, amd structures as the wing evolves from a low speed design
to a high-speed, transonic design.

Figure 5. shows a range of optimal solutions for a specified Mach number from 0.5

to 0.9, The first set of results shows the effect of imposing only the takeoff constraint

(5, = 5000.0 ft}), whereas the second set includes the takeoff constraint as well as the

section lift coefficient constraint (Cy = 1.0).

The optimal solution presented in Table 4. is shown as the minimum of the Wy,

plot in Figure 5. Note that increasing Mach number results in an increased weight, and

wing area. The results show a decreasing aspect ratio as the wing area is sized for the
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takeoff constraint. At low Mach numbers, the wing is unswept, but as the cruise Mach
number is increased, the sweep begins to increase abruptly, as the wing requires more
and more sweep to alleviate the transonic drag effects. This sudden increase in sweep
was unexpected. However, it can be compared to the sweep schedule that is used for a
© varigble sweep wing aitciafl such as the F-14, as showi. in Figure 6., taken {rom the
paper by Kress23. From a structural standpoint, the wing thickness is optimal at large
values, however, aerodynamically, a thick wing creates increased form and wave drag.
The effect of adding the C; constraint is reflected in the taper ratio. For the first case,
the taper ratio is reduced to the imposed lower bounds in order to reduce the wing
weight. In the second case, however, the constraint limit imposed on the aircraft lift

coefficient is a function of the taper ratio, therefore the addition of the Cy constraint

illustrates how the taper ratio is now used to reduce the constraint limit value.
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Figure 6. F-14 Wing Sweep Schedule.

7.2.1 Planforms for Range of Mach Numbers.

Figure 7. shows the geometry of the design variables in the form of planform plots.
We see that for the low Mach numbers the sweep is reduced to its lower limit, but more
striking is the increase in span over the baseline design. Also visible is the dramatic
sweep effect as the Mach number is increased. The reduction of the aspect ratio is

evident as the span is reduced at M=0.9 10 nearly half that of the M=0.5 solution. These

results are for the takeoff constraint only case.
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7.3 Effect of Cruise Range

The effect of range on the design is shown in Figures 8.1-8.3. As the range is

increased from 2000 nm. to 3000 nm, the takeoff weight increases by 80,000 1b. Note
that as the range is increased, the emphasis shifts from a structurally biased design (low

AR) to that of an aerodynamically biased design (high AR). The C; is at the imposed
constraint limits, however, the lift to drag ratio is increasing as the aircraft is gaining
necessary efficiency to achieve the longer range. This case was for a Mach number of

0.78.

S00,000

480,000 i

460,000

420,[)()0+/

400,000 T : T 1 .
2000 2200 2400 2600 2800 3000
Range (nm.)

Wto (Ib)

l Figure 8.1 Effect of Cruise Range on Optimum: Objective Function. (M=0.78)
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7.4 Effect of Takeoff Constraint

Figures 9.1-9.3 show the large penalty in weight due to the effect of the takeoff
constraint on the optimum solution. This case was also optimized for a fixed Mach
number of 0.78. For very short takeoff distances, the wing area becomes very large. In
contrast to Figure 8, the L/D is relatively unchanged, however, the cruise C; is greatly
reduced at the short takeotf distances due to the large wing. Also, because the wing area
is so large at the short takeoff constraints, the aspect ratio is reduced greatly. This is

caused by the penalty incurred in the wing weight equation for large spans.

570.000

550,000

530,000

510,000 \\

450,000

Wto (Ib)

R

!

470,m T T T T T [l 1
3000 4000 5000 6000 7000 8000
Takeoff Constraint, Sto (ft)

Figure 9.1 Effect of Takeoff Constraint: Objective Function.
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7.5 Effect of Limited Design Variable Set

Insight can also be gained by examining the effect ot ditterent design variables on

the optimum.

7.5.1 Case 1.

The design variables were limited to:

X= (Ar, sSw)T (48)

All other design variables were held constant at their baseline values and the cruise Mach

number was varied parametrically. The constraint limit placed on the takeoff distance

was 5000 fi. and the section cruise C; limit was 1.0. The numerical results in Figure 10.

show a decrease in the aspect ratio with increasing Mach. The wing area decreased to a
point where the takeoff constraint became active, then remained at the required wing
loading to minimize the design while remaining within the feasible design region. For

this limited design variable case, the optimum solution is found at a Mach number of

0.73.

