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Multiple-Objective Optimization in Naval Ship Design
ABSTRACT 
This paper presents an optimization methodology 
that includes three important components necessary 
for a systematic approach to naval ship concept de-
sign.  These are: 
• An efficient and effective search of design space 

for non-dominated designs 
• Well-defined and quantitative measures of ob-

jective attributes 
• An effective format to describe the design space 

and to present non-dominated concepts for ra-
tional selection by the customer 

A Multiple-Objective Genetic Optimization 
(MOGO) is used to search design parameter space 
and identify non-dominated design concepts based 
on life cycle cost and mission effectiveness.  A non-
dominated frontier and selected generations of feasi-
ble designs are used to present results to the cus-
tomer for selection of preferred alternatives.  A na-
val ship design application is presented.  

INTRODUCTION 
This paper describes the application of multiple-
objective genetic optimization to a naval ship design 
problem.  Various options and variables exist for 
combat system selection, engine selection, hull form 
parameters, manning, endurance and mobility.  
Critical objective attributes considered are mission 
effectiveness and cost.  These are calculated for each 
design. Risk requires a similar treatment, and will be 
addressed in subsequent work. 

Effectiveness, cost and risk are dissimilar attributes, 
and require different metrics.  They cannot rationally 
be combined into a single objective attribute. They 
must be presented individually, but simultaneously 
in a manageable format for tradeoff and decision-
making.  They are relatively abstract objectives that 
are sometimes difficult to measure quantitatively.  
The effectiveness of a few naval ship concepts can 
be analyzed using war gaming and other complex 
models, but this approach is not practical when 
evaluating many concepts in a structured search of 

design space.  This paper presents a methodology for 
calculating an Overall Measure of Effectiveness 
(OMOE) index using expert opinion to synthesize 
diverse inputs such as defense guidance, mission 
requirements, threat, war game results and experi-
ence.  
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Figure 1.  Two-Objective Attribute Space 

A non-dominated solution, for a given problem and 
constraints, is a feasible solution for which no other 
feasible solution exists which is better in one objec-
tive attribute and at least as good in all others.  
Figure 1 illustrates this concept for a two-objective 
(cost-effectiveness) problem. In this notional exam-
ple, cost is minimized and effectiveness is maxi-
mized. The heavy curve represents non-dominated 
solutions or the Pareto-optimal frontier.  The pre-
ferred design should always be one of these non-
dominated solutions.  Its selection depends on the 
decision-maker’s preference for cost and effective-
ness.  This preference may be affected by the shape 
of the frontier and cannot be rationally determined a 
priori. 
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Figure 2.  Optimization Process 



 

The multiple objective optimization process used in 
this application is illustrated in Figure 2.  An initial 
population of designs is created by random selection 
of design variables within the design space.  In the 
application described in this paper, a chromosome or 
design vector with 26 design parameters represents 
each design.  The ships defined by these chromo-
somes are balanced, and evaluated using a ship syn-
thesis model. This produces a cost and OMOE value 
for each design.  Next, designs are sorted into layers 
of dominance.  Each layer contains designs that are 
dominant to subsequent layers. A geometrically 
decreasing probability of selection is assigned to 
each design based on its layer. Designs are penalized 
for infeasibility.  After selection probabilities are 
calculated, selection of the next generation is per-
formed.  Once a surviving population is selected, 
pairs are selected at random for crossover of design 
parameters (genes), and a small percentage of genes 
in selected design chromosomes are chosen ran-
domly to mutate. These genetic operations produce 
new and, on the average, better designs. After these 
operations are completed, the designs in the new 
population are sent to the ship synthesis model and 
the process cycles until convergence.  Each cycle 
defines a new generation.  The final generations of 
this process converge to a non-dominated or Pareto 
frontier. 

OBJECTIVE ATTRIBUTES 

Overall Measure of Effectiveness (OMOE) 
Early in the naval ship design process, designers and 
engineers require a working model to quantify op-
erators’ and policy-makers’ definition of mission 
effectiveness, and define its functional relationship 
to ship and ship system measures of performance 
(MOPs).  This quantitative assessment of effective-
ness is fundamental to a structured optimization 
process. 

