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Applying the Minimum Principle

Numerical Issues

➤ Application of the M.P. leads to

boundary-value problem(s)

including

• 2n state/adjoint differential
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equations

• extremal control choice from

minu∈ΩH

• initial state/transversality

boundary conditions

• final state/transversality

boundary conditions
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• possible first-integral from

d H

dt
=
∂ H

∂t
.

➤ Numerical solution is

accomplished by formulating a

Newton root-finding problem,

wherein missing state/adjoint

boundary values are the
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unknown parameters. Given

estimates of these parameters,

one can solve the initial-value

problem and test the specified

end-conditions.

➤ Several ideas/insights are useful

in this task.
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Some observations

Homgeniety of the adjoints

➤ Our comments focus on the

problem with Mayer-cost but

can be appropriately extend to

the Bolza case.
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➤ Mulitplying the cost-functional

g by a positive constant (say a)

amounts to a change in J−units

and has no effect on the

problem.

➤ The adjoint differential

equations are linear in the

adjoint variables
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➤ The optimality condition

minu∈ΩH is unchanged if all

adjoints are multiplied by a

positive constant.

➤ If (λ0, ~λ(·)) leads to an extremal

state/control pair (x∗(·), u∗(·),
then (aλ0, a~λ(·)) leads to the

same state/control pair.
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Control Switching/Saturating

➤ The optimality condition

minu∈ΩH often leads to several

potential control choices

depending on bounds, etc.

➤ Along an extremal arc one
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encounters times at which the

control (switching) or its

time-derivative (saturation) is

discontinuous.

➤ Numerical IVP solvers

commonly use some form of

smooth extrapolation, eg
representing the solution as a
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4/5th degree polynomial in t.

➤ Discontinuities in the control

(or its time derivative) in the

interior of an integration step

degrade solution accuracy

➤ It’s best not to integrate

through these points.
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State/Adjoint Growth

➤ Loosely, growth in the

(linearized) state system is

governed by ∂ f
∂x
≡ A

➤ Similarly, growth in the adjoint

system is governed by −AT .
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➤ If σ is an eigenvalue of the

linearized state/adjoint system,

then so is −σ.

➤ Over long integration times the

components in the state/adjoint

system will differ by many

orders of magnitude.
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Minimum-Time Horiztonal Plane

Turns

➤ The terminal transversality

conditions for this problem lead
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to

λx(tf) = λy(tf) = 0

λu(tf) = µ1, λχ(tf) = µ2

H(tf) = µ1u̇(tf)+µ2χ̇(tf) = −λ0

➤ Assuming µ2 6= 0 we can use

cost-scaling to make

λχ(tf) = µ2 = −1
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Recall we know that λχ < 0 for

a left turn (increasing χ).

➤ As a first attempt we can

identify a Newton problem with

z ∈ IR2 and identify

z(1) 7→ λu(0), z(2) 7→ tf
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➤ We are to find z∗ ∈ IR2 so that

u(tf) = Uf and χ(tf) = π

➤ If we consider the family of

problems parameterized by Uf

we can obtain a solution for

one-member of the family by

choosing λ̂u(0) < 0 and
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integrating the IVP forward

until χ(t̂) = π. Read out the

resulting value of u(t̂) and the

pair z = (λ̂u(0), t̂) will solve the

problem with Uf = u(t̂).