7.5.2 Case 2.

‘The design variable set was expanded to the following,

X = (Ar, Sw, A )T (49)

The minimum now occurs for M=0.6. The aspect ratio result shows the effect of the wing

arca being sized by the takeoff constraint. At thal point, the wing area began decreasing
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to account for the affected cruise performance. As expected, to alleviate the transonic

drag, the optimum wing sweep increases with increasing Mach number.

7.5.3 Case 3.
X = (Ar, Sw, A, ti0)T (50)

By adding the airfoil thickness into the set of design variables, several interesting
results occur. First, there is an obvious shift in technology focus from an aerodynamic
design, as shown in cases 1 and 2, to a structural design. By using thickness as a design
variable, the optimum solutions found at low Mach numbers reflect a very high aspect
ratio. This is a direct result of the structural wing weight equation. As the thickness is

allowed to increase above the baseline, the wing becomes lighter, thus allowing the
higher aspect ratio designs to become more feasible. However, aerodynamically, the

wing sweep plot shows that with a thicker wing, more sweep is needed at a given Mach

number to account for the increased transonic drag.

7.5.4Case 4.

Finally, the design was optimized for a range of Mach numbers using the variable

set used in Figure 4.

X = (Ar. Sw. k. A, tie, DT (51)
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8. DEMONSTRATION OF INCREASED TECENOLOGY COMPLEXITY

8.1 Second Order Effects of Several Wing Weight Equations

Aircraft conceptual design is not an exact sport. The process of collecting
empirical data to establish a database of aircraft design variable trends leads to weight
equations that, on the first crder, produce fairly accurate results. But, as the second order
effects are called upon by an optimization routine, these equations can produce strikingly
different results.

For example, in the sizing of an aircraft wing for a cruise dominated mission, the
wing weight equation plays a crucial role. A required level of field performance that
must be met is usually coupled with a long range cruise specification. The optimization
process is confronted with a conflicting set of constraints, for as the wing area is
increased to enhance the field performance, the takeoff gross weight is compromised
with the increasing wing structural weight. To this end, there is usually an optimum that
lies along the constraint imposed as the field performance.

[f, however, the penalties for having a large wing area are not severe enough, the
optimization will exploit that fact and deem the larger wing area a valid tradeoff for
increased cruise performance in the form of a reduced lift coefficient. If we examine the
form of several wing weight equations with respect to the sct of design variables uscd,

we can gain greater insight into the differences in optimization results.

Nicolat Formula:

The wing weight as specified in Fundamentals of Aircraft Designl5 is given by,

ARM?  (nw )3t
{1000t/ ) pmard " c0s™* Ay (52)

Wiping = 0.00428 K5,
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Where M, is the maximum Mach at sea level, N is the design load limit, and A, is the

sweep at mid-chord.

Raymer Formula:
As found in Aircraft Design: A Conceptual Approuch, the formulation of the wing
weight is given by13,

A.RO'S . (Nm(')0.557(1+l)0.1

Wiging = 0.0051 K.8,0°%8 0,
where S, is the area of the flight control surfaces on the wing (S.q =10% for this

example) and A 55 is the quarter-chord sweep.

McCullers?* Formula:

This formulation is the most sophisticated, integrating estimated span loads to

arrive at bending moment distributions and material factors. The wing weight is given

by,
PV{OC“E + W2 + W3
Wwing = W
1+ 1 (54)

where

W =C-N-H(1-0.4f)(1-0.1f;) (55)

Wy = 0.68(1—0.17 £.)S o 024 W,, 06 (56)

Wy =0.35(1-0.30 £.)5™° (57)
and

1/2
c =8.8Bz[1+(%) ]xm’ﬁ
(58)
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We define f as a composite material factor (0-1} and f; as an aeroelastic tailoring factor

(0-1). B, is the bending material tactor computed from,

_ZV
‘ Ld (59)

where,

d= AR [1+(0.5f, —0.16)sin” Ay _+0.3Cy(1-0.5f)sinAy_ | (60)

with ALave defined as the weighted average of the load sweep angle. The total load on

the wing is given by,

1
L= [ p(y)dy
0 (61)

with p(y) as the pressure load, and the required volume of structure based on the stringer
area, A(y), as,