There are a number of inputs which must be inte-
grated when determining overall mission effective-
ness in a naval ship: 1) defense policy and goals; 2) 
threat; 3) existing force structure; 4) mission need; 
5) mission scenarios; 6) modeling and simulation or 
war gaming results; and 7) expert opinion.  Ideally, 
all knowledge about the problem could be included 
in a master war-gaming model to predict resulting 

measures of effectiveness for a matrix of ship per-
formance inputs in a series of probabilistic scenarios.  
Regression analysis could be applied to the results to 
define a mathematical relationship between input 
ship MOPs and output effectiveness.  The accuracy 
of such a simulation depends on modeling the de-
tailed interactions of a complex human and physical 
system and its response to a broad range of quantita-
tive and qualitative variables and conditions includ-
ing ship MOPs.  Many of the inputs and responses 
are probabilistic so a statistically significant number 
of full simulations must be made for each set of dis-
crete input variables.  This extensive modeling capa-
bility does not yet exist for practical applications. 

An alternative to modeling and simulation is to use 
expert opinion directly to integrate these diverse 
inputs, and assess the value or utility of ship MOPs 
in an OMOE function.  This can be structured as a 
multi-attribute decision problem.  Two methods for 
structuring these problems dominate the literature: 
Multi-Attribute Utility Theory (Keeney and Raiffa 
1976) and the Analytical Hierarchy Process (Saaty 
1996).  In the past, supporters of these theories have 
been critical of each other, but recently there have 
been efforts to identify similarities and blend the 
best of both for application in Multi-Attribute Value 
Theory (MAVT) functions (Belton 1986).  This 
approach is adapted here for deriving an OMOE. 

The analytical hierarchy process (AHP) is a tool 
developed by Saaty (1996) for solving multi-
attribute decision problems.  It uses a hierarchical 
structure to abstract, decompose, organize and con-
trol the complexity of decisions involving many 
attributes, and it uses informed judgment or expert 
opinion to measure the relative value or contribution 
of these attributes and synthesize a solution.  Pair-
wise comparison and an eigenvalue approach extract 
and quantify this relative value.  The method allows 
and measures inconsistency in value measurement, 
and is able to consider quantitative and qualitative 
attributes.  

A hierarchy is a simplified abstraction of the struc-
ture of a system used to study and capture the func-
tional interactions of its attributes, and their impact 
on total system behavior or performance.  It is based 
on the assumption that important system entities or 
attributes, which must first be identified, can be 
grouped into sets, with the entities of one group or 
level influencing the entities of the neighboring 



 

group or level.  One can conceptualize a hierarchy as 
a bottoms-up synthesis of influence on the top level 
behavior of a system, or as the top down distribution 
of influence of top level behavior to low level attrib-
utes.  Alternatives are compared in terms of the low-
est level attributes and this comparison is rolled up 
through hierarchy levels to an assessment of relative 
overall system behavior or performance.  

The first step in building an AHP hierarchy is to 
identify critical attributes affecting the decision or 
system behavior.  The level of detail of these attrib-
utes depends on the decision being made.   These 
attributes are then organized into a hierarchy struc-
ture that follows a logical breakdown or categoriza-
tion as shown in Figure 3.  In this application, sys-
tem measures of effectiveness (MOPs) comprise the 
bottom hierarchy level.  
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Figure 3.  Notional Top Level OMOE Hierarchy 

Next, the relative influence of each attribute on sys-
tem performance and attribute values for each alter-
native must be estimated.  Saaty recommends a nine 
level dominance scale for the pair-wise comparison 
of attribute influence on higher level attributes.  This 
results in a “ratio scale” comparison of attributes.  
Pair-wise comparison or cardinal values may be 
used to assign attribute values for each alternative.  
Pair-wise comparison generates more information 
than is necessary with individual absolute measure-
ments or estimates.  The AHP synthesizes and 
evaluates the consistency of this redundant informa-
tion and calculates best-fit relative values.  

