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CONFIDENCE OF SUCCESS IN MULTI-CRITERIA OPTIMIZATION 
OF MULTI-DISCIPLINARY SHIP DESIGN MODELS 

Emanuel Klasén 

ABSTRACT   

Decision makers are increasingly demanding decision instruments which account for 
uncertainties in the design process. This demand is partly raised due to the escalating 
usage of multi-disciplinary models and multi-criteria optimization in many design areas. 
Design optimization has commonly been formulated as a deterministic process. Since 
optimization algorithms tend to push a solution to one or more constraint boundaries, 
even slight uncertainties in the problem formulation may cause a deterministic solution to 
degenerate. Hence, without handling uncertainty in the optimization process, truly good 
design solutions will not be found. 

The traditional way to handle uncertainties has been based upon the use of crude safety 
factors. Another way is to handle uncertainties with a probabilistic approach, producing a 
measure of the confidence of success of a given design, i.e. the probability that the design 
actually will meet requirements and perform as predicted. By including confidence of 
success in the optimization process, decision makers will have a better chance of finding 
robust and reliable designs or further evolvable concepts. 

Confidence of success merges robustness and reliability into an unbiased objective in the 
optimization process. In this paper, the first steps of the Mean Value Method are utilized 
to approximate constraint and performance attribute responses and calculate probabilities 
based on the joint distribution of the uncertain variables. Implementation and utilization 
of confidence of success is demonstrated in a multi-criteria optimization of a simplified 
ship synthesis model. 

The Mean Value Method does not prove to be adequate in the search for optimal 
solutions in a complex objective space, which can be expected for a multi-disciplinary 
ship model. However, the method is efficient in well-behaving systems with few 
uncertainties and could be used as guidance in preliminary or conceptual design 
situations that require a heavy computational effort. 

Keywords: confidence of success, uncertainty, probability, Mean Value Method, 
  multi-criteria optimization, pareto optimal, multi-disciplinary, ship design 
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SI units and abbreviations are used throughout the paper unless otherwise stated. 

NOMENCLATURE      
 

CDF Cumulative Distribution Function 
CoS Confidence of Success 
CTOC Total Ownership Cost 
DDG51 Reference DP; Arleigh Burke, guided missile destroyer 
DP Design Point 
GA Genetic Algorithm 
JCDF Joint CDF, multi-variable CDF 
JPDF Joint PDF, multi-variable PDF 
LSF Limit State Function 
MCS Monte Carlo Simulation 
MCO Multi-Criteria Optimization 
MV Mean Value Method 
OMOE Overall Measurement of Effectiveness 
PDF Probability Density Function 
RT  Bare hull resistance 
RV Random Variable 
WT Total ship weight 
g LSF 
Zls Limit State (value) 
μ Mean or expected value E(X) of a random variable X 
σ Standard deviation of a random variable 
δ Coefficient of variance, δ = σ / μ 
ρ Correlation coefficient 

DEFINITIONS      
Attribute Denotes or quantifies system characteristics including design 

parameters, performance variables, and constraint fulfillment, e.g. 
length, cost, resistance, or excess power. 

Criterion Measure that is basis for an evaluation; attributes become criteria if 
decision is based on their outcome.2 Attributes used in the 
optimization process and/or for calculating Confidence of Success are 
referred to as criteria. 

Design Point Specific design variable vector or chromosome. 

Objective A computed characteristic of a solution which we wish to minimize or 
maximize, e.g. cost, effectiveness, or confidence of success. 
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Pareto optimum Non-dominated solution to an optimization problem. A solution is 
Pareto optimal if it satisfies all constraints and is such that no objective 
can be improved without causing other objectives to decline.4 A multi-
criteria optimization with conflicting objectives typically result in a 
number of non-dominated solutions, referred to as a Pareto front or 
optimal set. 
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1 INTRODUCTION 

In recent decades, the usage of multi-disciplinary models and multi-criteria optimization 
(MCO) has found its way into many design areas. By employing a multi-disciplinary 
optimization process, the designer can break out of the traditional design-spiral approach. 
All design variables are allowed to be varied based on their effect on the measure of merit 
and, hopefully, converge to an optimum design as the process progresses. 

Design optimization has commonly been formulated as a deterministic process, based on 
one design objective with an associated set of design parameters. Since optimization 
algorithms tend to push a solution to one or more constraint boundaries, the emerged 
“best” solution might degenerate due to even slight uncertainties in the problem 
formulation or changes in the operational environment.1 Sources of uncertainty vary 
widely, ranging from simulation and modeling errors to economic forecasts, material 
properties, loading conditions, and the lack of information. Hence, without including 
uncertainty in the design optimization process, a “best” design can hardly be seen as a 
good solution. 

1.1 Motivation 

Decision makers are increasingly demanding a decision making tool which accounts for 
uncertainties in the design process and produces a measure of the level of confidence of 
success (CoS) of a given design. Design decisions need to be made with an understanding 
of the risks introduced by uncertainties in modeling assumptions, inputs, and analyses. 
The usual way to handle uncertainties has been based upon the use of crude safety 
factors. Another way is to handle uncertainties with a probabilistic approach.1 

It is suggested that a probabilistic approach to uncertainties could facilitate an excellent 
path to true MCO and/or decision-making. However, just as the optimization process 
itself becomes more complicated with the introduction of MCO, the handling of 
uncertainties also becomes more intricate. It is insufficient to look at each criterion and 
its distribution independently, since all attribute values are generated by the same design 
process and are thus interdependent. The assumption of independent criteria is therefore 
typically unfounded.2 Attributes used in the optimization process and/or for calculating 
CoS are referred to as criteria. These criteria include all objectives and model constraints. 

The main approaches in the handling of the probabilistic optimization problem are robust 
and reliability based design; the difference is the focus of the analysis. 

Reliability based design focuses on satisfying, after conversion from a deterministic 
problem, the probabilistic constraints. 
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Robust design focuses on performance objectives, which are expanded from deterministic 
minimimum or maximum objectives to include both mean performance and performance 
variation. The goals are to drive mean performance towards a target and to minimize 
performance variance.1 Though useful in various design systems, implementation of 
robust design is rare. The reason for this may originate from the complexity and 
computational burden associated with evaluation of performance variations caused by the 
uncertainty of a system.3  

1.2 Objective 

The aim of this work is to explore the applicability and usability of the Mean Value 
Method (MV) to system uncertainties in MCO of multi-disciplinary ship design models. 
Implementation is carried out on a simplified ship synthesis model, developed at the 
Department of Aerospace and Ocean Engineering (AOE), Virginia Polytechnic Institute 
and State University (VT). 

This paper merges the robust and reliability approaches into a calculation resulting in a 
measure of CoS, i.e. the probability that a specific design actually will meet any number 
of criteria concurrently. The ambition of the approach is to be fast and accurate enough to 
be used in MCO of systems with heavy computational demands, yielding CoS for every 
feasible design point (DP). Calculation of probability is made using the first steps of MV, 
utilizing a simple Taylor series expansion to derive a limit state function (LSF) from 
criteria responses. The method handles correlation between probabilistic criteria by 
concurrent application of all LSFs to the joint probability density function (JPDF) of all 
uncertain system variables. 
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2 MULTI-CRITERIA OPTIMIZATION CONSIDERING UNCERTAINTY 

In MCO, there is generally no single optimum, because objectives are often conflicting. 
Instead, the optimization process results in a set of feasible non-dominated solutions or a 
Pareto optimal set, also referred to as a Pareto front. A solution is Pareto optimal if it 
satisfies the constraints and is such that no objective can be further improved without 
causing at least one of the other objectives to deteriorate.4 Figure 1 is an example of a 
Pareto front in a two-dimensional objective space, assuming the objective is to minimize 
the cost and maximize the effectiveness in a deterministic optimization process. Every 
solution in the objective space is represented by one or possibly more points in the design 
space. The Pareto front is marked by the bold line at the boundary between the feasible 
and infeasible regions in the objective space. 

If one specific design is to be chosen, the decision should fall on one of the designs 
making up the Pareto front. What design to choose is up to the decision maker and 
depends on preferences and the shape of the frontier. One interesting solution region in 
this case is obviously around the knee of the Pareto front, encircled in Figure 1. These 
designs yield a high effectiveness per cost ratio and should be considered and probably 
chosen as the design solution in a deterministic optimization effort, if affordable. 

 

Cost, f1(x) →
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x

Figure 1 A design point in the design space, left, corresponds to a solution in the 
objective space, right. The Pareto front is emphasized by the bold curve 
coinciding with part of the boundary between the infeasible and feasible 
regions. 
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The deterministic optimization has provided a design solution, accepted by the decision 
maker, which yields a specific cost and effectiveness. What has not been considered is 
the probability that the design actually will perform as predicted regarding cost and 
effectiveness. Due to uncertainties in the model, there might be a great risk that the 
effectiveness is going to be less and the cost higher than expected, or that this 
deterministically feasible design actually will have a slim chance of meeting the 
constraint requirements at all. 

Suppose that the probability for a design at the knee to meet all requirements is only 
10%. Then the decision maker would most certainly look for a more reliable design 
among the Pareto optimal designs. The problem is however, that the Pareto front may not 
include any design with a higher level of CoS since this has been neither part of the 
optimization objectives nor part of the constraints. The non-dominated solutions with, 
let’s say, at least 60% CoS may not be situated at the boundary between the deterministic 
feasible and infeasible regions; they may lay well within the feasible region. Hence, 
either the optimization has to be done with a constraint on CoS, or CoS has to be handled 
as an objective. By including CoS among the objectives, the decision makers possess the 
ability to find well performing designs for this objective too. With three objectives, the 
Pareto front would be a surface in three-dimensional space. This is illustrated in Figure 2 
for the three objectives: cost, effectiveness, and CoS. 

 

 

Figure 2 An arbitrary Pareto front in 3D space with the objectives to minimize cost and 
maximize effectiveness and CoS. Encircled is the same knee as in Figure 1, 
yielding 10% CoS. In this situation, increasing cost or reducing effectiveness 
raises CoS. There is no solution with a CoS higher than 85%. If this is not 
satisfactory, the optimization conditions or model needs to be revised. 
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2.1 System Uncertainty 

System uncertainties come from quantitative or qualitative sources. 

Qualitative uncertainties arise from intellectual abstractions of reality. They may come 
from definition of certain parameters such as quality, deterioration, environmental impact 
of projects, skill and experience of workers and engineers, and other human factors. 

Quantitative sources originate from randomness in physical observation, statistical 
uncertainty, and modeling uncertainty. 

Observation randomness arises due to the fact that repeated measurements of the same 
physical quantity do not yield the same value, depending on the observer, test procedure, 
instruments, environmental fluctuations, etc. By collecting a large number of 
observations, good information about the variability of the measured quantity can be 
obtained. However, the number of observations that can be collected might be limited, 
leading to statistical uncertainty.5  

Model uncertainty represents uncertainties due to the accuracy of analyses performed in 
the model, i.e. the difference between the computational prediction and the actual 
performance. Furthermore, in a multi-disciplinary design situation such as a ship model, 
the prediction of one discipline may be the input of another discipline and vice versa. 
This causes the uncertainty of each discipline to surge throughout the model due to the 
interlinking analyses, making it hard to characterize the system output. 

