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1 Introduction

The primary purpose of these notes is to supplement the text material re-
lated to aerodynamic forces. We are mainly interested in the forces on
wings and complete aircraft, including an understanding of drag and related
nomeclature.

2 Airfoil Properties

2.1 Equivalent Force Systems

In some cases it’s convenient to decompose the forces acting on an airfoil
into components along the chord (chordwise) and normal to it. These forces
are related to lift and drag through the geometry shown in Figure 1. From
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Figure 1: Force Systems

the figure we have

c�(α) = cn(α) cosα− cc(α) sinα

cd(α) = cn(α) sinα+ cc(α) cosα

Obviously, we can also express the normal and chordwise forces in terms of
section lift and drag.
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Figure 2: Flow Decomposition

2.2 Circulation Theory of Lift

A typical flow about a lift-producing airfoil can be decomposed into a sum
of two flows, as shown in Figure 2. The first flow (a) is ’symmetric’ flow
and so produces no lift. The ’circulatory’ flow (b) is responsible for the net
higher speed (and hence lower pressure) on the top of the airfoil (the suction
side). This can be quantified by introducing the following line integral

ΓC =

∫
C
−→u · d−→s

This is the circulation of the flow about the path C. It turns out that as long
as C surrounds the airfoil (and doesn’t get too close to it), the the value of Γ
is independent of C. The circulation is a property of the flow (the airfoil at
the given angle of attack). Such a circulation can be produced by imagining
a cyclone like flow with circular streamlines. The speed along any streamline
varies inversely with radial distance r from the center. This last feature will
make Γ the same along any streamline, and, it turns out, along any contour
that simply encircles the center of the cyclone. We use the term vortex to
describe such a flow.

The net result of this view is that we can reproduce the lift properties of
the airfoil by replacing it with a vortex at the center of pressure. Additional
analysis shows that the lift (per unit span) is related to the circulation by

L′ = ρ∞V∞Γ,

where ρ∞, V∞ are the free-stream values of air density and velocity, respec-
tively.
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Figure 3: Horseshoe Vortex System

3 Three-dimensional Aerodynamics

The typical geometry of wings has been introduced earlier. Here we explore
the implications of the circulation theory introduced above. Since the 3-D
wing can be thought of as a distribution of 2-D sections, when we replace
each section by its vortex we end up with a line of vorticies. At the wing
tip(s) something has to happen, because the vortex line cannot simply end.
From another point of view, we expect relatively high pressure on the bottom
of the wing and low pressure on the top. It’s clear that at the end of the wing
there would be a pressure field inducing a flow around the wing-tip. We can
combine these observations by suggesting that the vortex along the wing
turns sharply and proceeds along the direction of the flow. This produces
the horseshoe system shown in the Figure 3. An idealized version is shown
in Figure 4. The ideal system consists of the bound vortex carried in the
wing and the two trailing vorticies (counter-rotating). In theory, the system
is closed off by the starting vortex, left back at the airport when the aircraft
started to fly. The effects of the trailing vortices can be commonly seen in
the ’contrails’ of high flying jet aircraft. Some of the water vapor in the
jet exhaust is entrained in the trailing vorticies. The sunlight makes the
condensed vapor visible.

3.1 Induced Downwash Angle

The circulatory flow from the trailing vorticies add a downward component
of the flow. Thus, at a given spanwise location, the flow, instead of being
along the

−→
V ∞ direction is rotated downward through an angle ε, the down-

wash angle. Since CL ∝ Γ and ε ∝ Γ we have a similar relation between the

3



Figure 4: Idealized Horseshoe Vortex System

lift coefficient and the downwash angle. For the simplest case it turns out
that ε is constant along the span and is given by

ε =
CL

πAR
.

This idealization corresponds to a case where, for example, the section prop-
erties are the same along the span and the wing planform is elliptic. The
Supermarine Spitfire, so famous in the Battle of Britain, was built with such
a planform design.

Because of this rotation we have

α = α∞ +
CL

πAR
.

This, in turn implies that

d α

d CL
=

d α∞
d CL

+
1

πAR
,

or, upon solving for the 3-D lift-curve slope

CLα =
a∞

1 + a∞/πAR
,

where a∞ = d CL
dα∞

is the lift-curve slope for the airfoil section. Thus, one
important effect of the finite wing-span (3-D) is that the lift-curve slope is
diminished from the section value (a∞). The effect is more pronounced for
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short-stubby wings. Note that the a∞ term in the denominator must be in
radian measure.

A second, even more important effect, appears in the drag evaluation.
Note that since the local section flow has been rotated, the local lift is slightly
tilted so that a component of it is aligned with the free-stream velocity. For
small angles we have

CDı = CL · ε = C2
L

πAR
.

This lift-induced drag plays an important role in the overall aerodynamic
characteristics of the vehicle.

To account for other than the ideal ellipic-loading case, we commonly
use correction factors and write:

ε =
CL(1 + τ)

πAR

and

CDı =
C2
L(1 + δ)

πAR
.

The parameters τ and δ can be estimated for other planforms. Note that
the modified lift-curve slope for the wing is now:

CLα =
a∞

1 + a∞(1 + τ)/πAR
.