Although the AHP was developed primarily for 
comparison of management alternatives, it has also 
proven to be a robust method for application in 
MAVT.   The AHP provides a structured method for 
deriving an additive weighted value function, and by 
careful application can also be used to derive non-

linear attribute value or utility without the more 
cumbersome lottery comparison approach. 

The OMOE function must include all important 
effectiveness/performance attributes, both discrete 
and continuous, and ultimately be used to assess an 
unlimited number of ship alternatives.  Successful 
application AHP/MAVT to this problem requires a 
very structured and disciplined process as follows: 

1. Identify, define and bound decision attributes.  
Identify critical mission scenarios.  Identify Meas-
ures of Effectiveness (MOEs) for each mission sce-
nario.   Establish goals and thresholds for all MOEs.   
Identify ship MOPs critical to mission scenario 
MOE assessment and consistent with the current 
design hierarchy level.  Set goals and thresholds for 
these MOPs. 
2. Build OMOE/MOP hierarchy.  Organize MOEs 
and MOPs into a hierarchy as shown in Figure 3, 
with specific ship MOPs at the lowest level.  Asso-
ciation with the performance of a discrete system 
may define some MOPs.  Others are continuous 
performance variables such as sustained speed. 
3. Determine MOP value and hierarchy weight-
ing factors.  Use expert opinion and pair-wise com-
parison to determine MOP value and the quantitative 
relationship between the OMOE and MOPs. 
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Figure 4.  Discrete MOP Value Function 

Figure 4 illustrates an example value index for ship 
weapons capacity derived using pair-wise compari-
son.   In this model weapons capacity is both a dis-
crete MOP, where it represents the performance 
associated with this capacity, and a discrete design 
parameter.  The metric for this MOP is the number 
of vertical launch missile cells.  The MOP threshold 
is 32 cells, and the MOP goal is 128 cells.  Thresh-
olds represent absolute minimum acceptable per-
formance.  Goals typically represent either a point of 



 

diminishing marginal value or a technology limita-
tion.  The pair-wise comparison is structured to 
compare the relative value of MOP options to 
achieve a particular MOE (Ordnance on shore target, 
etc.) in a specific scenario. 

Figure 5 illustrates an example value index for ship 
sustained speed.  Sustained speed is a continuous 
MOP.  It is a function of the ship design, primarily 
the hull form and installed power.  The threshold for 
this MOP is 26 knots, and the goal is 32 knots.   
Pair-wise comparison is accomplished for discrete 
values of speed at one knot increments, and a value 
function is fit to these results to calculate intermedi-
ate values.  Again, the pair-wise comparison is struc-
tured to compare the relative value of MOP options 
to achieve a particular MOE (Ordnance on target, 
etc.) in a specific scenario. 

Once MOP value is determined for all MOPs, pair-
wise comparison is used to determine MOP and 
MOE hierarchy weights.  In this case the pair-wise 
comparison is structured to compare the relative 
value of achieving the goal in the first MOP or MOE 
and only the threshold in the second, versus achiev-
ing only the threshold in the first MOP and the goal 
in the second.  This pair-wise comparison is accom-
plished at all levels of the hierarchy.  An eigenvalue 
approach is used to extract and quantify average 
relative values and an inconsistency measurement.  
An OMOE function, OMOE = g(MOP), is derived 
from these weights and from the MOP value func-
tions. 

Life Cycle Cost 
Life Cycle Cost (LCC) as defined for this analysis 
includes only follow-ship acquisition cost, life cycle 
fuel cost and life cycle manning cost.  Annual life 
cycle costs are discounted to the base year, using an 
annual discount rate of 7%.  Construction costs are 
estimated for each weight group using weight-based 
equations adapted from an early ASSET cost model 
(NSWC Carderock 1990).  The base year is assumed 
to be 2000.  Historical costs are inflated to the base 
year using a 5% average annual inflation rate from 
1981 data.  Producibility is also considered in the 
construction cost equations.  Producibility factors 
are based on hull form characteristics, machinery 
room volume, and deck height.   
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Figure 5.  Continuous MOP Value Function 

