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Abstract

A variable�complexity response surface methodology has been applied to
the multidisciplinary design of a High Speed Civil Transport �HSCT�� The term
variable�complexity refers to a design procedure in which re�ned� computation�
ally expensive analysis techniques are combined with simple� computationally
inexpensive techniques� We have used the simple analysis methods to de�ne a
subregion of the design space in which an optimal HSCT design is likely to ex�
ist� The re�ned analysis methods were then used to construct smooth response
surface models of various aerodynamic and structural weight quantities� Aero�
dynamic response surface models were constructed for volumetric wave drag and
supersonic drag due to lift based on an example problem involving four HSCT
wing design variables� Optimization was then performed for the complete HSCT
con�guration using the aerodynamic response surface models� Preliminary re�
search on the development of a structural response surface model for the wing
bending material weight is also described� In addition to the results for the
variable�complexity response surface modeling and optimization� performance
data are presented for a coarse grained parallelization of the aerodynamic and
structural analyses�

� Introduction

The use of multidisciplinary optimization techniques in aerospace vehicle design often is

limited because of the signi�cant computational expense incurred in the analysis of the

vehicle and its many systems� In response to this di�culty� a variable�complexity model�

ing approach� involving the use of re�ned and computationally expensive models together

with simple and computationally inexpensive models has been developed� This variable�

complexity technique has been previously applied to the combined aerodynamic�structural

optimization of subsonic transport aircraft wings ��	
 and the aerodynamic�structural op�

timization of the High Speed Civil Transport �HSCT� ��
� ���
�

In related research conducted by members of the Multidisciplinary Analysis and Design

�MAD� Center for Advanced Vehicles at Virginia Tech� several improved HSCT designs have
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been obtained using these multidisciplinary design optimization tools� However� these ef�

forts were hindered by convergence di�culties which were encountered in the aerodynamic


structural optimization of the HSCT ���
� The convergence problems were traced to numer�

ical noise which inhibited the use of gradient�based optimization techniques� To address

this problem� a two variable example problem was investigated in which response surface

models were used to produce smooth approximations for drag due to lift� a quantity af�

fected by numerical noise ���
� This example problem was used to determine the feasibility

of using response surface methodology in conjunction with our existing multidisciplinary

analysis tools� Such applications of response surface methods to vehicle design were proven

successful by other investigators� see ���
 and ���
�
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Figure �� General �ow chart for HSCT design�

This study focuses on applying a variable�complexity response surface approximation

strategy to HSCT design optimization� The simple analysis methods are used to de�ne a

subregion of the design space� i�e�� the approximation domain� in which an optimal HSCT

design is likely to exist� The re�ned analysis methods are then used to construct smooth

response surface models of various aerodynamic and structural weight quantities which are

susceptible to numerical noise� Aerodynamic response surface models were constructed for

volumetric wave drag and supersonic drag due to lift for an example wing design problem

involving four of the twenty�eight HSCT design variables� A structural response surface

model was also investigated for the wing bending material weight factor for a problem

involving twenty��ve of the HSCT design variables�

The objective of the optimization procedure is to minimize the gross takeo� weight

of the vehicle subject to numerous geometric� aerodynamic and performance constraints�

Additional constraints limit the scope of the design space to the region over which the
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response surface models are valid� Currently� the aerodynamic response surface models have

been incorporated into the optimization strategy� However� we have not yet implemented

the structural response surface models into this framework� A �ow chart illustrating the

HSCT design process is given in Figure ��

� Variable�Complexity Modeling

We have termed �variable�complexity modeling� the design process by which simple� com�

putationally inexpensive analysis techniques are used together with more detailed� expen�

sive techniques� Originally� this methodology was developed for gradient�based optimization

in which the overall design process was composed of a sequence of optimization cycles� With

this method� the detailed analyses were employed at the beginning of each optimization

cycle while the simple analyses� scaled to match the initial detailed results� were performed

in subsequent calculations during each cycle ��
� ���
� A typical HSCT design optimization

requires approximately twenty cycles until an optimal HSCT con�guration is identi�ed�

The optimizer NEWSUMT�A ���
� which employs an extended interior penalty function

method� is used for this sequential approximate optimization process�

In the present work� this variable�complexity modeling approach is adapted for use with

response surface approximation techniques� Here� the simple analysis methods are used to

evaluate thousands of di�erent HSCT con�gurations within a prescribed design space� By

applying constraints to the design variables and to the objective function data� �nonsense�

regions of the design space are excluded� The valid design space is characterized by an

irregularly shaped region which contains the optimal HSCT con�guration�

Using a large number of points which span the valid� but irregularly shaped� design

space� a small number of points� on the order of �fty to one hundred� are then selected for

more detailed analyses� Using the results from these detailed analyses� response surface

approximations can be created to model various factors which a�ect the HSCT design�

For example� drag component data from the detailed analyses can be used to create a

polynomial response surface model for the variation in drag� In the �nal step of this

process� the response surface models are implemented in the HSCT analysis software� and

con�guration optimization is carried out� This optimization uses constraints based on both

the simple and detailed analyses� along with constraints which limit the design variables to

values for which the response surface model is accurate�

� Response Surface Methods

��� Polynomial Modeling

Response surface methodology �RSM� is a statistical technique in which smooth func�

tions� typically polynomials� are used to model an objective function� For example� a

quadratic response surface model for p design variables has the form�

��� y � co �
X

��i�p

cixi �
X

��i�j�p

cijxixj � ��

where the xi are the design variables� the ci are the polynomial coe�cients� y is the measured

response� and � is a random error term� In such a model the polynomial coe�cients may

be estimated using the method of least squares�

The construction of a response surface requires a minimum of n function evaluations

where n is the number of coe�cients in the polynomial� Results from ���
 con�rmed that
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typically ���n function analyses were required to produce response surfaces which accurately

approximated the global trends of the objective function data�

An example of the use of response surface modeling techniques is provided in ���
 where

supersonic drag due to lift of an HSCT wing was calculated for various inboard leading�edge

and inboard trailing�edge sweep angles� Here� drag due to lift is calculated as

CDlift �

�
�

CL�

� kt
CT

CL
�

�
CL

�� ���

where CL� is the lift curve slope� CT �CL
� is the leading�edge thrust term� and kt is an

attainable leading�edge thrust factor� Numerical noise in the evaluation of drag due to lift

�Fig� �� may be attributed to noise in the lift curve slope and leading�edge thrust terms� The

methods of Carlson et al� ��
� �	
� ��
 utilize a paneling scheme that is sensitive to planform

changes� Thus� slight modi�cations to the leading and trailing�edge sweep angles� along

with changes in the location where the Mach angle intersects the leading�edge� produce

discontinuous variations in the predicted drag� Although the variations are small enough

so that at all points the accuracy of the drag is acceptable� the oscillatory behavior creates

di�culties for gradient�based optimization techniques� Nonsmooth behavior of an objective

function was also encountered in a nozzle design problem ���
 in which an Euler �ow solver

was employed indicating noisy or nonsmooth behavior is not solely related to the use of

panel methods�
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Figure �� Noisy drag due to lift�
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Figure �� Quadratic polynomial response

surface �t to the noisy drag

due to lift data�

Figure � demonstrates the use of a quadratic polynomial response surface to approxi�

mate the noisy drag due to lift in Figure �� The global minimum on the exact� noisy surface

occurs for a leading�edge sweep angle of ���	� and a trailing�edge sweep angle of �������
As shown in Figure �� the quadratic response surface provides a reasonable estimation for

the location of the global minimum�
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��� D�optimal Point Selection

RSM typically employs a structured method such as central composite design �CCD� for

selecting analysis points in the design space ���
� However� CCD is meant for use with

regularly shaped design spaces and not the irregularly shaped design spaces that will arise

in this design problem� Further� CCD is not a practical point selection method for design

problems with a large number of variables� In a previous study ���
� it was found that the

D�optimal criterion ��
 provided a rational means for choosing any number of points within

an irregularly shaped design space�

The D�optimal criterion arises from the linear model Y � Xc� where Y is an m by

� vector of objective function values� c is a k by � vector of coe�cients to be estimated�

and X is an m by k matrix of constants having rank k� The rows of the matrix X are the

response surface basis functions evaluated at the design points� For this system� the least

squares estimate of c is �c � �XTX���XTY� The goal is to �nd the m points from a set of

l � m candidate points existing in the design space that will yield the best �delity between

the polynomial model and the actual objective function� The D�optimality criterion states

that the m points to choose are those which maximize the determinant jXTXj� Several
relevant properties of this criterion are�

�� the set of points that maximizes jXTXj is also the set of points that minimizes the
maximum variance of any predicted value of the objective function�

�� the set of points that maximizes jXTXj is also the set of points that minimizes the
variance of the parameter estimates�

�� the design obtained is invariant to changes in scale�

There are
�
l

m

�
� l���m��l�m��� combinations of m points from the set of l candidate

points which is often a very large number� For example� a small problem in two design

variables may be to pick twenty��ve points from ��� possible points �discretizing the design

domain into ten sections in both directions leads to an ��� �� mesh�� This leads to a total
of ���	 � ���� possible combinations� one or more of which are D�optimal� Because pf the
large number of combinations� a genetic algorithm was developed to e�ciently �nd a set of

D�optimal points� In addition� the genetic algorithm allows D�optimal point selection for

a design space of arbitrary shape�

��� Regression Analysis and ANOVA

When using RSM the designer often encounters what has been termed the �curse of dimen�

sionality� in which the number of analysis points needed to construct a response surface

model greatly increases as the number of design variables becomes large� For this reason�

it would be advantageous if less signi�cant terms in the response surface model could be

eliminated�

Fortunately� there is a statistical technique� analysis of variance �ANOVA�� which en�

ables the less signi�cant terms in the polynomial approximation to be identi�ed� ANOVA in�

volves estimating the variance of the predicted polynomial coe�cients and uses the variance�

covariance matrix �XTX���� The diagonal terms in this square matrix� �i
�� multiplied by

Var���� the variance in the objective function values Yi� are the variances of the respective

coe�cients� ci� in the response surface polynomial model� The coe�cient of variation� V�

for each term in the polynomial is calculated as

��� V �

�
���j�ij

p
Var���

ci
� ci �� ��

���� ci � ��
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where the factor of ��� expresses the coe�cient of variation as a percentage� The term

