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1 Introduction

The purpose of these notes is to supplement the text material related to energy
mangement in atmospheric flight. Energy models provide an alternative to
classical climb calculations and are particularly useful for vehicles capable of
supersonic flight.

Classical climb focuses on altitude change; that is, in changing the potential
energy of the vehicle. Indeed, the analysis includes a force equilibrium require-
ment which implies unaccelerated flight. Since the true airspeed (V ) is constant
the kinetic energy is likewise, constant.

2 Correcting for Acceleration

It has long been understood that the classical climb analysis has an embedded
inconsistency. Recall that we are led to choose a speed V to maximize the
rate-of-climb, at a given altitude h. This analysis is repeated at a sequence of
altitudes and the resulting family of best speeds defines a function V opt(h). As
the aircraft climbs and the altitude changes, the choice of best speed will vary
according to this function. It’s clear then that the resulting speed is generally
changing with time [ V (t) = V opt(h(t)) ]. Since our choice of speed was based
on maximizing the unaccelerated rate-of-climb there is an inconsistency. This
was well appreciated in the days before WWII and various ‘corrections’ were
suggested. It is useful to consider this issue.

We begin with the equation describing the velocity change from Newton’s
Laws:

mV̇ = T −D −W sin γ.

Using the V (t) function implied above we are led to compute the time-derivative
via the chain-rule.

m
d V

d h
ḣ = T −D −W sin γ. (1)

The result (1) is re-arranged to yield

T −D
W

= (1/g)
d V

d h
ḣ+ sinγ,
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and using the kinematic relation ḣ = V sin γ we have

T −D
W

=
(
1 + (V/g)

d V

d h

)
sin γ. (2)

Equation (2) is solved for sin γ and used in the kinematic climb-rate expression
to produce

ḣa ≡
(T −D) V

W

[
1 + (V/g)

d V

d h

]−1

. (3)

Result (3) is the rate of climb expression including the effects of acceleration.
Note that the first term on the right is our old friend Ps, the specific excess
power. In the earlier unaccelerated climb analysis we had ḣu = Ps so that we
might also write (3) as

ḣa =
ḣu[

1 + (V/g)d Vd h
] . (4)

This makes it clear that the term in the denominator can be interpreted as a
correction applied to the original calculation.

2.1 Climb at Constant EAS

To illustrate these ideas let’s suppose that we perform a climb at constant
equivalent airspeed (EAS). Since V = Ve/

√
σ(h), it is clear that the airplane

will be changing its true airspeed as it climbs. In particular we have

d V

d h
= −Veσ−3/2σ′/2,

so that the correction factor becomes[
1 + (V/g)

d V

d h

]
= 1− (

V 2
e

2g
)
σ′

σ2
.

Since σ′ < 0 the factor is greater than one and the accelerated rate-of-climb is
less than the unaccelerated prediction. In energy terms it is clear that the air-
craft is gaining kinetic energy so that the gain in potential energy is diminished
from the earlier estimate.

2.2 Dilemma

While the correction procedure does provide a way to account for the fact that
classical climb leads to V opt(h), it does not completely resolve our problem.
Specifically, the velocity profile V opt(h) was computed based on the best rate-
of-climb in unaccelerated flight. Can we account for acceleration before we do
the optimization?
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3 Energy Height

The piston-powered aircraft of WWII vintage had limited speed-range so that
the amount of stored kinetic energy was generally small compared to the poten-
tial energy. For example, a speed change from 100 mph to 400 mph requires an

increase in kinetic energy per unit mass of ∆(V
2

2 ) ≈ 1.6 105(ft/s)
2
. To achieve

the same energy change in potential form requires an altitude increase of about
5000 ft. Thus, a significant change in speed is equivalent, in an energy sense,
to a rather modest change in altitude. For this reason it was mostly okay to
ignore kinetic energy for such vehicles. Note, however, that the kinetic energy
varies as the square of the speed; doubling the speed will increase the kinetic
energy by a factor of four. As the speed capabilities increase, the kinetic energy
becomes increasingly important.

3.1 F. Kaiser and the ME-262

The correction ideas noted above were well-known in the early 1940’s as the
combatants struggled to develop jet-powered aircraft. The first operational jet-
fighter was the Messerschmitt 262 and one of the young flight test engineers
at Lager Lechfeld, near Augsburg in southern Germany, was concerned with
best-climb predictions. F. Kaiser’s [1] 1 idea was to focus on the total energy,
the sum of kinetic and potential energies:

E =
V 2

2
+ gh. (5)

In this form the energy per unit mass has the dimensions of velocity-squared.
Kaiser suggested a normalized form of (5)

E ≡ E/g =
V 2

2g
+ h, (6)

which he called the resultant height. It has the physical interpretation of the
height one could achieve by exchanging all of the kinetic energy to increase the
potential energy. Suppose, for example, that your car, travelling at 55 mph,
runs out of fuel at the bottom of a hill. How high can the hill be, such that
you can barely coast to the top ? Of course, (6) incorporates the idealization
that this energy interchange can be made without loss. This is a key concept
in the Kaiser idea - that interchange of energy is fast and lossless. At any
instant the pilot can quickly achieve the balance of energy desired at that time.
Upward moves that decrease kinetic energy while increasing the potential are
zoom maneuvers. Those that go downward to increase the kinetic at the expense
of potential energy are dive maneuvers. The idealization is that these maneuvers
can be done instantly and without loss of energy.