2.2 Handling Uncertainty 

There are a vast number of suggested computational approaches to handle uncertainty; a 
few are briefly mentioned here. 

Roughly, the different approaches can be divided into three categories: random sampling, 
Design of Experiments (DOE), and sensitivity based approaches.1,5 Which category or 
specific approach provides the most efficient method is strongly dependent on the 
problem at hand. Typically there is a trade-off between the computational cost and the 
accuracy. For a MCO of a complex system, e.g. a multi-disciplinary ship model, the 
algorithm of choice cannot be allowed to evaluate the system too many times, since this 
would increase the computational time considerably. 

The CoS calculation in this work is based on the first steps of MV, which starts with a 
first order Taylor series expansion, classifying it as a sensitivity based approach. MV is 
discussed in detail in 2.2.4 Mean Value Methods. 
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2.2.1 Random Sampling 

The most recognizable and basic random sampling technique is Monte Carlo Simulation 
(MCS) or simple random sampling. MCS is implemented by randomly simulating a 
design or process, given the stochastic properties of one or more random variables, with 
focus on characterizing the statistical nature of the responses of interest.6 This simulation 
method has long been considered to be the most exact method for calculation of 
probability distributions of responses from systems dealing with uncertainty. However, 
MCS typically calls for several thousands of system evaluations; thus for a time 
consuming analysis, MCS becomes impractical. A remedy for this incongruity could be 
found in various variance reduction techniques or “Monte Carlo swindles”, e.g. 
Descriptive Sampling7, Antithetic Variate technique8 and many more9. 

Descriptive Sampling is an evolution of Latin Hypercube Sampling. These techniques 
sample from subsets of equal probability of the distributed inputs. Each individual subset 
is sampled only once, thus reducing the number of necessary system evaluations 
significantly. 

The Antithetic Variate technique produces variance reduction by inducing negative 
correlation. The number of system calculation cycles can be reduced considerably 
compared to MCS, if one is not too concerned about complete characteristics of the 
response. The usability of this technique has been studied in previous work at AOE VT. 

2.2.2 Design of Experiments (DOE) 

In DOE a design matrix is constructed in a systematic fashion that specifies the values for 
the uncertain design parameters for each sampled point. Potential values for uncertain 
design parameters are not defined through probability distributions, but rather are defined 
by a range, a nominal baseline plus/minus some percent, or through specified values or 
levels. In this case, each run in the designed experiment is a combination of the defined 
levels of each parameter. The computational cost is generally less than MCS, however 
estimates may not be as accurate.1 

2.2.3 Sensitivity Based Approach 

This approach is based on Taylor series expansion, generally either first or second order 
neglecting higher order terms. Rather than sampling across known distributions or ranges 
of uncertain design parameters, gradients of performance parameters are calculated with 
respect to the uncertain design parameters. 

A first order Taylor series expansion for a performance response, Y, neglecting higher 
order terms is: 
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where μi is the mean of parameter i and n is the number of uncertain parameters. By 
setting the uncertain design parameters, X, to their mean value, μ, the response mean 
performance is calculated as: 
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where σxi is the standard deviation of parameter i. A first order expansion estimate 
requires n + 1 analyses for evaluation. It is usually more efficient than MCS, and often 
more efficient than DOE. However, accuracy is lost when responses are not close to 
linear.1 

By increasing the order of the expansion, nonlinear responses can be estimated more 
accurately, but the computational burden increases significantly. A second order 
expansion requires (n + 1) · (n + 2) / 2 analyses for evaluation. Hence, for large numbers 
of uncertain parameters a higher order expansion may become inefficient. 

2.2.4 Mean Value Methods 

Mean value methods employ most probable point (MPP) analysis, and normally include a 
first order Taylor series expansion. This class of methods is suitable for well-behaved 
response functions requiring computationally intensive calculations.10 The approach is to 
approximate the probability density function (PDF) rather than creating a metamodel. 
The outcome is a cumulative distribution function (CDF) of the system response, which 
can be differentiated to obtain a PDF. 

The analysis utilizes a response function Z(X) that depends on several random variables 
X. Each point in the design space, spanned by X, has a specific probability density 
according to the JPDF of X. Hence, every response value Z(X) has a given probability 
density.11 The response function is used to define a LSF. 

These methods can also provide probabilistic sensitivity measures indicating the input 
parameters that influence the reliability the most.12 For more detailed information about 
these methods refer to the NESSUS Theoretical Manual13. 
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2.2.4.1 Limit State Function (LSF) 

The failure surface or the limit state, g, for an arbitrary response function Z is defined as: 

  g = Z(X) – Zls = 0 (3) 

where the limit state value Zls is a particular value of Z. The LSF is defined such that 
g(X) = 0 is a boundary that divides the random variable space into two regions, 
failure/infeasible and safe/feasible, see Figure 3. 

2.2.4.2 Most Probable Point, MPP 

The MPP is the point along the LSF with maximum probability of occurrence, i.e. the 
point on the LSF where the variable combination yields the highest probability density. 
For a JPDF of two standard normal and independent variables it is obvious that the point 
of minimum distance from the origin to the LSF represents the most probable 
combination of the random variables, and is therefore named the most probable point, as 
seen in Figure 3. For nonlinear limit states, the computation of this minimum distance 
becomes an optimization problem. Once the MPP is identified, it can be used as a basis to 
develop approximate polynomial LSFs. 

2.2.4.3 Distribution Transformation 

Not always are the random variables of an engineering problem standard normal 
distributed and independent from each other, which makes the search for a MPP difficult. 
By transforming variable distributions to independent standard normal, the probabilistic 
analysis becomes mathematically more tractable. The drawback is that the involved 
transformation may significantly distort the LSF such that an originally flat surface 
becomes highly curved. There are several proposed transformation algorithms, suitable 
for different problems and distributions.13 

2.2.4.4 The Mean Value Method (MV) 

MV is based on a first order Taylor series expansion. Assuming that the response 
function Z(X) is smooth and a Taylor series expansion of Z exists at the mean values μ of 
the random variables X, the Z-function can be expressed as: 

  Z(X)=Z(μ) +−⋅⎟⎟
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where the derivatives are evaluated at the mean values μ and n is the number of random 
variables. The MV-function ZMV(X) represents the sum of the first order terms and H(X) 
represents the higher order terms. The coefficients ai can be obtained in several ways. 
Using numerical differentiation, the minimum number of Z-function evaluations required 
is n + 1. ZMV is used to define a LSF, along which the MPP can be identified. Since ZMV 
is linear and explicit, its CDF can be computed by mapping the probability for several 
values of Zls. 

Figure 3 shows the LSF of an arbitrary response function Z, i.e. the exact LSF where g%  = 
Z - Zls = 0, and the MV approximated LSF, i.e. g = ZMV - Zls = 0. The random variable 
space is spanned by two independent standard normal variables. 

 

 

For nonlinear Z-functions, the MV solution may not be sufficiently accurate. One 
possible improvement can be obtained by increasing the order of the Taylor series 
expansion. However, for a computationally expensive process and/or in case of a large 
number of random variables, this may not be an attractive solution. A more efficient 
approach is the Advanced Mean Value method (AMV). 

Approximate LSF
g = ZMV – Zls = 0 

Exact LSF 
g = Z – Zls = 0 

f(x) 

x1 MPPx2 

Figure 3 JPDF f(x) of two standard normal variables. The MV approximate LSF is 
used to define the infeasible region of the variable space, from which the 
JPDF has been cut off. Also plotted are the exact LSF and the MPP. 
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2.2.4.5 The Advanced Mean Value Method (AMV) 

AMV improves MV by using a correction procedure to compensate for errors introduced 
from the truncation of the Taylor series. The AMV model is defined as: 

  )K(ZZZ MVMVAMV +=  

K(ZMV) is defined as the difference between Z and ZMV at the Most Probable Point Locus 
(MPPL) of ZMV, where the MPPL combines the MPPs for several values of Zls. 

The key is reduction of the truncation error by replacing the higher order terms, H(X), in 
the first order expansion to derive ZMV, by a simplified function K(ZMV). To update the 
MV CDF, computation of the Z-function is performed at selected CDF values using the 
MPPs from the ZMV calculation. As a result of the approximation, the truncation error is 
not optimum. However, because the MV generated MPPs are generally close to the exact 
MPPs, the AMV solution provides a reasonably good estimation for many engineering 
problems. 

AMV can provide information on non-linearity of the LSF to detect potential numerical 
problems. However, AMV calls for additional Z-function evaluations compared to MV. 
The minimum required number of evaluations is n + 1 + m, where n is the number of 
random variables and m is the number of CDF levels used for the correction of the MV 
CDF. 

2.3 Correlation, Linear Dependence 

In most engineering problems, the values that an attribute variable attains may be 
dependent on one or more random variables. The linear relation between multiple 
variables is called covariance, denoted Cov(X,Y) for two random variables X and Y. The 
correlation coefficient ρ is the covariance non-dimensionalized by the product of the 
standard deviations of the random variables. 

 

The correlation coefficient ρ ranges between –1 and 1, where 1 indicates perfect positive 
linear dependence, i.e. Y increases as X increases. Negative linear dependence indicates 
that Y decreases as X increases. If there is no linear dependence, the correlation 
coefficient is expected to be zero. 

 
E(X)E(Y)-E(XY)Y)Cov(X, =  

 

YX σσ
Y)Cov(X,ρ

⋅
=  
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Generally, perfect linear dependence or independence is rare. Hence, two random 
variables are considered statistically independent or uncorrelated if the correlation 
coefficient is between +/-0.3 and perfectly correlated for coefficient values over 0.9 or 
less than -0.9.5,14 

The characteristics of the relationship between two random variables are visualized with 
scatter plots as shown in Figure 4. Figure 4.1 shows no relationship at all between the two 
random variables; consequently the correlation coefficient is zero. In Figure 4.2 there is 
perfect negative linear dependence (ρ = -1). Positive linear dependence is indicated in 
Figure 4.3, but not perfect. Hence, ρ is expected to be greater than 0 and less than 1. 
Figure 4.4 shows a strong relationship between the two random variables, but since the 
relationship is nonlinear, the correlation coefficient is zero. 

 Figure 4 Correlation of two normal distributed random variables. 

4.1 Uncorrelated random 
variables, ρ = 0. 

4.2 Perfect negative 
correlation, ρ = -1. 

4.3 Not perfect positive 
correlation, ρ = 0.68.

4.4 Non-linear 
correlation, ρ = 0. 
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3 CONFIDENCE OF SUCCESS CALCULATION 

Calculation of CoS in this work is done utilizing MV, leaving out the CDF construction 
of the AMV and yielding only one specific probability value for each DP. This approach 
omits evaluating variance or sensitivity explicitly and focuses only on the probability of 
meeting predictions, i.e. fulfilling requirements and performance expectations. 