1
V= A(y)dy
0 (62)

Figure 11. shows the effect of increasing wing area on both wing weight and total
aircraft weight.  Although the wing weights and corresponding takeoff weights are very
close numerically (Note that the Nicolai and Raymer equations cross near the baseline
wing area at 3500 ft2) the gradients of the Raymer and McCullers equations are steeper,
giving rise to a more severe penalty for a larger wing. We also notice that the Raymer
and McCullers formulations give very similar gradients over the range of wing areas

plotted. Compared to the Raymer equation, the actual takeoff weight valucs arc roughly

4% less for McCullers over the range.
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Figure 11. Effect of Wing Area on Several Wing Weight Models.
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We now consider the aspect ratio effects. Figure 12. shows the varnation of the
wing weight and total takeoff weight for a range of aspect ratios. We see that the Nicolai
formulation is much more sensitive to changes in aspect ratio than Raymer or McCullers.
As in the wing area comparison, both Raymer and McCullers exhibit similar penalties
over the range plotted. These two equations give results that are approximately 7%
different in the overall aircraft weight. The relatively shallow gradient of the takeoff
weight tor the Raymer and McCullers equations 1s of interest from an optimization

standpoint. It is this lack of aspect ratio penalty that leads the optimization to a large

aspect ratio design as demonstrated in section 7. 1.
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Figure 12. Effect of Aspect Ratio on Several Wing Weight Models.
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8.2 Effect of Increased Complexity Wing Weight Models On Optimum
For the case at hand, the complete set of design variables is chosen. The objective

function was the takeoff gross weight (W,,), and the mission was a 3000 nm cruise with a

field performance constraint on the takeoff distance (§,, < 5000 ft ).

Figure 13. illustrates the effect of using different wing structural weight models.
By implementing a more sophisticated routine (McCullers) for calculating the wing
weight, the results can be compared to the simpler analytic techuology model. The first
case is Raymer's wing weight equation, the second uses McCullers, and the third case
uses Nicolai's wing weight equation.

We see from the figure that the McCullers equation results in the lowest weight
solution, however the trends between all three models are very similar. The results using
the McCullers formulation are very similar in overall trends to the Raymer results. The
differences were approximately 9% over the entire range of Mach numbers. This
similarity in trends is equivalent to the effects presented in the previous section.

Because the penalty on aspect ratio is so demanding, Nicolai's equation results in
very high wing areas, which result in very short takeoff distances. Notice that the trend of
wing area changes at every point where another design variable reaches an upper or
lower bound. This occurs because the takeoff constraint is no longer active for these high
wing arecas.

If the optimum takeoff weight computed for the Raymer and Nicolai equations are
compared, we see that the Raymer equation leads 1o a larger takeoff weight for each
specified cruise Mach number. The interesting feature to note, however, is that the
Raymer optima are steadily diverging from the Nicolai results. At the Mach = 0.6
optimum, the difference between the two results are 2.2%, whereas at M = 0.85, the

difference is 4.8%. This gives rise to the question of the relative validity of the two
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equations within the range of design variables used (Although each design is not absurd.}
Maure to the point, however, is the question of the importance placed on the wing area
and aspect ratio in each wing weight equation, and the direction that the optimization
takes based on this information.

The important differences between Raymer's and Nicolai's equations are the powers
to which the design variables are raised. In the case of the Nicolai equation, the aspect
ratio power is one. Compared with the Raymer equation, where the wing weight is a
function of the square root of the aspect ratio, the penalty for aspect ratio is much more
severe in the Nicolai equation. This explains the behavior of the optimization to
consistently arrive at a much smaller aspect ratio. In the cases where the specified cruise
Mach was beyond 0.75, the aspect ratio was at the lower limit for each optimum. Using
the Raymer formulation, however, gave a set of optimal aspect ratios that weie laiger,
and more in accordance with advanced technology transport designs®  This is a direct
effect of the reduced penalty for aspect ratio in the Raymer equation. Interestingly, for
both wing weight equations, the results followed the same trends, at least to the point
where the aspect ratio for the Nicolai case was limited by the imposed lower bounds.