SHIP SYNTHESIS MODEL 
The ship synthesis model used in this research is 
based on a model originally developed by Reed 
(1976).  Reed’s model was improved and modified 
specifically for use with a single objective genetic 
algorithm by Shahak (1998), and subsequently for a 
multiple-objective genetic optimization (MOGO) by 
Brown and Thomas (1998).  Figure 6 illustrates the 
basic process used in this model.  Most recently 
modules have been added to interface with a payload 
database, and calculate acquisition cost, seakeeping 
index and effectiveness. 
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Figure 6.  Ship Synthesis Model 

In the genetic optimization application of this syn-
thesis model, input design parameters (genes) are 
specified in a ship design vector (chromosome).  
Design parameters, ranges and increments for a 
guided missile destroyer (DDGx) application are 
listed in Table 1.  Specific payload systems with 
weight, area and power requirements are associated 
with each payload description.  The ship is balanced 
and resulting MOPs, OMOE, and Life Cycle Cost 
(LCC) are calculated.  The MOGO uses these results 
to assess fitness and select the next generation of 
ship designs. 



 

Table 1.  DDGx Design Parameter Descriptions 

Design Parameter Description 
1 - Prismatic Coefficient (Cp) 0.5-0.7; 

20 increments 
2 - Maximum Section Coefficient 

(Cx) 
0.7-0.9; 
20 increments 

3 - Displacement to Length Ratio 
(C L) 

60.0-90.0; 
15 increments 

4 - Beam to Draft Ratio (CBT) 2.8-3.7; 
9 increments 

5 - Length to Depth Ratio (CD10) 10.0-15.0; 
10 increments 

6 - Raised Deck Ratio (CRD) 0.0-0.4; 
4 increments 

7 - Manning Factor (CManning) 0.5-1.0; 
5 increments 

8 - AAW Payload 1 - Theater TBMD 
2 - Area TBMD 
3 - Area Defense 
4 - Limited Area  

Defense 
5 - Self Defense 

9 - ASUW Payload 1 - Long Range 
2 - Medium Range 
3 - Short Range 
4 - Self Defense 

10 - ASW Payload 1 - Area Domonance 
2 - Adverse ASW  

Environment 
3 - Good ASW  

Environment 
4 - Torpedo Defense 

11 - C4I Payload 1 - Advanced 
2 - Current 

12 - MCM Payload 1 - Limited Clearance 
2 - Mine Recon 
3 - Mine Avoidance 
4 - Limited Mine  

 Advoidance 
13 - NSFS Payload 1 - Advanced (VGAS,   

NATACMS, ATWCS) 
2 - Full 
3 - Medium 
4 - Minimum 

14 - SEW Payload 1 - Advanced 
2 - Current 

15 - Weapons Capacity (VLS) 1 - 128 cells 
2 - 64 cells 
3 - 32 cells 

16 – Range or fuel capacity 1 - 10000 nm 
2 - 7000 nm 
3 - 5000 nm 
4 - 4000 nm 

17 - Stores Duration 1 - 60 days 
2 - 45 days 

18 - Shafts 1 or 2 
19 - CPS 0 (none) or 1 (full) 
20 - ICR or GT 0(ICR) or 1(LM2500) 

Balance requires that physical and functional con-
straints are satisfied.  The ship must float.  It must 
have adequate stability, volume, area, electric power, 
etc.  It must provide required capabilities and satisfy 
minimum thresholds for performance.  The ship 

synthesis model uses regression-based equations for 
weight, volume, area and electric power.  Resistance 
is calculated using Gertler/Taylor Standard Series 
(1954).  Seakeeping is assessed using the McCreight 
Index. 

OPTIMIZATION 
Ship design optimization is not a new concept, but it 
poses difficult computational problems (Leopold 
1965, Mandel and Leopold 1966, Mandel and 
Chryssostomidis 1972).  As discussed previously, 
ship design space is non-linear, very discontinuous, 
and bounded by a variety of constraints and thresh-
olds.  These attributes inhibit effective application of 
mature gradient-based optimization techniques in-
cluding Lagrange multipliers, steepest ascent meth-
ods, linear programming, non-linear programming 
and dynamic programming.  Genetic algorithms are 
very effective with this type of problem and design 
space.  They provide an additional advantage in 
multiple objective problems because they work with 
a population of individual designs, and the popula-
tion can be forced to spread out over the non-
dominated frontier in a single optimization. 