For the CoS calculation suggested, there is no need to separately evaluate the correlation 
between any variables, on a global or local basis. It is taken into account within the 
calculation for every individual DP, with the exception of nonlinear correlations. 
However, the usage of the suggested approach calls for close to linear responses locally 
within the design space, which leads to linear dependence between criteria. This 
dependence is taken into account by applying the LSFs from any number of criteria, to 
the JPDF of all uncertain variables. 

An example calculation of CoS is shown below, with two standard normal distributed 
random variables, x and y, and two criterion functions. 

An approximate response function ZMV is derived via a first order Taylor series 
expansion linearized at the mean values of the random design variables. This calls for 
three system evaluations to calculate the coefficient vector A.  (In the present application, 
each system evaluation is one converged ship design.) 

  Z = X · A (4) 
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Any number of response functions can be approximated in the same manner without any 
additional system evaluations.  All that is required is an evaluation of each response 
function at each system evaluation (design point). 

Figure 5 shows the response surfaces for two arbitrary functions: 

  
10
y2y5xy)(x,f

2

1 ++=   and  sin(3x)5yxy)(x,f 2 ++=  

and their respective approximated response planes in the vicinity of (x,y) = (0,0): 
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  2.01y5x0y)(x,ZMV1 ++=   and  5y0.87x0y)(x,ZMV2 ++=  

The approximate LSFs are calculated from formula (3): 

  g(x,y) = ZMV(x,y) – Zls = 0 

where Zls = (8,7) represents the limit state values defining the boundary between the 
infeasible and feasible regions in the design space. 

 

In Figure 6 the approximate LSFs, g1 and g2 with Zls equal to 8 and 7 respectively, are 
plotted in the two-dimensional design space. The shaded region shows the part of the 
design space where g > 0, i.e. Z values are higher than Zls. If g > 0 is infeasible, the 
shaded region represents failing solutions. 

Introducing the JPDF of the two random variables, assumed to be standard normal 
distributed and independent, and applying the LSFs yields the CoS of meeting the 
requirements, i.e. g less than or equal to 0. Figure 7 shows the JPDF, with the g > 0 
region (infeasible region) of the function removed. The voulme under the remaining 
region of the JPDF yields a numerical value of CoS for the specific DP, CoS = 87% in 
this case. 

Figure 5 f1 and f2 response surfaces are displayed on the left, and their respective 
approximated response planes ZMV1 and ZMV2 are displayed on the right. The 
bold curves/lines highlight the limit states. 
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Probability in this example and in the demonstration is calculated as a summation 
approximation of the JPDF f(x,y) integral. The variable space is limited to the interval 
[-5, 5] for both x and y: 

  0.999999dxdy)y,x(fdxdy)y,x(f1
5

5

5

5

≈≈= ∫ ∫∫ ∫
− −

∞

∞−

∞
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Figure 6 The design space in the vicinity of the DP; (x, y) = (0 , 0). Solid lines mark the 
approximate LSFs, while the dotted curves are the actual functions yielding 
the limit state values. The circle encloses the region where 80% of the 
distribution is expected for (x, y) Є N(0,1). 

Figure 7 JPDF of the random variables (x, y) Є N(0,1) reduced by the LSFs. Note that 
the x- and y-axis are reversed from what was shown in Figure 6. 
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The variable space is discretized into a large number of small rectangular subintervals. 
The probability density of each subinterval is calculated at the midpoint of the rectangle, 
and probability is calculated as the summation of the discrete values: 

  ∑∑∫ ∫
= =

ΔΔ=
n

1i

m

1k
ki

b

a

d

c

yx)y,x(fdxdy)y,x(f  when Δx, Δy → 0 

where n and m are the number of subintervals in the x and y direction respectively, xi and 
yk are the midpoints of the subintervals i and k respectively, and Δx and Δy are the 
rectangle subinterval side lengths. 

For the CoS calculation, the variable space is discretized into a definite number of 
subintervals, and the discrete values in the feasible regions, defined by the LSFs, are 
summed. The subinterval is given a finer mesh in the high density region of each 
marginal function to reduce the error when the LSFs are close to the variable mean 
values: 

  ∑∑∫ ∫
= =

ΔΔ≈
n
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kiki

b
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d

c

yx)y,x(fdxdy)y,x(f  

where n is the number of subintervals, xi and yk are the midpoints, and Δxi and Δyk are 
the rectangle side lengths of interval i and k in the x and y direction respectively. 

The mesh is generated in a logarithmic fashion in each quadrant of variable space, with 
125 intervals in each direction. The finest mesh is located in the corner closest to the 
mean values. The quadrants are mirrored at the mean values, thus giving a finer mesh in 
the high density region, as exemplified in Figure 8. 

 x

y

μx

μy

 
Figure 8 Logarithmically divided variable space. 
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Obviously, there is some correlation of the responses f1 and f2 since both functions 
depend on the x and y variables. A MCS of 100,000 system evaluations is illustrated in 
Figure 9, showing the marginal PDFs for f1 and f2 and their JPDF as a contour plot. The 
correlation between f1 and f2 is evident in the figure. 

f1(x,y)

μ = 0.09
σ = 5.36

f2 (x,y)

μ  = -0.02
σ  = 5.16

ff
1
,f

2

(x,y)

ρ = 0.55
 

f2 = 7

f1  = 8

f1(x,y)

f2(x,y)

-5     0      5            0.05

 -5     

  0      

  5      
      

0.05

 

 Table 1 shows the data obtained from the MCS compared with the data from the CoS 
calculation. The CoS column contains data calculated via a first order Taylor series 

Figure 9 MCS generated system response JPDF. 

 MCS CoS  

System evaluations 100k 3 
————————————————— 

7f8f 21 ≤∩≤  86% 
0gg 21 ≤∩   87% 

ρ 0.55 0.53 
————————————————— 

8f1 ≤  93% 
0g1 ≤   93% 

µ1 0.09 0 
σ1 5.36 5.39 
————————————————— 

7f 2 ≤  91% 
0g2 ≤   92% 

µ2 0.02 0  
σ2 5.16 5.07 
————————————————— 

Table 1 Comparison of CoS calculation and MCS. 
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approximation only. Correlation, ρ, is also stated for the CoS calculation. Correlation of 
two variables is simply a measurement of the orthogonality of g, i.e. the cosine of the 
angle between g1 and g2 in Figure 6. The mean value, µ, and standard deviation, σ, for 
each criterion in the CoS column is calculated from the sensitivity based formulae (1) and 
(2) respectively. 

The intended use of CoS does not call for the complete calculation of a CDF. However, 
since the CoS calculation in this work is merely the first step in creating a CDF with MV, 
a Joint CDF (JCDF) can easily be obtained. This JCDF should be a good estimate of the 
empirical JCDF generated from a MCS, verifying that correlation between the functions 
f1 and f2 is covered within the CoS calculation. Figure 10.1 shows a contour plot of a 
MCS generated JCDF, and Figure 10.2 shows a MV generated JCDF of the two 
functions. 

 

If such functions as in this example or worse are found in a real system, one should 
utilize the CoS calculation as suggested in this paper with caution. Nevertheless, the CoS 
approximation in this example is quite accurate. The maximum absolute difference 
between the MCS and MV generated JCDFs for this system at this DP is less than 2%. 
Figures 11 and 12 display the absolute and relative errors between the MV calculation 
and the MCS calculation. 

Some of the error clearly originates from the linearization of the response functions. 
Depending on the shape of the actual response function, the error caused by the 
linearization could be expected to increase with increasing distance from the expansion 
point, i.e. the deterministic DP, which is also where the random variables take their mean 
values,. However, since the probability becomes less dense with increasing distance from 
the mean values (for normal distributed variables), the absolute error does not increase 
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Figure 10.1, left JCDF generated via MCS; 85.7% yield 7f8f 21 ≤∩≤ . 
Figure 10.2, right MV generated JCDF; 86.9% yield 0gg 21 ≤∩ . 



COS IN MCO OF MULTI-DISCIPLINARY SHIP DESIGN MODELS 
3 CONFIDENCE OF SUCCESS CALCULATION 

18 

unrestrained; on the contrary the absolute error principally decreases in this example. 
Also, it should be noted that MCS is also an approximation with associated errors. Thus, 
in some aspects, the CoS calculation may be closer to the truth than the MCS calculation. 
The region with the highest absolute error is located close to the deterministic DP, and 
the DP itself (x,y) = (0,0) yields an error of just under 2%. 

Absolute error

f1(x,y)

f2(x,y)

-10 -5 0  5  8     

-10

-5 

0  

5  
7  

 

 

 1.5 - 1.8 %
1.0 - 1.5 %
0.5 - 1.0 %
0.25 - 0.5 %
< 0.25 %

 

 

Relative error
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 20 - 30 %
10 - 20 %
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< 2 %

 

Figure 11 Absolute difference between MCS and MV JCDFs. The dashed square is 
enclosing the region for which the response deviation is within σ for each 

Figure 12 Error in the MV calculated JCDF relative to the MCS calculation. 
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The relative error is greater in the region of low cumulative probability, as could be 
expected studying the absolute error. Even a small absolute error triggers a huge relative 
error in this region. Above the 50% JCDF level the relative error never exceeds 2%. The 
most interesting point is where the two LSFs intersect: 7) , (8  )f , (f 21 =  or 

1.21) , (1.11  y) ,(x = . The accuracy of the JCDF value at this point is an important 
indicator of the accuracy of the CoS calculation. The absolute error here is 1.2% and the 
relative error is 1.4%. 
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4 DEMONSTRATION SETUP 

Implementation of CoS is demonstrated in an optimization of a simplified multi-
disciplinary ship synthesis model. Hardware used is a twin-processor Dell PSW650: 
Xeon 2x2.66 GHz CPU, 1.0 GB RAM. 

Figure 13 is a flow chart showing the optimization process for the complete 
demonstration setup. The ship model components are gathered into one “black box” 
block, while the other blocks show actual individual system components. If the 
deterministic constraints reveal a DP is infeasible, CoS is set to zero and no iterations or 
other computational work is done before the optimizer evaluates the model response. 

 

 

 

4.1 ModelCenter 

The simulation tool used in this effort is ModelCenter version 6.0.3 developed by 
Phoenix Integration, Inc. It is a commercial process integration and design optimization 
software package, providing a visual environment for integrating applications and codes 
in order to perform multi-disciplinary design and analysis. Once these codes are placed in 

Figure 13 Flow chart of the demonstration setup. Referring sections are in brackets. 
 It should also be noted that n is the number of random variables. 
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ModelCenter, key data is linked from one application to another, creating an automated 
design environment. 