The optimum results for the wing area can also be explained through the
examination of the penalty imposed for wing area in each formulation. For the Nicolai
equation, the penaity is given by S48, compared to the Raymer penalty of 8,,64%. This
again leads the optimization procedure to results that are less than intuitive for a range of
specified Mach numbers. The penalty for wing area in the case of the Raymer equation
is larger than that for the Nicolai equation. This leads to smaller optimum wing areas,
and, in fact, leads to the sizing of the wing for the takeoff constraint (takeoff distance is
at the limit imposed, or ‘active’). On the other hand, the wing is sized for the cruise (in

the form of a reduced C;) when the wing weight penalty is not as harsh (Nicolai).
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Finally, the tradeoff observed in the results illustrate how the optimization is
fundamentally searching for an increase in span, either through the aspect ratio, or the
wing arca. At low cruise Mach numbers, the high aspect ratios illustrate a limitation
structurally of the design. With the proper constraints imposed through structural
limitations, both designs would be even more realistic as the slower cruise speeds would
become less favorable.

The data presented supports no conclusions to the superiority of any one equation,
and, if anything, it brings out the importance of using analytic technology models within
a proper range of validity when coupled with numeric optimization techniques.

Although each formulation leads to similar figures of merit, the aircraft designs that arise

are drastically different simply as a result of the wing weight equation used.
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9. OPTIMIZATION DEMANDS ON TECHNOLOGY INTEGRATION

9.1 Smoathness

Even though the functions used for the technologies are smooth and analytic, the
methods by which the derivatives for the GSE system are calculated (i.e. finite
difference) must produce very accurate results. Convergence to very tight criteria is
important if the system is going to be 'mass optimized', that is, to produce a set of
optimal solutions over a range of a certain design variable. If each solution is not

optimized to within a very strict tolerance, the plots of each optimum design variable will

not exhibit a smooth pattern.

9.2 [nidal Point Selecion for Range of Optimum

In any optimization procedure, the selection of the initial point is crucial. Two
basic methods were used to implement initial point for the optimizer in this research.
One is to specify the initial point as some fixed point that is used for all Mach numbers.
The observation with this method is that the initial point must be specified such that the
system can be converged to a solution over the entirc range of Mach numbecrs. That is, a
suitable initial point must be selected such that the a takeoff weight can be obtained. As
described previously, the method used is a fixed point iteration sizing scheme. A
'middle-of-the-road’ value must be selected for the initial point when using this method.

The second method of implementing initial point is to use the optimal solution of
the previous Mach number as the initial point into the new Mach niumber. This method
also has the problem as described above, but on a smaller scale. The optimal solution
only needs to be convergent at the next Mach number. Theoretically, this is not difficult

to insure, however, it has not been proven if this can be guaranteed. Another issue with




using this type of initial point selection is that the design could wander into an another
valley of optimal solutions. This illustrates the presence of local optima.

An example of the differences that can arise as a result of initial point
implementation is shown in Figure 14. This figure employs the MeCullers wing weight
equation, and an initial point that is convergent for a2 low Mach number. This means that
the design variables were such that they were close to the solution for a low specified
Mach number. Case 1. specifies the initial point of the current Mach number as the
aptimal solution of the previous Mach number. Case 2. specifies the same initial point
over the entire Mach range.

We observe from the figure that Case 1. leads the optimization into a range of local
minima over the Mach range of 0.70-0.74. The optimization recovers at M=0.76 as it
locates the preper selution. By comparing the plots of wing sweep and airfoil thickness,
we cdn gain insight into the path of the optimization. The most noticeable feature is that
the optimization chose to reduce the transonic drag rise by continuing the reduction of
thickness while maintaining a zero sweep configuration. The sweep was not used to
alleviate the transonic drag rise unti! M=0.76, as compared to Case 2., where the sweep
was employed at M=0.70. The interesting item to note from this figure is the differcnces
in trade-offs the optimization employed for a given initial point method. By keeping the

sweep low, the optimization process lead to a design with a structurally light, yet

acrodynamically inferior wing.
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10. Effect of Objective Function

The importance of the figure of merit within an optimization problem can be
examined by using the methods described in previous sections and taking advantage of
the rapid computational time afforded by the analytic expressions for the vanous
technology modcls.  The results presented thus far have utilized the takeoff gross weight
solely as the objective function. To gain a greater understanding of the designs that
evolve using this figure of merit, it is of interest to consider various alternate objective
functions, such as a specific component weight, or a cruise performance parameter. One
can also parametrically optimize, as done with the cruise Mach number, using a range of
objective functions. The results show the evolution of the design from, for example, a

performance optimized solution, to a structurally optimized solution.