1Similar ideas were later published by Lush [2] in the U.K. and by Rutowski [3] in the U.S.
It’s not clear if the later authors were aware of Kaiser’s work.
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Figure 1: Energy Contours in the Altitude/Airspeed Chart

3.2 Energy Contours

It is helpful to visualize the constant energy lines in the usual altitude-velocity
chart. From (6) it is clear that these are downward opening parabolas. They
intersect the h axis (V = 0) in an orthogonal way at the value h = E. Figure
(1), shows some lines of constant energy in the usual altitude-airspeed chart.

3.3 Energy-Rate

While the pilot can re-arrange energy at will, the rate at which the total energy
can be changed is finite. To see this we write Ė from (6):

Ė =
V V̇

g
+ ḣ.

We use the usual kinematic result for ḣ and the expression (1) for V̇ to obtain

Ė = (
V

g
)

[
T −D −W sin γ

]
m

+ V sin γ.
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Note that the sin γ terms cancel and we are left with

Ė =
(T −D)V

W
, (7)

where we recognize the right-hand side as the specific excess power, Ps ! This,
of course, makes perfect sense. In the classical analysis we climb at constant
speed so that the energy change is solely through the potential-energy term
(i.e. the altitude). Thus, our classical climb is a special case. Another special
case, sometimes used as a flight-test maneuver, is the level-acceleration wherein
the pilot attempts to accelerate at contant altitude. In the ideal level-accel the
energy change is solely through the kinetic energy term.

3.4 Kaiser Climb

At this point we have apparently come full circle and you may wonder what
has been accompished ? In classical climb we have ḣu = Ps and we are led to
maximize Ps. After all this discussion of energy change we have Ė = Ps and we
still are led to maximize Ps. So what is the difference ?

At first glance the distinction lies in a seemingly minor change. In the
classical case we hold altitude fixed and maximize Ps by choice of speed. The
Kaiser technique leads us to hold the energy constant and to maximize Ps by
choice of altitude. Note that since E is fixed one can think of choosing either h
or V .

One can easily visualize the distinction between the constant-altitude and
constant-energy procedures by employing the altitude-velocity (h, V ) chart. At
each point we can compute Ps, where we remember that the drag is calculated
such that lift equals weight (L = W ). Thus, in the (h, V ) chart there will
be contours of constant Ps. In the classical climb we look horizontally (i.e. at
fixed altitude) for the biggest Ps at this altitude. In the Kaiser technique, on
the other hand, we look along the energy-parabola appropriate for our current
E value.

It turns out that for supersonic aircraft the results of these procedures are
remarkably different. For example, in the transonic region there is a significant
peak in the drag, largely due to the CDo peak near M = 1. The Kaiser approach
allows us to dive through this region so that it will not choose any points where
M ≈ 1. It may seem somewhat paradoxical; that in order to ‘climb’ (gain
energy) most quickly, the pilot would execute a diving maneuver.

3.5 Numerical Results

To illustrate these ideas we shall display results for a model of the F15-Eagle.
The analysis is performed at a fixed weight (42, 000 lbs). The thrust T (h,M)
value is generated by interpolating in a table of thrust-values over a grid of
altitude and Mach. The drag-polar is parabolic in the lift-coefficient, but the
parameters CDo and k are Mach-dependent with values again generated by
interpolating over a grid of Mach values.
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Figure 2: Specific-Excess Power at Two Energy Levels

For a given energy-value we seek to determine the altitude/velocity point
such that the specific-excess power is maximized. Recall that [see, equation (7)]

Ps =
(T −D)V

W
=

(Pa − Pr)
W

,

where the drag is calculated in level flight (L = W ). In the left graph of
Figure (2) we show the evaluation of the specific-excess power over a range of
altitudes at a fixed energy-value of E = 30 kft. Note that the peak occurs at
about h = 14 kft. This corresponds to a speed of V ≈ 1015 ft/s or M ≈ .96.
The graph on the right shows results for E = 35kft, and we find that V ≈
1052 ft/s or M ≈ 1.05. Note that the global maximizer has shifted from the
right local maximizer (subsonic) to the left local maximizer (supersonic). In
energy approximation the aircraft can instantly change speed/altitude but the
energy must evolve smoothly. This is clearly an approximation to the ‘true’
behavior but it does hint at some interesting physics, wherein the aircraft uses
its potential energy to quickly move through the region of unfavorable transonic
drag-rise.
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