4.2 Ship Model 

The multi-disciplinary ship synthesis model used is and has been under development at 
AOE VT for several years.15 In this work the model is attuned to resemble the design of a 
modern US Navy destroyer. The DDG51 Arleigh Burke has been used as a model 
evaluation DP and initial design in the optimization effort. 

4.2.1 Arleigh Burke Class, Multi-mission Guided Missile Destroyer 

The Arleigh Burke class is an all-steel construction designed to operate independently or 
as units of carrier strike groups, expeditionary strike groups, and missile defense action 
groups in multi-threat environments that include air, surface, and subsurface threats. 
These ships will respond to low-intensity conflict/coastal and littoral offshore warfare 
scenarios as well as open-ocean conflict providing or augmenting power projection, 
forward presence requirements, and escort operations at sea. The combat systems center 
around the AEGIS Combat System (ACS) and the SPY-lD multi-function phased array 
radar, and consist of the vertical launching system (VLS), anti-air warfare (AAW), anti-
submarine warfare (ASW), and anti-surface warfare (ASuW). 

4.2.2 Synthesis Model Components 

The ship synthesis model is made up of several interlinked components, each handling 
specific calculations, e.g. resistance, hull shape, weight, and combat systems. This model 
makes it easy to change, add, or remove components to describe the ship or mission type 
in question, or usage of formulas of preference. Also, integration software allows 
calculations from other applications, e.g. CFD and FEM, to be included. All components 
in this model are coded in Fortran and are briefly described in Table 2. 

Each design is balanced through the use of fuel tankage sizing. The resulting design is 
compared to any functional requirements, e.g. range and stability constraints, etc. Hence, 
no iterative balancing is performed; each design either fulfills requirements or does not, 
i.e. is deemed feasible or infeasible.  Infeasible designs are penalized causing the 
optimizer to seek feasible designs. 
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4.2.3 Simulating Uncertainty 

Randomness is assumed to arise only from the embedded uncertainties in the analysis; 
consequently all input variables are presumed deterministic for each DP. Only the 
uncertainties in the resistance and weight calculations are modeled in this demonstration. 
Each uncertainty, Y,  is modeled by introducing an extra random variable, X, such that: 

  Y = μy · (1 + δ · X) (5) 

where X Є N(0,1) and is independent of any other random variable. δ is the assumed 
coefficient of variation, and μy is the mean value, i.e. the deterministically calculated 
value of the parameter at hand. 

4.2.3.1 Bare Hull Resistance Prediction 

The resistance calculation is performed utilizing the Holtrop & Mennen method. This 
method is an approximate power prediction method based on statistical data and is thus 
an obvious source of uncertainty. The standard deviation for the actual bare hull 
resistance, RT, is assumed to be 10%, i.e. δ = 0.1. 

4.2.3.2 Total and Subsystem Weight Calculation 

Apart from summarizing the weight of all subsystems and calculating the light ship 
weight, this component also balances the design by specifying allowable fuel weight and 
calculates ship stability. Since total weight generally has a close relationship with the 
price of a ship (more weight leads to higher cost), any uncertainties in the weight 

Component Comment  
Combat The whole array of weaponry and combat systems 
Propulsion Numerous different propulsion systems of choice  
Hull Calculates basic hull design coefficients 
Available Space The ship design’s useable space  
Electric Electric appliances and consumption 
Resistance Holtrop & Mennen resistance calculation 
Weight Total ship weight 
Tankage Volume calculation of required tanks 
Required Space Necessary space for all ship functions 
Feasibility Constraint evaluation 
Cost Total Ownership Cost (CTOC) calculation 
OMOE Overall Measurement Of Effectiveness  

Table 2 Ship synthesis model components. 
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calculation are expected to have a direct noticeable impact on the total cost, especially in 
this model where the cost is calculated using a weight-based algorithm. 

The total weight, WT, is calculated as: 

  WT = ∑ WD + ∑ WU 

where WD represents the subsystem weights that are considered deterministic, and WU 
represents the subsystem weights considered to be uncertain. Uncertainty is introduced 
into the weights WU as: 

  WU = μwu · (1 + δ · X) 

where μwu represents the mean (deterministic) values of the uncertain subsystem weights, 
δ = 0.1, and X Є N(0,1). 

The weight deviation is thus equitably divided among the summarized subsystem weights 
that are considered uncertain, which are then passed to the subsequent analyses. Each 
uncertain subsystem weight is distributed with the same variable X. The total weight, WT, 
does not have the same coefficient of variation throughout the design space since the 
∑WD/ ∑μwu ratio is not constant. 

4.3 Model Attributes 

The characteristics of the ship synthesis model are more intricate than presented in this 
and prior sections. Described here are merely the inputs and outputs used in this work and 
the additional components used for optimization and CoS evaluation. For further 
information about the ship model itself and its potential, turn to Dr Alan Brown et al. at 
AOE VT. 

4.3.1 Design Parameters and Variables 

There are 47 input parameters, listed in Appendix 1, defining the ship design. Of these, 
the optimization algorithm uses 24 parameters as design variables, 15 discrete and 9 
continuous, in the search for the Pareto optimal set. The design variables are listed in 
Table 3. Discrete design variables are, for example, combat and propulsion systems, 
while the ship length, beam and draft are continuous. The remaining parameters are fixed 
at values appropriate to the DDG51 DP. 

Each discrete choice is associated with several parameters describing the characteristics 
of the feature the variable at hand is simulating. For example, Psys is the propulsion 
system variable. It specifies the weight, power, fuel consumption, etc. of the main 
engine(s), as well as the number of propulsors, transmission, and shaft weight, etc. 
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Variable  DDG51 unit min max type 
B Waterline beam 18 m 9 27 continuous 
Cp Prismatic coefficient 0.615  0.51 0.72 continuous 
Cx Section coefficient 0.822  0.72 0.93 continuous 
D10 Hull depth at station 10 12.7 m 6 19 continuous 
Lwl Waterline length 142 m 118 166 continuous 
T Draft 6.1 m 3 10 continuous 
TS Stores duration 60 days 60 90 continuous 
VD Deckhouse volume 5437 m3 1000 6500 continuous 
Ve Endurance speed 20 knots 20 40 continuous 
BALtyp Ballast type 1  0 1 discrete 
CDHmat Deckhouse material type 1 steel/alu 1 2 discrete 
Gsys Generator system 3  1 4 discrete 
NCPS Collective Protection System 2  0 2 discrete 
Nfins Pair of fins 0  0 1 discrete 
Psys Propulsion system 6  1 15 discrete 
AAW Anti-Air Warfare system 2  1 4 discrete 
ASuW Anti-Surface Warfare system 2  1 2 discrete 
ASW Anti-Submarine Warfare system 1  1 5 discrete 
C4I C4 and Intelligence system 1  1 2 discrete 
MCM Mine Counter Measures 3  1 3 discrete 
NSFS Naval Surface Fire Support sys. 2  1 3 discrete 
SEW Space and Electronic Warfare 1  1 3 discrete 
STK Strike Warfare system 2  1 2 discrete 
VLS Vertical Launching System 2  1 4 discrete 

 

4.3.2 Constraints 

Constraint evaluation is performed in the Feasibility component of the ship synthesis 
model. Infeasibility is defined as a violation of any constraint and results in a negative 
error value for the specific constraint. The error in the case of a lower boundary 
(parameter ≥ constraint) is calculated as: 

  
valueconstraint

 valueconstraint - valueparameter  error  =  

There are eight constraints, listed in Table 4, of which four are dynamic and four are 
static design parameters. 

Table 3 Ship model design variables. The final nine design variables are 
combat system related and have a large influence on OMOE. 



COS IN MCO OF MULTI-DISCIPLINARY SHIP DESIGN MODELS 
4 DEMONSTRATION SETUP 

25 

 

 

4.3.3 Objectives 

The main objectives are low ownership cost and high effectiveness. The CoS objective is 
added to assure that the ship design is reliable and robust in the sense that it fulfills 
requirements when built and is as effective and economical as predicted. 

4.3.3.1 Total Ownership Cost (CTOC) 

A simple weight-based algorithm is utilized to calculate the ship building cost. Also 
included in CTOC are lifetime operational and systems acquisition costs as well as 
monetary and other financial effects. 

4.3.3.2 Overall Measurement Of Effectiveness (OMOE) 

The OMOE function includes important ship performance attributes, such as sustained 
speed, endurance, signatures, and combat capability. Each attribute is weighted in terms 
of its relative influence on the system effectiveness according to the specific mission/ship 
type at hand. There are 21 performance attributes in the OMOE evaluation, and their 
influence ratios are based on expert opinion15 (See Appendix 2). The OMOE value ranges 
between 0 and 1, with 1 being the theoretical most effective solution. In practice there 
may not be any feasible design even close to 1. 

Nine performance attributes originate directly from combat systems, and their relative 
influence on OMOE is almost 65%. The combat system variables affecting OMOE can 
be reviewed in Table 3. Remaining attributes affecting OMOE are: endurance range, 
stores duration, sustained speed, seakeeping, number of shafts, structural vulnerability, 
collective protection system, infra red signature, acoustic signature, topside radar cross 
section, and magnetic signature/degaussing. 

Table 4 Ship model design constraints. 

Parameter Constraint Type Boundary  
TA Total arrangeable area min dynamic 
DA Deckhouse area min dynamic 
VS Sustained speed min 28 knots 
KW Generator power min dynamic 
GMmin Min GM to beam ratio min 0.05 
GMmax Max GM to beam ratio max 0.15 
D10 Hull depth at station 10 min dynamic 
E Endurance range min 3500 NM  
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4.3.3.3 Confidence of Success, CoS 

The computation of CoS is divided into two steps, a numerical differentiation and then a 
probability calculation. To speed up the optimization process, there is no CoS calculation 
done for deterministically infeasible DPs. In theory, it is possible to get a CoS value close 
to 50% even for an infeasible DP. However, it is unlikely that any decision maker would 
strive for an initially infeasible design. 

4.3.3.3.1 Numerical Differentiation 

This component obtains the criteria responses Z in equation (4) associated with a preset Δ 
for each random variable. It is coded in Visual Basic script (See Appendix 3). The user 
interface, shown in Figure 14, allows the user to choose the Δ-step of the variable at 
hand. Δ is configured to represent σ for a N(0, σ) variable. In the demonstration, the Δ-
step is set to 1 for all random variables in use, i.e. Δ = 1 yields Y = μy · (1 + δ·1) for 
equation (5). 

 

 

By choosing a large Δ-step the influence of small fluctuations in an otherwise monotonic 
response is minimized. However, with greater Δ there may be a greater risk that the 
response function will be discontinuous and/or highly nonlinear within the Δ-range. 
Hence, Δ should not be taken in the outer percentiles of the variable distribution since 
these specific values are unlikely to occur and may not be representative of the greater 
part of the response function. 