The genetic or evolutionary algorithm in this optimi-
zation uses decimal floating-point gene coding and a 
finite resolution and range or set of values for design 
variables.  Although a binary-encoded alphabet of-
fers some advantages, and its use is widely accepted, 
an optimization of the genetic algorithm parameters 
(optimization of the optimization) has demonstrated 
improved speed and quality of the Pareto-frontier 
using decimal coding (Salcedo 1999).  Similar im-
provements in speed for floating-point representa-
tion have been demonstrated by Michalewicz 
(1992).   

Fitness is the ultimate objective attribute for the 
genetic optimization. Fitness is based on dominance 
layer ranking adjusted for solution infeasibility and 
niching (or grouping).  Dominance in this model is 
based on two objective attributes: cost and effective-
ness. 

Infeasibility can be managed in different ways.  In 
Michalewicz, constraints applied to linear systems 
are resolved by GENOCOP (GEnetic algorithm for 
Numerical Optimization for COnstrained Problems).  
This method converts a set of equations and ine-
qualities to expressions limiting each gene value as a 



 

function of the other gene values.  When the algo-
rithm selects a particular gene to mutate or to cross-
over, it can only select values within the specified 
range, and thus the chromosome remains feasible at 
all times.  Another method for dealing with infeasi-
bility is “recovery”.  When the algorithm finds a 
non-feasible chromosome, it randomly selects a 
gene, and returns a value from the domain of that 
particular gene that makes the chromosome feasible 
and thus recovers the individual.  For large and 
complex systems, this process is impractical. The 
time that the random generation process requires 
creating a new gene to recover each infeasible chro-
mosome is prohibitive.   

A third alternative for dealing with infeasibility is a 
“penalty function” (Goldberg 1989, Horn and Naf-
pliotis 1993).  This alternative applies a penalty to 
one or more objective attributes for a particular 
chromosome based on the degree of infeasibility of 
the chromosome.  Instead of preventing or eliminat-
ing an infeasible chromosome, a chromosome may 
survive despite its infeasibility if its objective attrib-
utes are good enough to be dominant after a penalty 
is applied.  In this way, superior genetic material is 
kept in the gene pool for crossover with other chro-
mosomes. 

 
Figure 7.  Number of Infeasible Chromosomes  

In this optimization, the penalty is applied only to 
the effectiveness objective attribute.  The penalty is 
based on the percentage of error from the various 
constraints imposed on the system.  The greater the 
deviation from its allowed domain, the larger the 
penalty applied to it.   Feasibility constraints consid-
ered in this ship model include sufficient functional 
area (Area), electric power (kW), sustained speed 
(Vs), intact stability (+/- Stab), sufficient ship depth 
(D10), and deckhouse volume.  Figure 7 summarizes 
the chromosome feasibility status at the start (a) and 
end (b) of a typical optimization for a population 
size of 200.  At the start of the optimization, exces-
sive stability or "stiffness" is the most limiting con-
straint.  By the end, the number of infeasible chro-

mosomes is greatly reduced and the primary con-
straints are functional area and depth. 

A niching operator is used to improve the quality of 
the non-dominated frontier by increasing the prob-
ability of selection of individuals in sparsely covered 
areas of the frontier and decreasing the selection of 
individuals in areas that are already densely occu-
pied.  A sharing region or box is assigned to indi-
viduals on the frontier. Individuals occupying the 
same sharing region are redundant or “equivalent 
class” solutions.  Redundant individuals that occupy 
the same sharing region are penalized.  This forces 
the solution to spread out over the frontier.  The size 
of the niche box determines the sharing region for 
each individual.  The size of the niche box and the 
niche penalty were determined in an optimization of 
algorithm parameters.  Share regions of 0.1% to 3% 
of the objective attribute ranges were considered in 
this optimization.  Optimum niche box dimensions 
for this problem were found to be $3.2M x 0.0037 or 
0.3% x 0.6%.  This optimization of the optimization 
was based on a frontier quality function that consid-
ers the final spacing of individuals, their combined 
optimality and the range of the frontier.   