10.1 Parametric Objective Function Formulation

As indicated above, we can define a range of objective functions that can be used in
multiple optimization cases to illustrate the evolution of a design from one figure of
merit to another. This can be accomplished by defining the objective function in the

following manner,

F= KoFobj] +(1 - Ko)Fuij (6"3)

where K is varied from 0 to 1. When K,, = 1, the objective function is given entirely by
the first objective, Fobj1- and when K, = 0, the objective function is entirely Fopj2. When

K, is between 1 and 0, then the overall objective function is given by a combination of

the two.
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10.2 Solutions for Minimizing Fuel Weight and Wing Weight
We select the cruise fuel weight, given by eqn (16), and the wing structural weight,

eqn (15), as the two figures of merit to minimize. The formulation for the objective

function for this case is then given by,

F=K, wWing +(1- Ko )Wruer (64)

As defined earlier, the takeoff constraint of 5000 ft is imposed along with the section lift

coefficient limit. By prescribing the figure of merit in the fashion shown above, the

design can be selectively optimized to minimize the wing weight when K, is 1, the fucl
weight when K, is 0, or any combination of the two when K, is between 1 and 0. The
resulting solutions reflect the shift from a fuel minimized, cruise efficient design, to a
structurally efficient design as K|, is increased from 0 to 1. This tradeoff illustrates the
importance of proper objective function selection and the relative influence of each
component when the total aircraft weight is used as a figure of merit.

Figures 15.1-15.3 show the results of using eqn (64) as the objective function in the
optimization routine. Figure 15.1 shows that there is a penalty in overall gross weight
when either the fuel or wing weight is minimized alone. The minimum gross weight
occurs for a value of K, = 0.2. We see from Figure 15.2 that for the minimum fuel
weight solution the aspect ratio is at the upper limit of 25, and the wing area is slightly
less than 4600 fi2. Notice from Figure 15.3 that the specific range is at its largest value.
As the influcuce of the wing structural weight is increased in the objective function, the

design shifts to a low aspect ratio, low specific range design. We see the optimum cruise

Mach number changes from 0.72 (K, = 0) to just under 0.60 (K, = 1). The wing area
decreases as K, moves from 0.0 to 0.2, then increases to a maximum of just over 5000

ft? at K, = 1. As seen in the previous sections, the decreasing aspect ratio is the result of

63




!‘I

the penalty in the wing weight equation arising from the aspect ratio. For increasing
values of K, th~ influence of fuel weight in the objective function is reduced, and the
resulting designs show a reduction in the specific range as well as the cruise Mach

number.

The relative weightings of both the wing weight and the fu-l weight in the total

takeoff weight formulation are illustrated in the plot of the takeoff weight. We see thal

for K, = 0.2, W, is a minimum. This shows that if W,, were used as the objective

function, as done in the previous sections, the result would be 20% influence of wing

structural weight and 80% fuel weight.
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Figure 15.1 Minimum Fuel / Wing Weight Solutions.
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10.3 Solutions for Maximizing the Range Parameter and Minimizing the Wing Weight

The cruise efficiency of the aircraft can be embodied in the range parameter, given

. "}

P sfe (65)

by

This expression can then be used in the formulation of the multiobjective function as

follows,

F = KO‘WWI:HE +(1 - j“-U )(_Rf)) (66)
where in order to maximize the range parameter, denoted here as Ry, we minimize the

negative of the function. Again, the takeoff and the section lift coefficient constraints are

imposed at the same values used for the case described in section 10.2.