In the demonstration, all constraints and the CTOC and OMOE objectives are (initially) 
used as CoS criteria. The LSF’s for each criterion are constructed such that the limit state 
is expressed as a fraction of the mean (deterministic value) of each criterion, i.e. Zls is 
defined relative to μZMV in the LSF: g = ZMV – Zls, e.g. g = ZMV – 1.05 · μZMV = 0. 

Figure 14 CoS user interface. 
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Figure 14 shows that the LSF of CTOC is activated at the deterministic value of CTOC 
plus 5%, while the OMOE LSF is active at the deterministic value of  OMOE minus 5%. 
This means that the decision maker is looking for the design that has the highest 
probability of not being worse than 95% of the predicted effectiveness and not over 5% 
more expensive than predicted. By stating 0, Zls is set to the value zero, which is 
appropriate for the error functions of the constraints. Further, by typing 1 in the 
“Over/under” column, g > 0 is considered infeasible. For 0, infeasibility is defined as g < 
0. 

4.3.3.3.2 Probability Calculation 

The LSFs are introduced into the subspace spanned by the random variables to trim their 
JPDF. The JPDF is simply divided into a finite number of subintervals over the 
distribution range, limited to +/- 5σ. The portion of the JPDF located in the infeasible 
region is removed (See Figure 7), and the remaining JPDF subintervals are summed to 
obtain a numeric CoS value. This component is coded in Matlab (See Appendix 4). 

4.4 Optimization Algorithm 

Optimization is done using a Genetic Algorithm (GA); the Darwin ModelCenter plug-in. 

GAs use models of natural selection to improve a population of individuals or variants 
based on Darwin’s principle of survival of the fittest - evolution. They are particularly 
useful for problems involving discrete variables. These algorithms are also ideally suited 
to optimize discontinuous and disjointed functions.15 A major advantage of this type of 
algorithm is the high probability of locating the global optimum, not just one of the local 
optima.4 

The evolutionary process is simulated by the creation of a population of individuals 
(specific designs) represented by chromosomes (design variable vectors). A population is 
usually produced from a previous generation through mutation and reproduction. 
Mutation is alternation of the genes (one design variable or subsets of the design vector) 
of one individual to create a new individual, while reproduction produces a new 
individual by combining genes from two (or possibly more) parents. Each individual 
within the population is evaluated for its fitness, i.e. how well it performs and fulfills 
requirements. Each new population is referred to as a generation. 



COS IN MCO OF MULTI-DISCIPLINARY SHIP DESIGN MODELS 
4 DEMONSTRATION SETUP 

28 

4.4.1 The Darwin Optimization Tool 

Darwin version 1.1.2 is a GA-based optimization tool, used as a ModelCenter plug-in, 
designed specifically for solving “real world” engineering optimization problems. It is 
capable of solving multi-objective design problems with any number of constraints, and it 
is well suited for discontinuous, noisy, and/or multi-modal design spaces. The plug-in 
features a GUI that allows the user to relatively quickly define the design problem, and 
several algorithm variables can also be specified to control the evolutionary process. 
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5 DEMONSTRATION RESULTS 

The applicability and usability of the CoS calculation is explored by implementation in 
the optimization process of the ship synthesis model described in the preceding section. 
Before the initial optimization, an examination of the model response is performed. 
Concluding this section is a second optimization with some alteration to the CoS criteria. 

5.1 Model Response Examination 

As discussed earlier, in order to get good results from the CoS calculation, the criteria 
response has to be almost linear and/or concentrated to the mean performance value. Of 
course, over the whole design space of a complex ship model no response function can be 
expected to be even close to linear.15 However, locally in close vicinity to a DP, there is 
definitely a good chance of a continuous, well-behaved response. If the response is also 
almost linear and has low variance, there is nothing to discourage calculating CoS as 
suggested in this paper. To learn criteria response behavior, a few deterministically 
feasible DPs were randomly selected and evaluated via a short sample MCS (100,000 
system evaluations). 

All DPs yield an almost perfect linear response for CTOC as well as the TA, GM min, 
and GM max constraint error values (see Table 4). The exceptions are the sustained speed 
and endurance range error values, both of which are noticeably non-linear but continuous, 
and OMOE, which is discontinuous. The DA, KW, and D10 error values are not a 
function of the RVs. Presented in Figure 15 are some of the criteria response surfaces for 
the DDG51 DP, namely the objectives CTOC (Figure 15.1) and OMOE (15.2), and the 
endurance range constraint error values for E (15.3) and VS (15.4) as functions of bare 
hull resistance, RT. and total weight, WT. 

The relatively well-behaved responses of the constraints and the CTOC objective indicate 
that a first order Taylor series expansion should be satisfactory to approximate the 
response functions in close vicinity to any DP. 

The shape of the OMOE response is somewhat discouraging. Although the response 
seems to have the same general form throughout the design space, there are differences in 
plateau shape, size, and position for each individual DP. A first order Taylor series 
expansion will have significant problems approximating a response plane to this shape. 
However, for the demonstration, OMOE will initially be kept among the CoS criteria. 
The effect of the OMOE response on the CoS calculation will be further discussed in 
Section 5.2.3 Evaluation of Confidence of Success Calculation. 
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Except for OMOE and those constraints that are not a function of the RVs, CoS criteria 
distributions are more or less Gaussian. The CTOC - OMOE joint distribution from the 
MCS of the DDG51 DP is plotted in Figure 16. Notice that the OMOE and CTOC 
objectives are not conflicting here in the sense that a lower CTOC corresponds to a 
higher OMOE, even though they are conflicting in the global optimization where low 
CTOC results in a low OMOE. This is because a lower than deterministic weight at a 
specific DP results in both a less expensive and more effective ship, as can also be 
observed by studying Figures 15.1 and 15.2. The endurance range error value distribution 
is shown in Figure 17. 

Figure 15 Criteria responses in RV space for the DDG51 DP. The mesh size is σ for 
both RT and WT. The darker region of the response surface indicates a 
higher probability of occurrence. 

15.1 CTOC response. 15.2 OMOE response. 

15.3 E constraint error value response. 15.4 VS constraint error value response. 
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Figure 16 Joint distribution of the objectives CTOC and OMOE for the DDG51 DP. 

Figure 17 Distribution of the E constraint error value. 
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A full calculation of CoS is performed for the DDG51 DP and compared with a MCS in 
Table 5. The resemblance is good with a maximum difference of 0.13% for the GMmin 
constraint and an overall CoS error of 0.03% compared to MCS. 

A more illustrative presentation of Table 5 is produced by overlaying the MCS 
distribution with the approximated LSFs. This gives a visual perspective of the 
resemblance between the MCS and the CoS calculation. Figure 18 shows the design 
subspace spanned by the random variables. The subspace is scattered with the solutions 
generated through the MCS; the feasible solutions are marked with ‘ ’ and infeasible 
with ‘x’. The LSFs from the CoS calculation are overlaid on the scatter plot. 

Criterion MCS (%) CoS (%) Error
CTOC 98.25 98.17 0.08
OMOE 100.00 99.99 0.01
TA 95.97 95.99 -0.02
DA 100.00 99.99 0.01
VS 100.00 99.99 0.01
KW 100.00 99.99 0.01
GM min 97.06 96.93 0.13
GM max 99.99 99.98 0.01
D10 100.00 99.99 0.01
E 62.19 62.31 -0.12
CoS 58.16 58.13 0.03

 

The LSFs follow the edges of the infeasible regions quite well. Note that the OMOE LSF 
does not show in Figure 18. It falls outside of the domain of this plot. Also note that the 
LSFs of the objectives have no influence on the feasibility for this DP. This is because of 
the acceptance of a 5% increase in CTOC and a 5% decrease in OMOE from the 
deterministic solution. A tightening of these limits is addressed in 5.2.4 Confidence of 
Success Criteria Revised. 

Table 5 CoS calculation compared to MCS (100k sys. eval.) for the DDG51 DP. 
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5.2 Optimization Implementing Confidence of Success 

The optimization problem is formulated as: 

 

min CTOC(x), and 
max OMOE(x), and 
max CoS(x) 
 
subject to, 
 
TA(x)  ≥  TAmin(x) 
DA(x)  ≥  DAmin(x) 
VS(x)  ≥  28 
KW(x)  ≥  KWmin(x) 
GM(x)  ≥  0.05 
GM(x)  ≤  0.15 
D10  ≥  D10min(x) 
E(x)  ≥  3500 

Figure 18 RV subspace scattered with MCS generated solutions. Feasible solutions are 
marked with ‘ ’ and infeasible with ‘x’, overlaid with the approximated 
LSFs of the CoS calculation. 
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where x is the DP consisting of 47 design parameters, including D10. The DDG51 DP is 
used as the initial design, and variable boundaries are set in harmony with the DDG51 
design (See Table 3 and Appendix 1). The GA is set to work with a population size of 
300 designs per generation and breed/mutate from the 100 best individuals. 

5.2.1 Computational Time Expenditure 

The optimization stopped after 70 hours or 215 generations due to lack of evolvement. 
There were a total of 46,079 deterministic infeasible and 18,422 deterministic feasible 
designs evaluated. CoS was calculated for all deterministic feasible designs, adding 
another 36,844 evaluations as part of the optimization run as seen in Table 6. 

There is a 37% increase in total computational time to complete the three-dimensional 
objective space optimization because of the extra evaluations called for by the CoS 
calculation. This increase will be greater if more analyses or variables are considered 
uncertain. To approximate a response plane, each of the two present uncertainties use 
about 1.6 seconds every time a feasible DP is encountered, compared to 2.7 seconds for a 
complete model evaluation. Also, the actual probability calculation adds another 0.3 
seconds for each feasible design, which sums up to 1.6 + 1.6 + 0.3 = 3.5 seconds. 

 

 

 

Assuming each additional uncertain variable would use about the same computational 
time relative to an evaluation without CoS (excluding the probability calculation which 
does not increase to any great extent) and that the feasible/infeasible ratio roughly holds, 
the total time increase of the optimization of the problem at hand can be expected to be 
approximately a multiplier as tabulated in Table 7. The assumptions are very rough, but 
the results give an indication that the Taylor series expansion used in the CoS calculation 
is more efficient in systems with heavy computational burden and a few uncertain 
variables rather than vice versa. 

 

Table 6 Optimization time increase caused by implementation of CoS. The CoS entry 
emphasizes the effect on the evaluation of feasible designs. 

 Evaluated Iterations Time Time Sec per Sec/design Time 
 Designs w/ CoS (hours) w/ CoS Design w/ CoS Increase  
Optimization 64,501 101,345 48.9 66.9 2.73 3.73 37%  
Infeasible 46,079 46,079 34.9 34.9 2.73 2.73 0% 
Feasible 18,422 55,266 14.0 31.9 2.73 6.24 129%  
CoS 18,422 36,844  18.0  3.51   
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5.2.2 Optimization Result Evaluation 

The resulting Pareto set is made up of 260 design solutions, graphically presented as a 
three-dimensional scatter plot in Figure 19. Table 8 presents the best designs for each 
objective, as if the process had been a single objective optimization. Complete 
characteristics of the solutions can be found in Appendix 5. The components of the 
Utopian vector are in bold numbers. Also in Table 8 are the DDG51 and “Best” designs. 