Figure 8 shows selections of non-dominated fron-
tiers for a range of niche box dimensions.  Figure 
8(a) is a very sparse frontier.  Figure 8(b) is denser, 
but with reduced range at the low cost end.  Figures 
8(c) and 8(d) show frontiers with good spacing, 
range and optimality.  The optimum niche box val-
ues chosen fall in between these two alternatives. 

Once objective attributes have been calculated and 
penalized, dominance layers are built one at a time 
by extracting dominant individuals until all remain-
ing individuals are dominated.  Each layer is set 
aside and the process repeated for the remaining 
individuals. The worst fitness is assigned to the last 
layer. The number of layers is dependent on the 
variety of dominance within a generation of indi-
viduals. The number of layers varies throughout the 
optimization process.  In the last generation, or once 
the convergence criteria is met, the first layer ap-
proximates the non-dominated frontier.  Because 
some dominant individuals may be lost in random 
selection, a record of dominant individuals created 
over the entire optimization is maintained.  These 
are used to augment the dominant individuals in the 
final generation. 
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Figure 8.  Comparison of non-dominated frontiers with 
different niche box sizes. (a) niche box 20 x 0.02.  (b) 
niche box 10 x 0.01. (c) niche box 5 x 0.005. (d) niche 
box 2.5 x 0.0025. 

Based on an individual’s rank in the dominance sort, 
i, a probability of selection is assigned.  The fittest 
individual receives the highest probability of selec-
tion, and the least fit individual receives the lowest.  
Equivalent designs (same dominance layer) are or-
dered randomly within their layer, probabilities are 
averaged for designs in the same layer, and the same 
average value is assigned to each. Equivalent de-
signs (same dominance layer) are ordered randomly 
within their layer, probabilities are averaged for 
designs in the same layer, and the same average 
value is assigned to each.  The fitness scaling func-
tion is a geometric series where the probability of 
selection is:  
                      1

1
−⋅= i

si PAP   (1) 
where i varies from one to the population size, A1 is 
a constant, and Ps  is the selection pressure.  Ps has a 
value between zero and one. The sum of all prob-
abilities must add to unity, so A1 is a dependent vari-
able:  
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As Ps approaches the unity, the probability becomes 
uniform. At this limit, all individuals have the same 
probability of selection:  
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As Ps approaches the zero, the probability of select-
ing only the first individual approaches one.   
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Figure 9. Effect of varying selection pressure on selec-
tion probability 

Figure 9 illustrates the effect of selection pressure on 
probability of selection for a population size of 200 
and selection pressures of 0.9, 0.95 and 0.98.  In this 
study, a non-uniform selection pressure is used 
where the selection pressure is decreased linearly 
with the number of generations:  

SOS P
gen

genP +⋅−=
max_

06.0   (4) 

An initial selection pressure, Ps0, of 0.98 was found 
to give optimum frontier quality results. 

Once probabilities of selection have been assigned, 
the selection operator is applied.  This operator se-
lects designs from the current generation to be in the 
next generation. Classical selection and stochastic 
universal sampling, Baker’s method (1987), were 
considered in the optimization of the optimization.  
Baker’s method consistently outperformed classical 
selection.  This method “spins” 200 (population 
size) equally- spaced markers once (vice spinning 
one marker 200 times) to select 200 for survival and 
reproduction. 

Crossover and mutation are the next genetic opera-
tors applied to the selected population of individuals.  
Once a surviving population is selected, a percentage 
of these are chosen in pairs at random for crossover.  
The probability of selection for crossover used in 
this optimization is 0.51. A cut is made at a random 
location in the chromosomes of each pair.  Design 
parameters below the cut are swapped between the 
parents producing new variants or offspring. 