4 Drag Breakdown

For some purposes it’s convenient to decompose the drag on an object into
its components; for example as a guide to estimating the drag on a proposed
design. Unfortunately, the nomenclature associated with such drag break-
down is not very universal. At the first level we recall that fluid forces can
be transmitted as normal pressure or as shear (tangential friction). This
leads us to decompose into:

• Surface friction drag: this is the drag arising from tangential shear
stresses operating along the wetted area - the surface that the fluid
contacts;

• Normal pressure drag: this is the drag arising from normal pressure
forces operating at the boundary.
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The normal pressure drag is itself decomposed into several contributions.
Before enumerating these we observe that in an ideal fluid (i.e. frictionless)
the normal pressure drag on an object immersed in the flow is zero. This
is known as D’Alembert’s Paradox. In a real (viscous) fluid the normal
pressure will differ from the ideal case, because, in effect the viscosity slows
the fluid close to the body, effectively changing its apparent shape. The
normal pressure drag is thus decomposed as:

1. form-drag: pressure drag arising from the viscous effects on the normal
pressure field;

2. vortex drag: also known as induced drag, this is the drag associated
with the effect of trailing vortices on 3-D bodies;

3. wave drag: drag associated with the formation of shock waves in high
speed flight

4.1 Form Drag

Figure 5 shows the effect of viscosity on normal pressure in two flows. For
the circular cylinder case on the top, the effect of viscosity on the normal
pressure field is quite drastic. As expected, the inviscid case produces a
pressure profile that is symmetric (left to right) so that the normal pressure
force in the flow direction is zero. The real flow (shown dashed) is quite
different. In this case one might expect that 90% of the drag is form drag,
while 10% is due to tangential shear. For the streamlined body on the bot-
tom, the effect is perhaps less drastic and the form drag and surface friction
drag might be about equal. These are two-dimensional, incompressible flows
with no vortex drag and no wave drag.

4.2 Wave Drag

This is the drag associated with the formation of shock waves that occur
when the flow is supersonic. Our intent here is to give the student some
appreciateion of the phenomena. We know that the flow over a lifting surface
is generally faster than the free-stream flow. As we increase the free-stream
speed, the flow will reach local supersonic conditions along the upper part
(suction-side) of the surface. The flight Mach number for which the flow
first becomes locally sonic is the called the critical Mach number. If the
speed is increased further then some wave drag is encountered as the free-
stream Mach number increases towards unity. We define the divergence
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Figure 5: Form Drag in Two Cases
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Mach number as the value of M for which the slope, d CD/d M |Mc = .1. It
happens that the important quanitity in the formation of the shock system
is the component of velocity normal to the wing’s leading edge. This leads
to using wing-sweep as a mechanism to delay the drag-rise.

At supersonic speeds we can develop a theory of slender-body drag. This
is based on the notion that the flow must be turned to go around the body
and leads us to consider the distribution of the cross-sectional area as we
traverse from the nose to the tail. The essential feature is the slope of this
cross-sectional area (say S′(x)) and the key is to make the S(·) distribution
smooth. R. Whitcomb suggested the area-rule; for example, as we reach
the values of x where the wing is thick, we should narrow the fuselage to
maintain a nice area distribution. This leads to the coke-bottle shape of
high-performance aircraft. The key to low drag is a smooth distribution of
cross-sectional area.

5 Airplane Drag

Since a complete aircraft is a combination of lifting surfaces we find yet
another way to separate drag effects as an enumeration of a sum:

CD = CDo + CDi + CDr,

where CDi is the vortex drag on the wing, CDo is the remaining drag on the
wing, and CDr is the residual drag on the fuselage, nacelles, empennage, etc.
The sum of the first and the last is called parasite drag; that is,

CDp = CDo + CDr.

It happens that the parasite drag coefficient is weakly dependent on the lift
coefficient (angle-of-attack). We use the approximation

CDp ≈ CDpe +

(
d CDp

d C2
L

)
C2
L.

In this expression the CDpe term and the derivative-term are evaluated at
a point - thus these are constants. This type of CL dependence is pretty
natural, since the vortex drag is also quadratic in CL.

Substituting this into the complete drag coefficient we find:

CD = CDp + CDi

= CDpe +

[
πAR(

d CDp

d C2
L

) + (1 + δ)

]
(1/πAR)C2

L.
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To simplify we define the Oswald efficiency factor by

e ≡
[
πAR(

d CDp

d C2
L

) + (1 + δ)

]−1

,

so that the drag expression becomes

CD = CDo +
C2
L

πARe
.

The efficiency factor is generally in the range .8 < e < .95. Note that e can
be interpreted as

e =
d CDi/d (C2

L)

d CD/d (C2
L)

;

that is, what fraction of the slope of the CD vs C2
L comes from the induced

drag term ?

5.1 Trim Drag

The tendency to decompose the aircraft into its pieces, tends to obscure
requirements that apply to the complete configuration. For example, in
equilibrium flight one must have zero total pitching moment about the c.g.
The decomposition suggested above will generally lead to a configuration
that is not in pitch equilibrium. To achieve this equilibrium one must ad-
just the pitch control surface(s) (elevator, flaps, cannard) to zero out the
moment. This will re-distribute the lift and generally change the drag. The
increment in drag is commonly called trim-drag. It’s common to ignore
trim-drag in an early design exercise, but as the design matures and more
information is available one should re-visit the drag model with the trim
requirement enforced.

6 References

Look at the Webpage for Prof. Mason’s Applied and Computational Aero
course http://www.aoe.vt.edu/aoe/faculty/Mason f/CAtxtTop.html.
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