A possible method for choosing a “Best” solution from among the Pareto set is to define 
the “Best” design as the solution that yields the highest objective ratios for all objective 
combinations concurrently. That is, OMOE/CTOC, CoS/CTOC, and OMOE · CoS are 
combined into one subjective value, i.e. possibly a good compromise is: 

  Best DP  ⎟
⎠
⎞

⎜
⎝
⎛ ⋅

=
CTOC

CoSOMOEmax  

Again, this solution may not actually be the “best” solution or preferred design; it is 
merely one optimal solution among others. As discussed earlier, what design to choose is 
up to the decision maker and depends on preferences and the shape of the Pareto front. 
The designs in Table 8 are only elementary solutions presented as guidance. 

 

Table 7 Increase of computational time caused by the CoS calculation in systems with 
various numbers of random variables and computational time per evaluation. 
Highlighted is the case of the system demonstrated. 

TIME CONSUMPTION FOR ONE COMPLETE SYSTEM EVALUATION  
N

U
M

B
ER

 O
F 

R
V

 

 2.73 s 5.46 s 13.7 s 27.3 s 137 s 4.6 min 46 min 
1 1.2 1.2 1.2 1.2 1.2 1.2 1.2
2 1.4 1.4 1.4 1.3 1.3 1.3 1.3
5 2.0 1.9 1.9 1.9 1.8 1.8 1.8
10 3.0 2.8 2.7 2.7 2.7 2.7 2.7
50 11 10 10 10 9 9 9
100 21 19 18 18 18 18 18
1000 200 185 175 172 169 168 168
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A surface fitted to the Pareto optimal set may be somewhat misleading and very hard to 
translate to specific solutions. More informative can be a Pareto front at every desired 
level of CoS, i.e. a two-dimensional Pareto front is extracted at the 75% CoS level among 
all non-dominated designs with CoS ≥  75%, and a front at 25% is extracted among all 
designs with CoS ≥  25%. The gain is that actual solutions form the front instead of a 
contour derived from an approximate function. Figure 20 shows two-dimensional Pareto 
fronts at 0%, 75%, and 90% CoS levels in three-dimensional space. Figure 21 shows the 
corresponding contour plot in CTOC – OMOE space. The 0% CoS frontier is the same 
Pareto front that would have been found in a deterministic optimization with only CTOC 
and OMOE as objectives. It is the front determined regardless of CoS. 

Solution CTOC (M$) OMOE CoS 
CTOC DP 742 0.55 0.40 
OMOE DP 1394 0.83 0.38 
CoS DP 1285 0.65 0.97 
Best DP 967 0.66 0.86 
DDG51 1418 0.77 0.58 

Table 8 The performance of various design solutions. The Utopian vector is in bold. 
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CoS

0.9

Figure 19 The objective space scattered with Pareto optimal solutions. The “Best” 
design from Table 8 can be identified as the black colored solution pointed 
out by the arrow. This plot is extremely hard to interpret in printed form. 
The following figures may be more informative. 
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Note that the frontiers in Figures 20 and 21 do not always correspond to feasible designs. 
Only the actual solutions in the objective space have a feasible representation in the 
design space. The solutions are connected to visualize the Pareto front. Of course, there 
might be a feasible design along any line, but if so it has not been found in the 
optimization process. 

Interestingly, the 0% and 75% CoS level frontiers coincide for (CTOC, OMOE) = (941, 
0.66), encircled in Figure 21. This means that there is one design defining the 0% CoS 

800 1000 CTOC (M$) 1400
0.4

0.5

0.6

OMOE

0.8

75% 90%

Figure 20 Pareto fronts at 0%, 75% and 90% CoS levels in 3D objective space. 

Figure 21 Contour plot of Pareto fronts at 0%, 75%, and 90% CoS levels. Encircled is 
where the 0% and 75% CoS Pareto fronts coincide. 
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Pareto front that actually has a CoS level of at least 75%. In fact, the CoS value of that 
design is 0.82, which is the highest CoS of any design making up the 0% CoS frontier. 
This means a CTOC-OMOE optimization would have found a Pareto front with at least 
one design that outperforms the DDG51 DP in terms of CoS, even though CoS had not 
been an objective. The lowest CoS value among the Pareto solutions is 0.28, and the 
lowest CoS value among all feasible designs is 0.04. 

The process of extracting Pareto fronts at different levels among the Pareto optimal 
designs can obviously be performed for any objective, thus creating a more well-defined 
surface over a greater region of the objective space. Figure 22 shows Pareto fronts 
extracted at various levels for each one of the three objectives in the same manner as 
described for the CoS frontiers above. A surface is applied in Figure 23, providing a more 
complete description of the Pareto front. The surface color is defined the same way the 
“Best” DP is identified: brighter color equals a “better” design. 

800
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The optimization resulted in 260 design solutions that are probably “better” solutions 
than the DDG51 design. However, if the objective space is reduced to include Pareto 
solutions that outperform the DDG51 design in all aspects concurrently, i.e. cheaper, 
more effective, and yielding higher CoS levels, only a few are found. This is mainly 
because of the relatively high level of effectiveness achieved by the DDG51 design. This 
is no surprise since the OMOE component focuses on combat system evaluation (See 
4.3.3.2 Overall Measurement Of Effectiveness), and the DDG51 design is cramped with 
modern state of the art weaponry and sensors. There are only two solutions, DP1 and 

Figure 22 Wire-frame Pareto surface in three-dimensional objective space. Note that 
the CTOC and OMOE axes are shifted and that the OMOE axis is reversed. 
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DP2 in Table 9 and Appendix 5, in this reduced objective space that noticeably 
outperform the DDG51 DP. 

 

 

5.2.3 Evaluation of Confidence of Success Calculation 

To verify that the CoS calculation is performing accurately, the designs from Table 8 and 
Table 9 are compared with a MCS in the same manner as in Table 5. The probability 
differences between the MCS and CoS calculation for all criteria and CoS are tabulated in 
Table 10. 

The CoS calculated sustained speed constraint, VS, is failing marginally for the CTOC 
DP. In this case the VS LSF is close to the bare hull resistance, RT, mean value and the 
non-linearity of the VS response takes its toll in the low percentile regions of the total 

Solution CTOC OMOE CoS 
DDG51 1418 0.77 0.58 
DP1 1267 0.79 0.71 
DP2 1374 0.82 0.73 

 

Figure 23 The Pareto optimal set presented as a surface. 

Table 9 Pareto solutions that outperform DDG51 in all aspects. 
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weight, WT, distribution. Nevertheless, the CoS value is quite accurate because other 
LSFs are in effect and thus reduce the overall error. 

 

For the “Best” design, CoS is significantly under estimated. This is caused by the OMOE 
LSF. As seen before in Figure 15.2, the OMOE response is not well-behaved. Figure 24 
shows the OMOE function in the vicinity of the “Best” DP. The general shape is not any 
different than other DPs, but when comparing it to the DDG51 DP, shown in Figure 15.2, 
it is seen that here the deterministic value falls on the middle plateau rather than on the 
lower plateau as it did for the DDG51 DP. 

 

Criterion CTOC DP OMOE DP CoS DP Best DP DP1 DP2
CTOC -0.13 0.29 0.15 -0.10 -0.06 0.01
OMOE 0.01 0.01 0.01 8.10 0.01 0.01
TA 0.01 0.01 0.01 -0.24 -0.05 -0.01
DA 0.01 0.01 0.01 0.01 0.01 0.01
VS -1.11 -0.14 0.02 0.01 0.01 0.01
KW 0.01 0.01 0.01 0.01 0.01 0.01
GMmin -0.10 0.05 -0.02 0.02 -0.01 0.02
GMmax -0.01 0.08 -0.10 -0.23 -0.00 0.01
D10 0.01 0.01 0.01 0.01 0.01 0.01
E 0.33 -0.34 0.47 -0.03 0.10 0.83
CoS -0.38 -0.63 -0.04 6.02 0.09 0.84

 

Table 10 Probability difference (%) between the MCS and CoS calculation for various 
Pareto optimal solutions. 

Figure 24 OMOE response in RV space for the “Best” DP. 
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Again, while the approximated OMOE response plane is not good for all DPs, this 
particular DP is among the worst cases. Figure 25.1 shows the LSFs for the “Best” DP, 
and Figure 25.2 shows the approximated and exact OMOE LSFs. Note that the 
approximated OMOE LSF excludes many more designs than does the exact. 

 

 

 

5.2.4 Confidence of Success Criteria Revised 

Even though the OMOE LSF does not seem to be in effect for most of the attractive 
Pareto solutions, there is an obvious risk that the optimization has misinterpreted some 
solutions of interest because of the bad approximation of the OMOE response. It is quite 
clear that a function such as OMOE in the demonstration should be handled with care and 
perhaps should not be used as a CoS criterion. Since the OMOE LSF is not in effect for 
most of the attractive Pareto solutions, removing the OMOE criterion from the CoS 
calculation in the optimization of the demonstration model does not change the Pareto 
front to any great extent. This is because of the acceptance of the somewhat hefty OMOE 
degradation in combination with the influence of other criteria on CoS. With this in mind, 
CoS criteria were revised to focus on the confidence of achieving cost (CTOC). 

A limit of a 5% increase for CTOC was initially considered as an acceptable deviation 
from the deterministic value. Whether or not this is an economically justifiable 
divergence, the outcome of the optimization shows that this limit is rarely in effect. The 
CTOC distribution generated from the MCS of the DDG51 DP suggests that the 5% limit 
is about 2σ from the deterministic CTOC value, which might be too loose of a limit. By 
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Figure 25.1, left CoS LSFs and MCS in random variable space for the “Best” DP. 
Figure 25.2, right Exact and approximated OMOE LSFs for the “Best” DP. 
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reducing the CTOC limit state as much as possible without decreasing CoS for the 
DDG51 DP, the optimization algorithm is forced to focus on more economically robust 
solutions compared to the DDG51 design. Reduction of the CTOC limit to 1.2% has a 
significant effect on the optimization outcome. 

Figure 26 shows the Pareto front of a new optimization run, excluding OMOE from the 
CoS calculation and reducing the acceptable CTOC increase to 1.2%. All other settings 
were left unchanged. The Pareto optimal set is significantly squeezed in the CoS 
direction, compared to the original set in Figure 23. The CoS optimal solution, marked 
with ‘+’ in Figure 26, reaches only 73% CoS. Another difference from the initial run is 
that the DDG51 DP is among the non-dominated solutions, marked with ‘x’ in Figure 26. 
Hence, there are no solutions outperforming the DDG51 DP in all aspects. 