A small percentage of individual design parameters 
(genes) in the selected variants are also chosen ran-



 

domly to mutate.  In mutation, the value of a single 
design parameter in a single chromosome is replaced 
with a new value chosen at random.  Mutation in-
sures that periodically the entire design space is 
sampled to look for global optima and avoid prema-
ture convergence to a local optimum (exploration 
versus exploitation).  The probability of at least one 
mutation in a chromosome is called the probability 
of update (PUP).   In this study, a non-uniform muta-
tion algorithm is used.  The probability of a mutation 
is decreased geometrically to zero over the total 
number of generations in the optimization.  The 
initial probability of update selected for this optimi-
zation is 0.06. 

When operations on the new generation are com-
plete, the new chromosomes are sent to the ship 
synthesis model for assessment and the cycle is re-
peated.   The optimization is stopped after adequate 
convergence to the non-dominated frontier or after 
200 generations. 
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NAVAL SHIP APPLICATION 
A Multiple-Objective Genetic Optimization 
(MOGO) was completed for a notional guided mis-
sile destroyer (DDGx).  The design space for this 
ship is described in Table 1.  Overall mission effec-
tiveness (OMOE) and life cycle cost (LCC) are the 
objective attributes.  The optimization was run for 
100 generations with a population of 200 ships.  
Results are presented in Figure 10.   The data points 
in Figure 10 represent LCC and OMOE values for 

feasible and infeasible individuals.   Generation 1 is 
a random selection of design parameters.  Conver-
gence to a non-dominated frontier can be seen in the 
evolution from Generation 1 to Generation 50 and 
finally to Generation 100.  Generation 100 results 
approximate the non-dominated frontier.  Figure 11 
shows the same results for feasible designs only. 

None of these ships can be identified as “the best”.   
Selection of the preferred design is up to the cus-
tomer, but Figures 10 and 11 provide the customer 
with important information to make this selection: 1) 
the engineer can assure the customer with confi-
dence that non-dominated designs have been identi-
fied; 2) the non-dominated frontier provides a per-
spective on the entire design space; and 3) some 
designs stand out as providing good value given a 
range of acceptable cost.   In this example, Ships A, 
B, C and D are noteworthy.  Data for these ships are 
provided in Table 2. 

Ships A, B and C are non-dominated designs and 
represent “knees in the curve” or extreme alterna-
tives.  The dividing line in Figure 11 between Ship B 
and Ship C separates one shaft ships from two shaft 
ships.  Ship C is the feasible ship with the highest 
OMOE.  Ship A is the low-end non-dominated ship.  
Ship B is at a "knee in the curve" and can be consid-
ered a "best buy", particularly if cost is limited.  Ship 
D is a dominated design and although it costs more, 
it does not give more effectiveness for the money 
than Ship C. 
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Figure 11. N-D Frontier for DDGx (feasible only) 



Table 2.  Select Non-dominated Feasible Designs 

 Ship A Ship B Ship C Ship D 
LBP (ft) 422.8 440.4 520.9 588.5 
Beam (ft) 52.5 59.9 55.5 75.0 
D10 (ft) 36.8 40.0 35.9 52.6 
Draft (ft) 17.5 21.2 19.8 24.2 
Displacement (lton) 5524.2 6713.8 8899.2 16612 
Shafts 1 1 2 2 
Range (nm) 4000 5000 7000 10000 
Sustained Speed (knt) 27.1 27.0 31.0 29.2 
Stability (GM/B) .108 .129 .101 .111 
Generators (kW) 3/3000 3/3000 3/3000 7/3000 
Collective Protection Sys-
tem (CPS) 

no Full Full Full 

Anti-Air Warfare (AAW) 
Systems 

RAM,SPS-49,CIWS,SDS ESSM,SM,SPS-49,X-Band 
radar, Mk92 MFCS 

ESSM,SM,SPY-1D, X-
Band radar,Mk99 GMFCS 

ESSM,SM,SPY-1D, X and 
S Band radar, GMFCS 

Anti-Surface Warfare 
(ASUW) Systems 

5”/54 w/ERGM,GFCS Harpoon, 5”/54 
w/ERGM,GFCS 

Harpoon,AN/SWG-1, 
VGAS,GFCS 

TASM/TMMM,ATWCS,
VGAS,GFCS 

Anti-Submarine Warfare 
(ASW) Systems 

1.5m sonar, SSTD,  helo 
haven, SVTT,NIXIE 

5m sonar(passive), SSTD, 
NIXIE, SVTT, helo haven, 
VLA 

5m sonar, SSTD, LAMPS 
MKIII,NIXIE,SVTT,VLA 

5m sonar, SSTD, LAMPS 
MK3, 
NIXIE,SVTT,VLA,SQQ-
89, LBVDS 

Command, Control, Com-
munications & Computers 
(C4I) 