Figures 16.1-16.4 show the results of this objective function and the effect of

increasing the structural influence as K, is varied from 0 to 1. Compared to the

minimum fuel solution, the takeoff weight found in Figure 16.1 is dramatically increased
when the range parameter is the sole objective function (K, = 0). The weights decrease
very quickly for increasing influence of structural weight on the figure of merit,
however. As opposed to minimizing the fuel, maximizing the range parameter results in
the wing area and the aspect ratio being driven to their respective upper bound, as found
in Figure 16.2 With a strong influence of cruise efficiency on the design, the cruise
Mach number, shown in Figure 16.3, is very high compared to a structurally efficient
design. With the high Mach numbers come the large wing sweep angles. The wing
sweep is sharply reduced as the Mach number begins to decline. Interestingly, the Mach

number and wing sweep initially begin to increase for values of K, from 0.0 to 0.06 as

the wing area begins to decrease and the taper ratio is held at its lower limit. We also see
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that the takeoff weight is minimum at K, = 0.4, compared to the minimum fuel solution
where K, was 0.2.

The fuel weight is not at a minimum for the maximum range parameter. The plot

of the specific range, Figure 16.4, which includes the effect of takeoff weight, shows a

maximum where the fuel weight is minimum, K, = 0.2. The specific range is very

L
VCruise {B}

C sfe W, (67)

similar to the range parameter,

however, the specific range considers the effect of altitude, as well as the takeoff weight.
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Figure 16.1 Maximum Range Parameter / Minimum Wing Weight Solutions.
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Figure 16.2 Maximum Range Parameter / Minimum Wing Weight Solutions.
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Figure 16.3 Maximum Range Parameter / Minimum Wing Weight Solutions.
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10.4 Maximizing Productivity
We can define the specific productivity of a given aircraft by the following,

WPayioad “VCruise
WFuel (68)

It is economically advantageous to maximize the productivity of a certain design.

Because the payload weight is fixed for the given analysis, we see that to maximize the
productivity is to minimize the fuelfvelocity ratio. Therefore, with this objective

function, we expect 10 see increased cruise Mach numbers, while maintaining fuel

efficient planforms, i.e. high aspect ratio.

Table 3. shows the results of maximizing the productivity. As expected, the cruise

Mach number is much higher than any of the minimum weights solutions. The penalty
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for the productivity, however, is the large takeoff gross weight, 21% larger than the

minimum W,, solution. The aspect ratio of 20.1 is less than the prescribed upper bound.

This aspect ratio is als.  'ss than that for the minimum W, solution.

Table 5. Results for Maximizing Productivity.

Design Variables
Aspect Ratio |
Wing Area 5,424 fi2
Cruise Altitude 46,621 it
Cruise Mach Number 846
Wing Sweep 40.0 deg.
t/c 0.07
Taper Ratio 14

Weights

Fuel 91,762 b
Wing 164,398 Ib
Engine 30,000 1b
Fixed 149,370 Ib
Climb Fuel 11,949 1h
Cargo 150,000 1b
Takeoff Gross Weight = 5974811b )

10.5 Comparison of Results from Various Objective Funciions

Table 6. shows the results for the different objective functions described above.
We can see the differences o the design variables 1ellect either a Lighly cruise elficien
design, or a structurally efficient design, depending on the figure of merit used. Notice
that for the minimum wing weight solution, the fuel weight is more than double that of
the minimum fuel solution. This shows the large aerodynamic penalty incurred for the

lower aspect ratio designs. Also, the cruise altitude is much lower for the minimum wing
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weight solution than the other results. This is due to the low aspect ratio / high wing area
design. Finally, as a result of the weight penalty for thin airfoils, we see the airfoil
thickness is much larger for the minimum wing weight solution than for the other

designs.

Table 6. Comparison of Results from Various Objective Functions

Minimum Minimum Minimum Maximum Max.Range

Gross Weight  Fuel Weight  Wing Weight  Productivity Parameter

Diesign Variables

Aspect Ratio 22.6 250 6.2 20.1 20.0
Wing Area (f1) 3,958 4,539 5,072 5,424 7.500
Altitude (ft) 35,983 44,107 22,964 46,621 40,000
Mach Number 0.607 0.725 (0.588 846 0.796
Wing Sweep (deg.) 1.0 26.9 1.0 10.0 205
e 0.18 0.09 0.24 0.07 0.05
Taper Ratio 0.28 0.28 0.10 0.14 0.10
Weights