 

Since the Pareto optimal set is lacking high CoS value solutions (90%+) and the only 
significant change made to the model is the CTOC limit, it looks like the design space is 
unable to provide a solution with low CTOC variance. That is, the genetic algorithm 
(GA) cannot find a solution that is (much) more cost robust than the DDG51 design. 

Even though low CTOC variance is not an aim in the optimization, it is quite natural to 
presume that at least the solutions with higher CoS values will also exhibit low CTOC 
variance. In Figure 27 the CTOC coefficient of variance, δ, of all feasible designs found 
by the GA is contour plotted in CTOC – OMOE objective space. The coefficient of 
variance, δ = σ / μ, is calculated utilizing the sensitivity based formula, equation 2. 

There are almost 17,000 feasible solutions, of which some may coincide in the objective 
space. There is no guarantee that any coinciding or neighboring solutions yield similar 
CTOC δ. Figure 27 gives an indication of the general relation between the objectives and 

Figure 26 Pareto front with revised CoS criteria. The DDG51 design is marked with 
‘x’ and the maximal CoS solution is marked with ‘+’ (both are white). 
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CTOC δ. The trend of increasing CTOC yielding reduced δ is evident. However, it is not 
possible to single out any obvious favorable region. Marked with ‘x’ in the upper right 
corner of Figure 27 is the DDG51 design; this region shows relatively low δ values. In 
the region with low δ values closer to the center of the plot is the maximum CoS solution, 
marked with ‘+’. Even though not totally circumstantial, the plot does not suggest that the 
CoS solution will be found in this region, only that it is more likely. 
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The contour plot in Figure 28.1 covers the CTOC coefficient of variation for the Pareto 
optimal set only, 280 non-dominated (nor coinciding) solutions. Still, neighboring 
solutions do not necessarily show similar characteristics, except for the objective values 
including CoS. With increasing distance from the 0% CoS Pareto front, the GA has 
clearly favored solutions with low CTOC δ to be able to increase CoS. The ‘x’ lies within 
a region more accurately reflecting the actual CTOC δ of the DDG51 design, which is 
just below 2.4%. Also shown in Figure 28.1 is the probability of CTOC meeting 
expectations. According to the probability levels, it looks like there might be a good 
chance of achieving high CoS values in, for example, the vicinity of (CTOC, OMOE) = 
(1400, 0.72). This region yields at least 72% probability in meeting CTOC expectations. 

Figure 28.2 shows the reliability of the objective space, i.e. it compiles the probability of 
fulfilling constraint requirements for the constraint having the lowest such probability 
(worst case) for each solution. The most reliable solutions, 93 – 97% fulfillment 
probability, can be found in the region around (CTOC, OMOE) = (1050, 0.62). 
Reliability around (1400, 0.72) is over 84%. 

Figure 27 CTOC variance expressed with δ% for all feasible solutions generated in the 
optimization process. 
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Due to the severe impact of the reduced CTOC limit, CTOC variance is expected to be 
the weakest link in the quest for high CoS solutions. This expectation is confirmed by 
comparing the probability levels of Figures 28.1 and 28.2. Figure 29.1 merges these 
figures and displays the least favorable probability of any CoS criteria in the objective 
space (considering constraints and CTOC deviation). The CTOC criterion is prevailing 
throughout the objective space (note the similarity to Figure 28.1), except in some 
regions close to the 0% CoS Pareto front. 

In Figure 29.1, the region around (1400, 0.72) still looks promising for finding high CoS 
solutions. However, since the sensitivity analysis does not reflect criteria correlation, that 
region actually does not yield the highest CoS values. As seen earlier, in Figures 15.1 and 
15.4, the VS constraint error value function has its gradient almost orthogonal to CTOC, 
and thus reduces CoS. Also, some constraints are implemented on the opposite side of the 
RV mean values from the CTOC LSF (see Figure 18).  Thus while each criteria may 
exclude a small portion of the random variable space, those portions may not overlap. 

This means that even though a solution shows robustness or reliability, there is no 
guarantee that the solution has a favorable CoS. To determine an accurate CoS for an 
individual solution, correlation has to be part of the equation. Even though the reliability 
is above 72% around (1400, 0.72) in Figure 29.1, the confidence of success in this region, 
as seen in Figure 29.2, is predicted to be only about 60%.  The criteria correlation 
influence on CoS is apparent.  

 

Figure 28.1, left Pareto optimal set CTOC coefficient of variance. 
Figure 28.2, right Worst case constraint reliability. 
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The solutions plotted in the last couple of figures are not obtained in an optimization for 
reliability nor robustness in the common sense. Hence, the comparison with CoS is not 
completely fair and is purely done to emphasize the effect of criteria correlation. 

Figure 29.1, left Worst case probability of feasibility of the optimal solutions. 
Figure 29.2, right Contour plot of the Pareto front in Figure 26. 
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6 DISCUSSION 

The introduction of the term CoS is not done in order to undermine or taint the term 
probability of success (POS), established by D. N. Mavris et al. CoS is more or less a 
layman appealing namesake of POS, explicitly intended as an unbiased objective in the 
optimization process. 

Implementation of MV in the CoS calculation in the demonstration is done quite roughly, 
and it would most certainly be possible to reduce both the errors and computational time 
without too much effort. However, the general problem with approximation of non-linear 
functions will remain. A first order Taylor series expansion, i.e. MV, isn’t enough to 
approximate a not-so-well-behaved response, e.g. OMOE. Furthermore, MV will not 
reveal that there might be a problem with the approximation of this response. One extra 
system evaluation at the MPP may identify approximation problems. One extra 
evaluation should be enough to reveal functions such as OMOE in the demonstration as 
critical for a first order approximation. This extra evaluation could also be used to 
improve the LSF approximations of all criteria. Adjusting MV with extra evaluations is a 
step closer to AMV, but the necessity of a complete CDF correction is questionable 
because of the increased computational burden, and highly non-linear or discontinuous 
functions will not be approximated accurately anyway. Since the Taylor series expansion 
can also be used for sensitivity measures, additional metrics such as criteria variance can 
be incorporated in the optimization process. This would allow implementation of, for 
example, low variance objectives or constraints. 

Separating objectives and constraints in the CoS calculation for reliability and robustness 
respectively may be an interesting (and more traditional) approach. This would mean 
adding more objectives and/or constraints, which would ultimately prolong the 
optimization. Also, if the objective space is expanded beyond three dimensions, it may be 
more difficult for the decision maker to interpret the optimization results. 

6.1 Demonstration 

CoS is defined as the probability that a design solution will perform as predicted. The 
calculated CoS value for the Arleigh Burke class design in the simplified model used in 
the demonstration is just below 0.6, which suggests that there is a 40% risk that this 
design would not live up to expectations. However, calculations and assumptions in this 
work are only an academic exercise to demonstrate the capability and usability of CoS 
and MV. To be able to do a CoS calculation in closer agreement with reality, there is a 
need to accurately represent all sources of uncertainty. 

Even though the approach to calculate CoS in this paper looks promising for well-
behaved responses, further exploration has to be done. Only two normally distributed 
random variables have been used within the system, and the probabilistic characteristics 
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of those are only assumed; they have no statistical background. The actual characteristics 
of the uncertain variables have to be explored before implementation. 

The incorporation of more variables will call for a greater number of iterations to 
numerically derive the approximate response functions and thus increase the total 
computational burden (See Table 7). Also, the effect of additional variables on criteria 
responses has to be explored. If additional variables are shown to have significant 
nonlinear effects on responses, other approximation methods might have to be 
considered. If the number of uncertain variables becomes extremely large, maybe even 
the use of Descriptive Sampling1,7 will pay off, since this method, like MCS, is 
insensitive to the number of variables.  
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7 CONCLUSION 

By including CoS in the optimization process, decision makers will have a better chance 
of choosing and/or further evolving a both robust and reliable concept or design, i.e. 
decide on a design with satisfactory assurance of performing as predicted.  

The demonstration emphasizes the importance of looking at the correlation of all design 
criteria concurrently. For example, commonly formulated robust or reliability 
optimization, where low criteria variance almost becomes an aim in its own, does not 
reflect the actual CoS of a design solution since correlation is not considered. A 
reliability formulation may be sufficient if it is possible (and desirable) to find solutions 
with extremely high reliability for each individual criteria concurrently. However, such 
solutions ought to be more interesting (and desirable) for mass production designs than 
for large one-off or short series products, e.g. navy vessels. 

Calculation of CoS via MV, i.e. first order Taylor series expansion, does not guarantee 
that the objective space has been accurately explored in the optimization process, unless 
all CoS criteria functions are known to be well-behaved throughout the objective space. 
For this reason, a first order approximation of criteria responses in unknown objective 
space should only be used as guidance in preliminary or conceptual design situations. 
However, one or a few extra system evaluations at each DP may be enough to reveal high 
risk of poor accuracy in the approximation and thus allow special treatment of those 
individuals. 

For systems with few uncertainties, MV is quite efficient. In the demonstration, with two 
embedded uncertainties, CoS is calculated with only 3 system evaluations and it closely 
approximates a MCS of several thousand system evaluations. 
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APPENDIX 1: Model input parameters, DDG51 DP and design variable boundaries. 
 
 
Parameter  DDG51 min max parameter type 
Emin Endurance range threshold (NM) 3500 fixed constraint 
GMmax Max GM to beam ratio 0.15 fixed constraint 
GMmin Min GM to beam ratio 0.05 fixed constraint 
Vsmin Min sustained speed (knots) 28 fixed constraint 
B Waterline beam (m) 18 9 27 continuous variable 
Cp Prismatic coefficient 0.615 0.51 0.72 continuous variable 
Cx Section coefficient 0.822 0.72 0.93 continuous variable 
D10 Hull depth at station 10 (m) 12.7 6 19 continuous variable 
Lwl Waterline length (m) 142 118 166 continuous variable 
T Draft (m) 6.1 3 10 continuous variable 
TS Stores duration (days) 60 60 90 continuous variable 
VD Deckhouse volume (m3) 5437 1000 6500 continuous variable 
Ve Endurance speed (knots) 20 20 40 continuous variable 
AAW Anti-Air Warfare system 2 1 4 discrete variable 
ASuW Anti-Surface Warfare system 2 1 2 discrete variable 
ASW Anti-Submarine Warfare system 1 1 5 discrete variable 
BALtyp Ballast type 1 0 1 discrete variable 
C4I C4 and intelligence system 1 1 2 discrete variable 
CDHmat Deckhouse material type 1 1 2 discrete variable 
Gsys Generator system 3 1 4 discrete variable 
MCM Mine Counter Measures 3 1 3 discrete variable 
NCPS Collective protection system 2 0 2 discrete variable 
Nfins Pair of fins 0 0 1 discrete variable 
NSFS Naval Surface Fire Support system 2 1 3 discrete variable 
Psys Propulsion system 6 1 15 discrete variable 
SEW Space and Electronic Warfare system 1 1 3 discrete variable 
STK Strike warfare system 2 1 2 discrete variable 
VLS Vertical Launching System 2 1 4 discrete variable 
Ca Correlation allowance 0.0004 fixed parameter 
Cman Manning factor 1 fixed parameter 
CRD Raised deck coefficient 0.8 fixed parameter 
E24mf Electrical 24 hour design load margin 1.05 fixed parameter 
EDmf Electrical design and growth margin 1.05 fixed parameter 
EFmf Electrical fault margin factor 1.05 fixed parameter 
flare Hull flare angle (degrees) 10 fixed parameter 
FP Profit margin 0.1 fixed parameter 
HDK Mean deck height 2.9 fixed parameter 
KGmarg Center of gravity margin factor 0.25 fixed parameter 
LS Service life (years) 30 fixed parameter 
Pmf Propulsion margin factor 1.08 fixed parameter 
RD Discount rate 0.1 fixed parameter 
RI Average lead ship inflation rate 10 fixed parameter 
RIF Average follow ship inflation rate 5 fixed parameter 
RP Production rate (per year) 2.5 fixed parameter 
Wmf Weight marign factor 0.005 fixed parameter 
NS Number of ships 20 fixed parameter 
NYbase Base year 1985 fixed parameter 
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APPENDIX 2: OMOE weight factor vector. 
 