Baseline Baseline CEC,JTIDS, digital comm, 
TADIX/TACINTEL 

CEC, JTIDS, digital 
comm, 
TADIX/TACINTEL 

Mine Counter Measures 
(MCM) 

Degaussing Degaussing Mine avoidance sonar, 
degaussing 

Mine avoidance sonar, 
Remote Minehunting 
System, degaussing 

Naval Surface Fire Support 
(NSFS) 

N-ATACMS, 5”/54 
w/ERGM,GFCS 

N-ATACMS, 5”/54 
w/ERGM,GFCS 

VGAS, N-ATACMS, 
ATWCS 

VGAS, N-ATACMS, 
ATWCS 

Strike Systems (STK) TWCS,TLAMs,UAVs TWCS,TLAMs,UAVs ATWCS,TLAMs,UAVs ATWCS,TLAMs,UAVs 
Electronic Warfare (SEW) SLQ-32V2, DLS SLQ32V2,DLS AIEWS,DLS AIEWS,DLS 
Vertical Launch System 
(VLS) cells 

32 64 64 128 

Hello hangar / helos 0 0 Yes/2 Yes/2 
Crew 108 120 184 266 
Follow ship Acquisition 
Cost ($M) 

547.6 596.6 888.6 1242.3 

LCC ($M) 644.1 663.5 1349.7 1697.5 
OMOE 0.415 0.614 .918 .917 

 
A discussion with the customer might consider the 
following: 
•  Ship A represents a low-end alternative.  It has 
good performance in Naval Surface Fire Support 
(NSFS) with other MOPs at threshold values.   It 
represents the best alternative if acquisition cost is 
limited to $550M.  Most war fighters would not be 
impressed. 
• Ship B is an effective single shaft ship at a reason-
able price.  Its AAW and ASW systems are much 
more capable than Ship A and the acquisition cost is 
still low.  It is an excellent choice for a low-end 
capability/low cost ship. 
• Ship C is right on the high-end knee of the curve. 
It is a very effective. It dominates all other ships 

found in this optimization. It is a good choice if it is 
affordable. 
•Ship D is not on the non-dominated frontier and is 
not a good choice. 
• Ships between Ship B and Ship C on the frontier  
may all be excellent choices.  There are some soft 
knees just inside the two shaft region that provide 
excellent capability and if cost is not a problem, 
these are excellent choices. 

CONCLUSIONS 
It is estimated that more than 80 percent of a naval 
ship’s ultimate acquisition cost is locked in during 
concept design.  For a class of ships, this means tens 
of billions of dollars.  An “ad hoc” process for mak-
ing these critical design decisions is not adequate.  



 

Figure 11 appears to be a simple and somewhat in-
tuitive result, but it is not.  Without this kind of in-
formation, we cannot make responsible decisions. 

Key elements addressed by this methodology are: 

• It provides a practical method for the ship 
designer to calculate an Overall Measure of 
Effectiveness (OMOE) which represents cus-
tomer requirements and relates ship measures of 
performance (MOPs) to mission effectiveness.  
This is an essential prerequisite to a disciplined 
search of design parameters. 
• It includes an efficient method to search 
design space for non-dominated concepts. 
• It provides a consistent format for presenting 
and trading off a manageable set of dissimilar 
objective attributes (effectiveness, cost, and 
risk). 

Optimization parameters and operators selected for 
this design were efficient and effective in generating 
a non-dominated frontier.  The process of selecting 
these parameters will be the topic of a future paper. 

The methodology described in this paper does not 
replace imagination and experience.  It provides a 
practical tool to manage a complex total-system 
problem that cannot be managed by experience and 
intuition alone.  It represents essential change in how 
we do naval ship concept design. 
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