Fuel (1b) 96,614 84,649 187,779 91,762 116,860
Wing (1b) 64,512 117,630 39,518 164,398 237,570
Engine (1b) 30,000 30,000 30,000 30,000 30,000
Fixed (1b) 116,824 130,937 139,485 149,370 153,024
Climb Fuel (1b) 9,345 10,473 11,158 11,949 14,641
Cargo (Ib) 150,000 150,000 156,000 150,000 150,000
Gross Weight (1b) 467,298 523,671 557,942 597 481 732,097

Figure 17. shows the breakdown of component weights for several of the objective
functions described above. We see that most of the additinnal weight for the maximum
productivity solution comes from the wing structural weight. Because each design
shown in Figure 17. is a high aspect ratio solution, the increased structural weight of the

maximum productivity solution is due to the additional wing sweep necessary for the
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transonic cruise Mach number. Also, the minimum gross weight solution leads to the

lowest wing structural weight. Again, this is in direct relation to the cruise flight

conditions because the minimum gross weight solution has the lowest cruise Mach

number.
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Figure 17. Component Weight Breakdown for Several Objective Functions.
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11. REMARKS AND CONCLUSIONS

The approach to multidisciplinary optimization proposed here for use at the
conceptual/preliminary design level provides the designer with a wealth of information
with a minimal investment in time. The following is a summary of the lessons learned

and resulting recommendations for use of this approach.

Optimization :
* Smooth analytic models work best with optimization.
* Precise gradient information (numerically accurate tolerances) required.

* Sensitivity to model accuracy: optimization exploits the peculiarities of any model.

Problem formulation;

* Independent variables are sometimes hard to identify. Analytic models provide a fast
way to examine the formulation and results from the problem formulation. TOGW

was made a separate discipline as a result of the problem analysis at this stage.

Value of Parameirics Optimized Solutions:

+ Integrity of Results: without parametric studies, erroneous optimization solutions
(local minima, uncertainty due to inaccurate gradients) are very hard to identify.

This has been the reason that optimization hasn't been used by designers in the past.
Using analytic models:

* The benefits of the analytic modelling is the multitudes of optimized results that can

be created cheaply. At present, for a range of a certain parameter, a set of twenty
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optimized solutions can be run in approximately 4.6 cpu minutes on the 1BM 3090
system.
= It's easy to identify explicitly the role of individual design variables and constraints.
* Regarding the wing weight equation, by making the jump from a simple one line
cquation to ... cntire set of routines tr it integrate a given pressure loading and
solves for bending moment factors, the concept of Variable Complexiny was

demonstrated.

G lobal Sensitivity equations.

* Gradient information is controlled by the user, and provided to the optimizer.

= Explicit sensitivities are available for examination at each step.

Furthermore, the GSE method is desirable because it gives the same results as a
finite difference based derivative scheme for less computations based on several key
problem dependent issues:

i.) The number of subsystems

ii.) The number of design variables

tii.)The accuracy to which the entire system is converged
iv.) The complexity of the subsystems

v.) The size, density, and method of inverting the GSE matrix

vi.) The finite difference method used (central vs. forward)

The system can be setup to replace analytic models with more exact analytic or

numerical models. This was done in the case of the wing weight model. It is recommend

74

| e e s sl sees el NS EER.__BEE NN BN NE BN A =N Sy =S BB =




that this approach always be used with analytic models before using more exact

numerical analysis.

+ Information flow is defined exactly. Valuable insights into both the problem

formulation and the behavior of the solution are available in days rather than weeks

using this approach.

* This approach can provide a starting point for the optimization using more detailed

calculation procedures.

The approach described here provides a means of bridging the gap between
formalized optimization methodelogy and aircraft sizing programs which aie currently in
use. In conclusion, this new method is a simple way of gaining greater insight into the

problem of aircraft design and initial sizing.
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APPENDIX. CODE DESCRIPTION

The computer code was designed in an organized fashion that followed the
contributing analysis thinking. An automated ‘black box' procedure was established that
made computing the local derivatives and the global sensitivity matrix straightforward.
By setting up the problem in a black box fashion, every discipline was an independent
routine that modeled, what might be on a larger scale, an entirely separate analysis
program. The flow of data between these routines was controlled such that the inputs of
any one discipline were strictly a function of the outputs of the other disciplines.
Communication between each discipline was uone entirely through t:+se Y vectors.