All performance attributes produce a Measure Of Performance (MOP) value between 0 
and 1. The dot product of the MOP and weight factor vector generate the OMOE value, 
ranging between 0 and 1. The weight factors are attuned to the mission/ship type at hand, 
based on expert opinion. 
 
 
 MOP weight factor Performance attribute  
 0.090 Anti-Air Warfare system  
 0.088 Anti-Surface Warfare system  
 0.065 Anti-Submarine Warfare system  
 0.084 Mine Counter Measures  
 0.048 Naval Surface Fire Support system  
 0.097 C4 and intelligence system  
 0.055 Space and Electronic Warfare system  
 0.034 Strike warfare system  
 0.082 Vertical Launching System  
 0.052 Endurance Range  
 0.032 Stores Duration  
 0.019 Sustained Speed  
 0.049 Seakeeping  
 0.032 Number of shafts  
 0.043 Structural Vulnerability  
 0.032 Number of shafts  
 0.014 Collective protection system  
 0.012 IR Signature  
 0.014 Acoustic Signature  
 0.018 Topside Radar Cross Section  
  0.037 Magnetic Signature / Degaussing  
  1.000 
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APPENDIX 3: Numerical differentiation, Visual Basic script. 
 
Sets up the CoS (numerical differentiation) GUI in ModelCenter and produce the 
necessary criteria responses for CoS calculation. 
 
 
distVariable.autoGrow = true 
distResponse.autoGrow = true 
createRefProps() 
 
sub run 
 numVar = distVariable.length 'number of uncertain variables 
 numResp = distResponse.length 'number of criteria 
 Z.setDimensions numVar+1,numResp 'criteria response matrix 
 X.setDimensions numVar+1,numVar 'RV input matrix 
 Zls.setDimensions numResp 'limit state values 
 UL.setDimensions numResp 'specify infeasible regions 
 
 iter = 0 
 break = 0 
 
 do until iter > numVar 'generate Z and X via distVar (i.e. Δ-step) 
 
  if iter = 0 then 
   distVariable(numVar - 1) = 0 
  end if 
 
  if iter > 0 then 
   distVariable(iter - 1) = distVariable.getRefPropValue("step",iter-1) 
  end if 
 
  if iter > 1 then 
   distVariable(iter - 2) = 0 
  end if 
 
  for i = 0 to numResp - 1 
   Z(iter,i) = distResponse(i) 
 
   if iter = 0 then 
    UL(i) = distResponse.getRefPropValue("overUnder",i) 
    limit = distResponse.getRefPropValue("limitState",i) 
 
    if limit = 0 then 
     Zls(i) = 0 
    else 
     Zls(i) = distResponse(i)*(1+limit) 
    end if 
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    if i > 1 then 
     if distResponse(i) < 0 then 
      break = numVar 
     end if 
    end if 
   end if 
  next 
 
  iter = iter + 1 + break 
  totIter = totIter + 1 
 loop 
 
 for i = 0 to numVar - 1 
  X(i+1,i) = distVariable.getRefPropValue("step",i) 
 next 
end sub 
 
sub createRefProps() 'creates the appropriate reference properties in the GUI 
 dim prop 
 set prop = distVariable.createRefProp( "step", "double" ) 
 prop.title = "Step" 
 prop.description = "step size of N(0,1)" 
 set prop = distResponse.createRefProp( "limitState", "double" ) 
 prop.title = "Limit state ratio from mean" 
 prop.description = "limit sate" 
 set prop = distResponse.createRefProp( "overUnder", "double" ) 
 prop.title = "Over (1) / under (0) not wanted" 
 prop.description = "Values over (1) / under (0) not wanted" 
end sub 
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APPENDIX 4: Probability calculation, Matlab. 
 
Calculates CoS and each individual criterions probability of feasibility. 
 
 
respnum = length(Z(1,:));   %number of responses of interest 
varnum = length(Z(:,1)) - 1;  %number of standard normal distributed variables 
X = [ones(max(size(X)),1) X];  %variable expansion values 
span = 5;     %+/- limiting of (standard normal) distributed variables 
respjpdf = []; 
meanZ = Z(1,:)';    %mean/deterministic value of each criteria 
if any(Z(1,3:respnum)<0)   %catch infeasible mean value 
 CoS = 0; 
 respPoF = zeros(respnum,1); 
 Z(2:varnum+1,:) = 0; 
 A = zeros(varnum+1,respnum); 
else 
 for i = 1:respnum 
  A(:,i) = X \ Z(:,i);  %produces A vector for every criteria 
 end 
 t = logspace(0,log(span+1)/log(10),ceil(span*25))-1; 
 tint = [t 0]-[0 t]; 
 t = [0 t] + tint/2; 
 t = t(2:length(t)-1); 
 tint = tint(2:length(tint)-1); 
 ttemp = [-rot90(t); t']; 
 for i = 1:respnum 
  [Yz,Xz,LS] = ndgrid(A(3,i)*ttemp,A(2,i)*ttemp,A(1,i)-Zls(i)); 
  check = Xz + Yz + LS; %create limit state values for all coordinates 
  if UL(i) = = 1  %UL: 1 - removal of values > Zls , 0 - removal of values < Zls 
   area = (check + abs(check)); %OBS, creates zeros 
  else 
   area = (check - abs(check)); %OBS, creates zeros 
  end 
  respjpdf(:,:,i) = isnan(area ./ area); %creates ones in place of NaN 
 end 
 domain = prod(respjpdf,3); 
 jpdf = (normpdf(t)' * normpdf(t)) .* (tint' * tint); 
 jpdf = [fliplr(jpdf) jpdf]; 
 jpdf = [flipud(jpdf); jpdf]; 
 CoS = sum(sum(domain .* jpdf)); %Calculate the CoS value 
 respPoF = squeeze(sum(sum(respjpdf .* repmat(jpdf,[1 1 respnum])))); %Probability of feasibility 

%for each criterion 
end 
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APPENDIX 5: DDG51 and Pareto optimal solutions. 
 
The table shows the characteristics of some of the design solutions of the Pareto optimal 
set from the optimization run presented in section 5.2 Optimization, implementing 
Confidence of Success. 
 
 

Solution DDG51 DP CTOC DP OMOE DP CoS DP Best DP DP1 DP2 
        
Objective        
CoS 0.58 0.40 0.38 0.97 0.86 0.71 0.73
CTOC(M$) 1417.6 741.9 1394.1 1285.4 967.0 1267.3 1374.5
OMOE 0.77 0.55 0.83 0.65 0.66 0.79 0.82
        
Constraint error value      
TA 0.09 0.29 0.19 0.21 0.10 0.13 0.16
DA 0.31 0.06 0.05 0.87 1.06 0.06 0.04
VS 0.15 0.01 0.01 0.07 0.14 0.11 0.09
KW 0.16 0.97 0.20 0.44 0.67 0.37 0.06
GMmin 0.68 0.92 0.62 0.85 1.06 1.41 0.72
GMmax 0.44 0.36 0.46 0.38 0.31 0.20 0.43
D10 0.11 0.02 0.13 0.19 0.03 0.09 0.13
E 0.25 0.06 0.06 0.75 1.45 0.69 0.58
        
Individual CoS criterion feasibility probability    
CTOC 0.98 0.97 0.97 0.98 0.98 0.98 0.97
OMOE 1.00 1.00 1.00 1.00 0.91 1.00 1.00
TA 0.96 1.00 1.00 1.00 0.96 0.98 0.99
DA 1.00 1.00 1.00 1.00 1.00 1.00 1.00
VS 1.00 0.75 0.72 1.00 1.00 1.00 1.00
KW 1.00 1.00 1.00 1.00 1.00 1.00 1.00
GMmin 0.97 0.99 0.90 0.99 1.00 1.00 0.93
GMmax 1.00 1.00 1.00 1.00 1.00 0.93 1.00
D10 1.00 1.00 1.00 1.00 1.00 1.00 1.00
E 0.62 0.52 0.52 0.98 0.97 0.78 0.73
        
Embedded attribute      
RT (kN) 100889 71944 108885 304106 94410 101610 109821
WT (t) 7905 6001 10878 7914 6836 9061 10094
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Solution DDG51 DP CTOC DP OMOE DP CoS DP Best DP DP1 DP2 
        
Design variable       
B (m) 18.0 16.1 20.7 18.6 17.7 20.1 20.6
Cp 0.615 0.51 0.51 0.60 0.51 0.51 0.51
Cx 0.822 0.72 0.72 0.80 0.80 0.72 0.72
D10 (m) 12.7 12.6 16.6 15.8 13.4 15.4 16.7
Lwl (m) 142.0 146.2 155.9 140.0 147.7 151.7 155.8
T (m) 6.1 6.8 8.7 8.0 7.4 8.3 8.7
TS (days) 60 68 86 82 69 80 69
VD (m3) 5437 1100 4000 2400 2400 2600 4000
Ve (knots) 20.0 20.0 20.1 27.7 20.7 20.0 20.2
AAW 2 4 2 4 4 4 2
ASuW 2 1 1 1 1 1 1
ASW 1 5 2 4 5 1 2
BALtype 1 1 0 1 1 0 0
C4I 1 1 1 1 1 1 1
CDHmat 1 2 2 1 1 1 1
Gsys 3 3 3 3 3 3 3
MCM 3 2 1 2 1 1 1
NCPS 2 0 1 0 0 2 1
Nfins 0 0 0 0 0 0 1
NSFS 2 1 1 2 1 1 1
Psys 6 2 12 6 6 6 6
SEW 1 1 1 1 1 1 1
STK 2 2 1 2 2 2 1
VLS 2 4 3 4 4 3 4
 