Var��� is usually estimated by the RMS error of the least squares approximation at the m

data points� A common approximation for this term is�

��� Var ��� � ERMS
�m��m� n��

where m is the number of points used in the least squares method� n is the number of terms

in the model equation� and ERMS is the RMS error calculated using the di�erence between

the response of the model equation and the data used for the least squares problem�

� HSCT Design Problem

Successful aircraft con�guration optimization requires a simple� yet meaningful mathemat�

ical characterization of the geometry� We have developed a model that completely de�nes

the HSCT design problem using twenty�eight design variables� Twenty��ve of the design

variables describe the geometry of the aircraft and can be divided into �ve categories� wing

planform� airfoil shape� tail areas� nacelle placement� and fuselage shape� The wing plan�

form is described using the root and tip chord lengths� the wing span� and by blending

linear line segments at the leading and trailing edges� The wing planform geometry is

depicted in Figure �� The airfoil sections have round leading edges and are de�ned using

an analytic description incorporating the following four design variables� the location of

maximum thickness�to�chord �t�c� ratio for all airfoil sections� and the t�c ratios at the
root chord� leading�edge break� and tip chord�

The horizontal and vertical tail areas are described by two variables� The nacelles

are �xed along the trailing�edge of the wing with a twenty��ve percent overhang� and two

variables de�ne their spanwise locations� The axisymmetric fuselage requires eight variables

to specify both the axial positions and radii of the four fuselage restraint locations� Details

of the geometry speci�cation appear in References ���
 and ���
 and the design variables

are listed in Table ��

(x2, x3)
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Figure �� Planform variable de�nition for the HSCT wing�
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Table �� HSCT design variables and baseline values�

Num� Value Description Num� Value Description

� ������ Wing root chord� �ft� �� ���� Fuselage restraint �� r �ft�

� ����	 LE break point� x �ft� �� ����� Fuselage restraint �� x �ft�


 �	�� LE break point� y �ft� �� 
��� Fuselage restraint �� r �ft�

� ����� TE break point� x �ft� �� �
���� Fuselage restraint 
� x �ft�

� ���� TE break point� y �ft� �	 ��
� Fuselage restraint 
� r �ft�

� ��	�� LE wing tip� x �ft� �� ������ Fuselage restraint �� x �ft�

� ���� Wing tip chord� �ft� �� ���� Fuselage restraint �� r �ft�

� ���	 Wing semi�span� �ft� �� ����
 Nacelle �� y �ft�

	 ���� Chordwise max� t�c location �
 
��
	 Nacelle �� y �ft�

�� 
��	 LE radius parameter �� 
������ Mission fuel� �lbs�

�� ���� Airfoil t
c at root� ��� �� ����	� Starting cruise altitude� �ft�

�� ���� Airfoil t
c at LE break� ��� �� 

�	� Cruise climb rate� �ft�min�

�
 ���� Airfoil t
c at tip� ��� �� �	��	 Vertical tail area� �ft��

�� ���� Fuselage restraint �� x �ft� �� ��
�� Horizontal tail area� �ft��

The design problem is to minimize the takeo� gross weight of an HSCT con�guration
with a range of ����� nautical miles and a cruise speed of Mach ��� while transporting
��� passengers� For this mission� in addition to the geometric parameters� three variables

de�ne the idealize cruise mission �Table ��� One variable is the mission fuel and the other
two are initial cruise altitude and the constant climb rate used in the range calculation�
In this study� a baseline HSCT is used for comparison purposes and to provide a rough

approximation to the center of the feasible design space� The baseline geometry is from an
optimal HSCT con�guration previously investigated by members of our research group at
Virginia Tech �Table �� ��
�

Table �� Constraints on the HSCT design�

Num� Geometric Constraint Num� Aero� � Perform� Constraint

� Fuel volume � ��� wing volume 
� Range � ����� nmi

� Spike prevention 
� CL at landing speed � �


��� Wing chord � ��� ft 
���� Section Cl at landing speed � �

�� LE break � semi span �� Landing angle of attack � ����

�� TE break � semi span ����� Engine scrape at landing

�
 Inboard TE sweep � � deg �� Wing tip scrape at landing

�� Root chord t
c � ���� �� Rudder de�ection � �����

�� LE break chord t�c � ���� �
 Bank Angle � ��

�� Tip chord t�c � ���� �� Tail de�ect� for approach � �����

���
� Fuselage restraints� x� in order �� Takeo� rotation to occur � Vmin


� Nacelle � outboard of fuselage �� Engine�out limit with vertical tail



 Nacelle � inboard of nacelle �


� Nacelle � inboard of semi�span

Sixty�six constraints which include geometry� performance� and aerodynamic con�
straints are included in the optimization ��
� The aerodynamic and performance constraints
can only be assessed after a complete analysis of the HSCT design� however� the geomet�

ric constraints can be evaluated using algebraic relations based on the twenty�eight design
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variables� For this reason� they o�er an e�cient means of narrowing the feasible design

space� The geometric� performance and aerodynamic constraints are listed in Table ��

� Four Design Variable Aerodynamic Design of the HSCT Wing

The detailed aerodynamic analyses use the Harris program for the supersonic volumetric

wave drag ���
� a Carlson Mach�box type method for supersonic drag�due�to�lift �	
� ��
�

and a vortex�lattice program for landing performance� As part of our variable�complexity

modeling approach we also employ simple aerodynamic analysis methods which are typically

algebraic relations� and which require at least an order of magnitude less computational

time than the associated detailed analysis methods� Details of each calculation are given

in ���
� Compared to modern computational �uid dynamics tools� the detailed and simple

analysis models used in this study are relatively inexpensive� However� the computational

expense of using these methods quickly becomes substantial when they are employed in

design optimization where the same calculation may be repeated thousands of times�

��� Wing Design Variables

To develop and test the variable�complexity response surface optimization strategy we

decided to construct an example problem involving only a few variables� For this reason� a

four variable wing design problem was chosen� Here� two of the original planform variables�

root chord and tip chord� were selected along with two new design variables �Fig� ��� The

�rst new design variable was the inboard leading�edge sweep angle which was calculated

from the original planform variables x� and x�� The second new variable is a constant

scaling factor� �� by which the three t�c ratios from the HSCT baseline were modi�ed�

For example� �t�c�root�new � ��t�c�root�baseline� �t�c�break�new � ��t�c�break�baseline� and

�t�c�tip�new � ��t�c�tip�baseline� for ��� � � � ���� Thus� this new variable� �� replaces

the three t�c ratio design variables used in the original HSCT wing parameterization� In

addition to the new variable de�nitions� planform variables x� and x� were eliminated so

that the trailing edge of the wing was straight� Further� in this simpli�ed model the span

was held �xed�

Variations in the root chord have a signi�cant e�ect on both the structural weight of

the wing and on the volume available within the wing for fuel storage� These characteristics

directly in�uence the gross weight of the HSCT� Perturbations in the leading�edge sweep

and the t�c scaling factor primarily a�ect supersonic drag due to lift and the volumetric

wave drag� Thus� the range and gross weight of the HSCT are a�ected through variations

in the drag components�
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Λle inboard

Ctip

Croot

thickness/chord scale
factor on entire wing
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3.
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Figure �� Wing design variable de�nition for the four variable problem�

The tip chord variable was selected speci�cally because it has only a minor impact

on the weight and performance of the HSCT� For this reason� it was expected that the

regression analysis and analysis of variance techniques would identify as negligible some of

the response surface terms involving tip chord� This was con�rmed by the analysis results

and is discussed below� Note that although the tip chord is a relatively unimportant design

variable for this example problem and the analysis methods used� the aerodynamics of the

wing tip region can strongly in�uence the design of a particular aircraft� Therefore� the tip

chord is not a design variable that can be ignored�

The design space for this four variable problem was determined by allowing the root

chord and tip chord to vary ��� percent from the values on the baseline HSCT� The t�c
scaling factor also varied ��� percent from a nominal value of unity� The leading�edge
sweep was allowed to range only �� percent from its baseline value� Variations in the

sweep angle outside of this range produced con�gurations which were not realistic�

��� Design Space Reduction

The �rst stage in the variable�complexity response surface modeling process was to evaluate

numerous HSCT designs using simple algebraic analysis methods� This was performed by

discretizing the design space using a 	 � 	 � 	 � 	 uniform coarse grid� i�e�� each design
variable had six discrete values� The ����	 �	�� con�gurations de�ned by the combinations

of the design variable values were then analyzed� At the center of the design space was the

baseline HSCT con�guration�

Using the constraint data obtained for each of the ����	 HSCT designs� obvious �non�

sense� con�gurations were eliminated from consideration� Here� designs were excluded if

any of the aerodynamic�performance constraints �e�g�� landing angle�of�attack � ���� were
violated by more than twenty percent� and if any geometric constraints �e�g�� minimum

airfoil chord lengths � � ft�� were violated by more than �ve percent� In addition� gross
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takeo� weight �GTOW� was allowed to vary within ��� percent of the baseline GTOW of
approximately 	������ lbs� and range was required to be greater than ����� n�mi� Both of
these constraints were imposed to remove from consideration any unrealistic designs which
had not been eliminated previously� After applying these constraints� only ��� acceptable
HSCT designs remained out of the initial ����	 designs�

��� Regression Analysis and ANOVA

Since range is directly a�ected by numerical noise in the supersonic drag due to lift and
volumetric wave drag calculations� a response surface model for range was used to determine
the reduced�term polynomial model for the D�optimal point selection and for later use in
modeling the drag components� An alternative approach� and one that will be considered
in our future work� would have been to apply regression analysis and ANOVA separately
to response surface models for each of the drag components�
With the data from the ��� simple HSCT analyses a �fteen term polynomial response

surface model was �t to the aircraft range data� Using the regression analysis and ANOVA
methods described above� the coe�cients of variation for the �fteen terms in the response
surface model were calculated �Table ��� Here� the abbreviations �� cr� ct� and �LE cor�
respond to the t�c scaling factor �� root chord� tip chord� and leading�edge sweep angle�
respectively� As shown� the higher order terms involving ct have coe�cients of variation
greater than ten percent and can safely be dropped from the response surface model� Thus�
the number of terms in the response surface model was reduced to eleven and the modeling
of the tip chord variable was simpli�ed from quadratic to linear�

Table 
� Regression analysis and ANOVA data for the range response surface model�

Variable Coe�� Std� Dev V Variable Coe�� Std� Dev V

const� ����� ���	� 
���� � ������ ����� �����

cr ������ ����� ��
�� ct ������ ���

 ����


�LE ����� ����� ��
�� �cr ������ ����� ���
�

�ct ����	 ��
�� ������ ��LE ����� ����� ��		�

crct ������ ���	� ������ cr�LE ����� ����� 	�	��

ct�LE ������ ��
�� ���	�� �� ����	� ����
 �����

cr� ������ ��
�� ��
		 ct� ������ ���
� �����


�LE
� ������ ����� �����

The accuracy of the response surface �t is only slightly impaired after removing terms
from the polynomial model for which the coe�cient of variation was large� With all �fteen
terms in the polynomial� the average error �in nautical miles� was ������ the RMS error was
����� and the maximum error was ������ Removing four terms from the original polynomial
brought the average error to ������ the RMS error to ����� and the maximum error to ���	��
Here� the errors are calculated from the di�erence between the response surface prediction
for the range and the actual value for the range at each of the ��� remaining HSCT design
points�
From the ��� HSCT designs� �fty were selected on the basis of the D�optimal criterion�

The performance and constraint criteria for each of these were then evaluated using the
detailed aerodynamic analysis models�
Using the same eleven term polynomial model found for range� new response surface

models were constructed for the wave drag� the lift curve slope� and the leading�edge thrust
term� These three response surface models were then used in the range calculation subrou�
tine in place of the original noisy calculations of the drag components�
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��� Optimization Techniques

As described above� the optimization for the variable complexity response surface approx�

imation method uses constraints based on both the simple and detailed analysis models�

For the example problem� this is accomplished by using two constraints on the calculated

range�

The approximate constraint uses the original range calculation� i�e�� range calculated

from the simple analysis of drag components� which must be greater than ����� n�mi� This

is the same constraint used to remove unrealistic design points after the initial ����	 HSCT

analyses�

The new range constraint employs the smooth response surface models for the three

drag components� This constraint stipulates that the range must be greater than �����

n�mi� The complication is that the range based on the response surface models is accurate

only for certain regions of the design space de�ned by the allowable design variable values�

One may picture the response surface models as being valid on a four�dimensional spheroid

inscribed within a four�dimensional hypercube� where the vertices of the hypercube are

de�ned by the allowable limits on the design variables� Without the approximate range

constraint � ����� n�mi�� the optimizer invariably moves to a vertex of the hypercube

outside of the spheroid on which the response surface models are valid�

At �rst this seems counterproductive since two constraints are now used for range

whereas only one su�ced before� However� this arrangement circumvents the problems

created by numerical noise in the original range constraint evaluation� The use of both

approximate and response surface based range constraints is successful because the simple�

noisy range constraint is not active for much of the optimization� It serves only to keep the

optimizer from moving to a region of the design space where the response surface model

is inaccurate� In contrast� the response surface based smooth range constraint is nearly

always active but it is not a�ected by numerical noise�

Due to improvements and corrections in various elements of our HSCT analysis software�

the previously feasible baseline HSCT con�guration� was found to slightly violate several

constraints� In particular� these violated constraints pertained to takeo� and landing condi�

tions regarding wing tip�runway scrape� engine�runway scrape� and landing angle�of�attack�

Since span was not a design variable in this example problem� some of these constraints

would have remained violated for all combinations of the four design variables� Therefore�

to complete this investigation� the constraints in violation were removed� and the landing

angle�of�attack constraint was relaxed from ��� to ����With the HSCT baseline con�gura�

tion now providing a feasible starting point� optimization cases both with and without the

response surface models for drag were conducted�

��� Optimization Results

With the range constraint based on the response surface models for volumetric wave drag

and the two components of supersonic drag due to lift� the NEWSUMT�A optimizer was

used to determine the optimal combination of wing design variables to yield minimum gross

weight while satisfying all constraints� The results of the optimization are shown in Table

� in which the design variables and performance are compared for the initial and optimal

HSCT con�gurations� Figure 	 shows the di�erence between the baseline HSCT planform

from which the optimization was started and the optimal planform� The planform changes
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for the optimal wing design are most noticeable in the length of the root chord and in the

leading�edge sweep angle� However� these di�erences are relatively modest�

Table �� HSCT performance data for the initial and optimal HSCT designs�

Initial Optimal Initial Optimal

root chord ����� ft� ����� ft� Wing Weight ������� lbs� ��
���
 lbs�

tip chord ��� ft� ��� ft� Fuel Weight 
������ lbs� 
������ lbs�

LE sweep ������ ������ GTOW ��
�
	
 lbs� ������� lbs�

t
c scale ���� ��	� Fuel
Gross ���		  �����  

Exact Range ����� n�mi� ����� n�mi� CDwave ������ ������

R�S� Range ����� n�mi� ����	 n�mi� Total Drag �����
 ������

Landing AOA ������ ���

�

The thinner wing results in a lower wave drag coe�cient and thus a lower total drag
coe�cient� This improvement in aerodynamic e�ciency permits the elimination of ������

lbs� of unneeded fuel� Additional weight savings occur because the optimal wing is smaller�

Speci�cally� the wing area has decreased by ��� percent� Although the optimal wing is

thinner� and therefore requires a heavier structure� the weight penalty is o�set by the

decrease in wing size� Thus� the optimal wing design results in a combined weight reduction

of approximately ������ lbs�� which is a ��� percent decrease in GTOW�

For comparison� the optimization of the four variable design problem was repeated�
but without using the response surface models for the drag components� In this case the

sequential approximate optimization strategy was applied� The result of this optimization

yielded a nearly identical optimal design as was obtained using the optimization with the

response surface models� Di�erences in the optimal design variables and in the analysis

results were negligible�

0.0 50.0 100.0 150.0 200.0
-200.0

-150.0

-100.0
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Baseline HSCT Planform

Optimal HSCT Planform

Figure 	� Baseline vs� optimal HSCT planforms�

In this case� the optimizer also found the minimum design after one sequential approxi�

mate optimization cycle� However� this was not unexpected since the baseline HSCT design

was very close to an optimal design� In general� the optimal design will not be near the ini�

tial HSCT design and experience has shown that the sequential approximate optimization
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strategy will require approximately twenty global optimization cycles until convergence is

reached�

	 Wing Structural Weight Estimation

Gross takeo� weight is minimized during the HSCT con�guration optimization process�

Therefore� weight calculations are numerous and the �nal HSCT design is highly dependent

on the accuracy of these results� To ease the computational expense of the design process�

we have implemented the statistical weight equation in the weight module of Flight Op�

timization System �FLOPS� ���
� FLOPS is used to determine take�o� gross weight and�

more specially� to �nd the e�ect of planform geometry changes on structural weight� How�

ever� since the HSCT is a new aircraft� the weight equation does not account for all features

of the design�

Because of the limitations within FLOPS� we have looked to improve upon the accuracy

of the structural weight predictions� In particular� we have focused on the wing bending

material weight since most of the load�dependent wing weight is due to bending�

	�� The Weight Equation

The general wing weight equation in FLOPS is based on an analytic expression to relate

wing bending material weight to wing geometry� material properties and loading� Other

terms are added to account for shear material� control surfaces� etc� In addition� constants

are included to correlate with a wide range of existing transports and re�ect features such

as composite materials� strut braced wings� etc� The wing weight� Ww� used within FLOPS

is given as

��� Ww �
WgKeWb �Ws �Wn

� �Wb

�

where
Ws � ��	� ��� ����fc� �S � Sb�

����
W ��	

g �

Wn � ���� ��� ���fc�S����

Wb � Kfulb ��� ���fc� ��� ���fa� �

K � ���Bz

�
� � �	����b����

�
� ���	�

Ke � ���� �Bze�Be� �Wpod�Wg� �

and Wg is the gross take�o� weight �lbs��Wb is the wing bending material weight �lbs��Ws

is the wing shear material and �aps weight �lbs�� Wn is the wing control surfaces and non�

structural weight �lbs�� Wb is the wing bending material weight �lbs�� Wpod is the engine

pod weight �lbs�� b is the wing span �ft�� Bz is the bending material factor� Bze is the

engine relief factor� ful is the ultimate load factor� fa is the composite material factor� fc is

the aeroelastic tailoring factor� S is the wing area �ft��� and Sb is the wing box area �ft
���

The FLOPS wing weight calculation is an iterative process since the wing weight and

the gross take�o� weight are dependent on one another� The system is closed except for

the bending material factor� Bz � and the engine relief factor� Bze � Bz accounts for the

load distribution on the wing and is calculated by approximately determining the required

material volume of the upper and lower skins in a simple wing box description of the wing�

Bze accounts for the reduced amount of structural weight necessary due to the presence of

the engines on the wing�



�� Giunta et al�

	�� Response Surface Approximation to Weight Equation

Finite�element based structural optimization appears to be an e�ective way to improve the

estimate for the wing bending material weight given by FLOPS� However� �nite�element

solutions do not produce smooth functions with respect to the design variables� Thus�

gradient�based optimizations are di�cult to perform� In addition� the computational ex�

pense of �nite�element solutions prevents them from being used frequently within the HSCT

design optimization process� For these reasons� we have turned to a response surface ap�

proximation of the wing bending material weight� This provides a simple algebraic means

of calculating accurate values for the wing bending material weight while at the same time

giving smooth derivative information�

In the development of the response surface� a large number of data points� which span

the design space� are required� however� we are limited by the expense of performing struc�

tural optimizations� For this reason� the wing bending material weight predicted by FLOPS

will be used to develop the response surface� Once this is done� a sequence of structural

optimizations will be performed using �nite element analysis to generate the �nal form of

the response surface�

	�� The Model Equation

To determine a generalized model equation� we looked at the basic form of statistical weight

equations such as those de�ned within FLOPS� A basic algebraic relationship which appears

repeatedly is�

��� y � Cxc�� x
c�
� � � �xcnn �

where y is the objective function and x are the variables� From this a generalized model

equation can represented as�

�	� ln�y� � co �
X
p

� � i � pci ln �xi� �
X

��i�j�p

cij ln �xixj� � ��

Essentially� the logarithm of the response� y� is a function of a quadratic in the logarithms

of the variables� x� The ci coe�cients are unknown values which must be found through

the method of least squares�

	�� Identi
cation of the Feasible Design Space

For simplicity� we initially chose the variables to be twenty��ve of the twenty�eight HSCT

design variables� The remaining three variables� the wing leading edge radius� the cruise

climb rate and the starting cruise altitude were neglected because they had no e�ect on the

wing bending material weight� The enormous design space associated with the twenty��ve

variables� as well as the expense of performing structural optimizations� forced us to limit

the response surface to feasible regions of the space� Therefore� the �rst step in the response

surface design was to �nd a large group of candidate points in the feasible region�

Initially� we found a twenty��ve dimensional hypercube which encompassed the entire

feasible region� This was accomplished by allowing each of the variables to assume values

between �� percent and ��� percent of their baseline value� given in Table �� In this re�

sponse design space� ���	�� con�gurations were found distributed evenly throughout the

hypercube� Of these designs� �� percent violated one or more of the HSCT geometric con�

straints� Using a simple search method� each of the geometrically infeasible con�gurations
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was moved into the feasible region of the design space by moving the design a distance �

closer to the baseline con�guration�

��� x� � � �x� xc� � xc

x� is the transformed point based on x while xc is the baseline value discussed previously�

To further limit the extent of the design space� obvious nonsense designs were removed

based on the wing bending material weight predicted by FLOPS� Values below ������ lbs�

or above ������� lbs� were considered unreasonable and excluded from the set of candidate

points� Thus� we were left with ������ feasible designs�

	�� Selection of Intervening Variables

Using the initial twenty��ve variables and the ������ design points� a response surface

model was �t to wing bending material weight estimates from FLOPS� The accuracy of

this response surface� however� was found to be unacceptable� The average error was ���

lbs�� the RMS error was ����� lbs�� and the maximum error was ��	���	 lbs� Errors were

calculated from the di�erence between the response surface predictions for the wing bending

material weight and the values predicted by FLOPS�

One method to �nd a more accurate response surface would be to use the same variables

in conjunction with another form of the model equation� However� the quadratic equation

was already very general and moving to a more general equation� like a cubic� would

signi�cantly increase the complexity of the model equation� For this reason we chose to

�nd an alternative set of variables� intervening variables� which would be more appropriate

for a weight analysis while also being entirely dependent on the design variables� Compared

to the original variables� properly chosen intervening variables can produce accurate results

using a less complex model equation�

Returning to the description of the FLOPS weight equation� the wing weight is based

on a set of ten basic parameters� Listed in Table �� each of these parameters can be found

using the twenty��ve HSCT design variables� Using these terms as the intervening variables

produced dramatically better results� The average error was �� lbs�� the RMS error was ��

lbs�� and the maximum error was ����� lbs�

Table �� Basic parameters used to calculate wing weight in FLOPS�

Num� Name Description Num� Name Description

� Sht Horiz� tail area � Bze Engine relief factor

� Svt Vert� tail area � Bz Bending material fact�


 wfuse Max� fuselage diam� � Sw Wing surface area

� b Wing span 	 Wfuel Takeo� fuel weight

� sweep Ave� ��� chord sweep �� Wto Gross weight from FLOPS

	�	 Regression Analysis and ANOVA

The FLOPS weight equation was used to �nd the wing bending material weight for the

������ designs� Using these values as the objective function and the ten intervening variables

discussed previously� regression analysis and analysis of variance �ANOVA� methods were

used to �nd the coe�cients of variation for each of the sixty�six terms in the model equation�

The non�linear terms with the lowest coe�cient of variation were then removed from the

model equation� and the process of regression analysis and ANOVA was repeated�
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Figure � shows the accuracy of the response surface compared to the number of terms

remaining in the model equation� Reducing the complexity of the model equation by forty�

one terms had only a minor impact on the accuracy� This twenty��ve term model equation

was chosen for further analysis�
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Up to this point� all ������ con�gurations had been used to construct the response

surface� However� the expense of structural optimizations severely limits the number of

designs which can be considered� To address this issue� several subsets of the ������ points

were identi�ed using D�optimality ��
� The accuracy of the model equation versus the

number of design points used is given in Figure �� As with the number of terms in the

model equation� the number of points required to produce an accurate response surface is

signi�cantly less than the original ������ points� From Figure �� it appeared that sixty

con�gurations would produce an accurate response surface based on the twenty��ve term

model equation�

	�� Structural Optimization

The structural optimization procedure minimizes the weight for a given �xed arrangement

of the spars and ribs with the thicknesses of skin panels� spar and rib cap areas as design

variables� Von Mises stress constraints are applied to all the panel� spar� and rib cap

elements� Local buckling constraints are also applied�

Creating a response surface requires numerous planform evaluations� For this reason�

a special mesh generator was implemented to automatically create a �nite element model

based on the �� HSCT design variables� In addition to design variables� the number of

frames in the fuselage� the number of spars and ribs in the wing and the chord fractions taken

by the leading and trailing edge control surfaces must be speci�ed� The mesh generator

creates the �nite element nodes and element topology data in addition to estimating the

location of non�structural weights and the geometry of the wing fuel tanks ���
�

A typical �nite element model is made up of ��� elements joined at ��� nodes with ���

total degrees of freedom� The wing and fuselage skin are modeled by membrane elements�

Spar and rib cap elements are modeled by rod elements� Vertical rods and shear panels are

used to model spar and rib webs� The initial thicknesses and areas of the elements were

chosen to match the estimated structural weight� The aircraft is assumed to be built of

titanium� Because of symmetry� only half of the aircraft was modeled�
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The loads applied to the structural model are composed of the aerodynamic forces

and inertia forces due to the distributed weight of the structure� non�structural items and

fuel� Aerodynamic loads for supersonic �ight conditions were determined using a super�

sonic panel method� and loads for subsonic �ight conditions were from a vortex�lattice

method� Carlson!s WINGDES program was used to generate a cambered wing from the

given aerodynamic con�guration ��
� The loads at the aerodynamic nodes were mapped to

the structural nodes using surface spline interpolation� The structure was assumed to be

rigid for the determination of aerodynamic forces� �Previous studies indicated that struc�

tural �exibility did not have a large e�ect on the loads for this particular con�guration ��
�

���
�� The fuel was assumed to be stored in thirty�one tanks throughout the aircraft� More

details about load cases used can be found in ���
�

� Parallel Computing

��� Parallel Implementation of Aerodynamic Analysis

Our e�orts at parallel computing involve a twenty�eight node Intel Paragon at Virginia

Tech� The coarse grained parallelization of the aerodynamic analysis modules within the

full HSCT analysis code makes use of a master�slave paradigm on the Paragon whereby

one designated master node controls the data transfer and �le input�output �I�O� of the

remaining slave nodes� This coarse grained approach is used for the numerous independent

analyses required for response surface construction�

To initiate the parallel multipoint analyses� a group of predetermined analysis points is

input to the master node� The master node then computes the subset of the points which

each slave node will analyze and sends that information to the appropriate slave� Both

the master and slave nodes then analyze their respective subsets of the selected points and

store the results in an array local to each node� When each slave has �nished its portion

of the analyses� it sends the array of analysis values to the master node for output�

To compare the computational savings for parallel versus serial execution of a code�

the term speedup is de�ned as Ts�Tp� where Ts is the serial execution time and Tp is the

parallel execution time using p processors� Figure � shows the speedup results for parallel

execution of the HSCT analysis code compared to ideal� linear speedup� The actual results

deviate from the ideal due to the �le I�O demands of the analysis code which must be

executed serially� and due to unavoidable communication overhead in the parallel code�

Currently we are examining methods to reduce �le I�O and improve the parallel execution

of the HSCT analysis code� Our e�orts to date are detailed in Reference ��
�
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��� Parallel Implementation of Structural Analysis

The repeated structural optimizations required to produce a response surface are suitable for

coarse�grained parallel computation� Coarse�grained parallelization implies that multiple

con�guration geometries will be evaluated simultaneously� each on a separate processor�

There is no interaction between the processors� each maintaining their own input and

output data�

For a distributed memory architecture� disk I�O limits the e�ciency of the parallel

computations as the number of processors are increased� This factor was the primary basis

for choosing a particular structural optimization code to implement in the parallel environ�

ment� GENESIS� a �nite�element structural optimization code developed and supported

by Vanderplaats� Miura and Associates� Inc ���
� was available from the developer in a

reduced I�O form and thus made it an e�ective code to use on the Paragon� With the

standard version of GENESIS the maximum speedup level is ��� even with a large number

of processors� The reduced I�O version achieves a speedup of ���� using twenty processors

�Fig� ����

� Continuing Work

Currently the four variable HSCT wing design problem is being fully explored and the

variable�complexity response surface modeling techniques are being re�ned� These methods

will be applied to a new HSCT design problem involving seven to ten design variables to

further validate the response surface modeling procedure�

We have developed a model equation which has been found to be e�ective in predicting

the wing bending material weight given by the FLOPS weight equation� Our future e�orts

focus on evaluating the suitability of the model equation to data produced by GENESIS�

This will be accomplished by performing numerous structural optimizations in parallel

for a subset of the ������ planforms generated previously� The subset of points will be

determined using the D�optimal criterion and the objective will be to �nd the minimum

number of points required to produce an accurate response surface model�

The �nal form of the response surface model� based on the �nite element structural

optimizations� will be integrated into the HSCT design process� The algebraic response
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surface model will replace the wing bending material weight term calculated using FLOPS�

One problem which we anticipate will be identifying regions where the response surface

is inaccurate� The optimizer may evaluate designs outside of the domain of validity for

the response surface and would calculate erroneous values for the wing bending material

weight� To circumvent this problem� an additional constraint will be added to the optimizer

which will preclude HSCT designs where the FLOPS equation predicts a wing bending

material weight outside of the range used to create the response surface� This �ts into

the variable�complexity modeling strategy in that the inexpensive FLOPS evaluations are

used in conjunction with the response surface models calculated from the GENESIS �nite

element optimizations�


 Concluding Remarks

A variable�complexity response surface modeling strategy has been developed and has been

applied to the multidisciplinary design optimization of an HSCT� The feasibility of this

method has been demonstrated using response surface models for aerodynamic drag com�

ponents in a four variable HSCT wing design problem� Further� the response surface

techniques have been applied to structural analysis in the development of a model for the

wing bending material weight for various HSCT con�gurations� This structural model

will be integrated into the overall HSCT design optimization framework� The combined

variable�complexity aerodynamic and structural response surface methods will then be ap�

plied to the full HSCT design problem involving twenty�eight or more design variables�
Additional e�orts will be directed at further improving the parallel performance of both

the aerodynamic and structural analysis methods�
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