The code has the ability to run many various cases ranging from a simple one-pass
converged weight solution, to an entire range of optimal solutions for a specified set of
Mach numbers. The subroutine FUNCHEK is controlled by the integer ID1 and can
perform many intermediate calculations at various steps in the optimization process.
Parametrics can be run on any two design variables for contour plots, the objective
function can be monitored as any onc, or all of the design variables are run within a
specified range, as well as cruise specific information in the form of specific range
calculations. (Subroutine SRANGE)

The optimization flags supported include all the settings for NLPQLD (IPRINT) as
well as derivative specific flags for monitoring the gradients of the constraints and
objective functions at each iteration. Also supported is a flag. FHIST, for convergence
histories for all the design variables as well as the objective function and constraints.

There are 6 source files that contain al! the code and an input file.

NQCON.f This is the controlling subroutine, all initialization and

optimization calls are done here.
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BBOXI1.f

BBOXZ2.f

NQP.f

QLD.f

LINSOL.f

BBOX.inp

All of the subsystem coupling routines are found in this
routine. GSE matrix and local dervatives. The giobal

sensitivities are also computed in this routine.

This file contains all the technology model subroutines
including the routine for takeoff, landing, and the standard
atmosphere. Routines for converging the aircraft to a certain
mission weight using fixed point iteration is also included in
this file.

This file contains all of thc nonlincar sequential quadratic
programming routines except for the actual quadratic

programming algorithm.
K. Shittkowski's quadratic programming algorithm

Linear system solver used to solve the GSF matrix.

Input file
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INPUT DESCRIPTION FOR OPTIMIZATION DESIGN CODE

Input for the code is supplied in the file BOX.inp. The inputs found in this file are

described in this section.

JOPTIM
IOPTIM =0 N2OPTIMIZATION
=1 OPTIMIZE SPECIFIED CONFIGURATION

ID1
CONTROLS SUBROUTINE FUNCHEK
D1 =1 ONE PASS THROUGH (CONVERGE A/C AND OBTAIN
GLOBAL DERIVATIVES
=2 CONTOUR PLOT DATA (SPECIFY 2 DESIGN VARIABLES)
-3 L/DVS. CLDATA _
=4 PARAMETRICS OF EACH DESIGN VARIABLE
=5 ZERO LIFT DRAG BREAKDOWN
=6 ADDITIONAL RESULTS OF OPTIMA FOR RANGE OF M
=7 SIMILAR TO ID1=4 EXCEPT NO DERIVS
ISR
USED FOR SPECIFIC RANGE CALCULATIONS
ISR =0 NO SR OUTPUT
=1 SPECIFIC RANGE OUTPUT
IPRT
LISED FOR BLACK BOX NDERIVATIVE OUTPUT
IPRT =0 NOOUTPUT
=1 OUTPUT
IDERIV

USED FOR OPTIMIZATION GRADIENT DERIVATIVE METHOD
IDERIV =0 FINITE DIFFERENCE DERIVATIVES
=1 GSE DERIVATIVES

IHIST
USED FOR CONVERGENCE HISTORY OF DV'S AND OBJ
[HIST =0 OFF

=1 ON
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IWTEQN
USED FOR WING WEIGHT EQUATION
ITWTEQN =1 NICOLAI

-2 RAYMER

=3 MCCULLERS

Furthermore, inputs are required to describe the range of Mach numbers and the

initial point to be used in the optimization procedure. These are defined as follows:

NJ
THE NUMBER OF MACH NUMBERS TO BE OPTIMIZED

MBEGIN
STARTING MACH NUMBER FOR MACH RANGE

MSTEP
MACH STEP USED IN RANGE

AR
ASPECT RATIC

Sw
WING AREA

H
CRUISE ALTITUDE

SWEEP
WING SWEEP

T/C
THICKNESS TO CHORD RATIO

TAPER
WING TAPER RATIO
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The following is a sample input file that computes the zero-iift drag (ID1=5):

IOPTIM
IPRINT
IFUNCK
IFLD
ISR
Ipl
IPRT
IDERIV
IHIST
IPTDET
IWTEQN
NJ
MBEGIN
MSTEP

T VO O 1 I 1 I

CoOOROORHOUVMOOrOO

—————— et — T ———

AR = 7.0
SW = 3800.0
H = 32000.0
Sweep = 21.3
T/C = 0.10
Tapaer = 0.30
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