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Extending the Minimum Principle

State-Dependent Control

Constraints

➤ Our classes of optimal control

problems thus far have all

included a specification;

u ∈ Ω ⊂ IRm, Ω a fixed set.
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➤ In many applications of interest,

this is not sufficiently general.

For example, the minimum-time

horizontal turns in H.W. Set 6,

should incorporate an

aerodynamic limit on the
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admissible load factor. We have

n =
L

W

where the L is the lift, the

component of the aerodynamic

force normal to the velocity

vector. The usual aerodynamic

model expresses the lift in terms



AOE 5244 - E.M. Cliff 4'

&

$

%

of the lift-coe�cient

CL =
L

q̄S
,

where S is the wing-area and

the dynamic-pressure q̄ is

related to the the air-density ρ

and the flight-speed V as

q̄ = 1/2ρV 2.
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➤ The aerodynamic-limit imposes

an upper-bound on CL

CL ≤ CL max.

In the simplest case, CL max is a

specified positive number.

➤ In terms of the load-factor n



AOE 5244 - E.M. Cliff 6'

&

$

%

the result is

n ≤ CL max1/2ρV
2S,

so that the limit on the control

n depends on the value of state

component V .

➤ We shall require that the

admissible set Ω(x) ⊂ IRm is
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specified by a finite number of

smooth functions

βı(x, u) = 0, ı = 1, . . . , `

β`+(x, u) ≥ 0,  = 1, . . . , r
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State-Dependent Control

Constraints

➤ It might seem that admitting

Ω(x) is a minor change in the

problem. Actually, it is a major

extension.
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➤ Consider our original problem

ẋ = f(x, u), with u ∈ ΩIRm

Let’s introduce n additional

control variables z and

reformulate the problem as

ẋ = z
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with the n equality contraints

β(x, u, z) = f(x, u)− z = 0

➤ The transformed dynamics

appear to be trivial since

f̃(x, u, z) = z is completely

independent of the state ! All of

the dynamics is hidden in the

constraints
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(u, z) ∈ Ω(x) ⊂ IRm+n as

represented by the functions

β(x, u, z) = 0.

➤ Such transformation can be

exploited in a finite-dimensional

transcription similar to the

POST and OTIS methods

discussed earlier.
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Extended Minimum Principle

State-Dependent Control

Constraints

➤ In addition to the variational
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Hamiltonian

H(λ̃, x, u) ≡ < λ̃, f̃(x, u) >

= Σn
i=oλifi(x, u)

we define the augmented

Hamiltonian

Ha(λ0, λ, µ, x, u) = H(λ0, λ, µ, x, u)

+ Σ`+r
ı=1µıβı(x, u)
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➤ Note that the minH operation

now requires that the

minimization be subject to the

constraints

βı ≥ 0

where we have abused the

notation since the first `
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components of these are

equalities.

➤ The problem of minimizing H

subject to mixed

(equality/inequality) constraints

is a finite-dimensional problem

and is amenable to the

treatment in Chapter 3 of
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G-M-W. The K-K-T theory for

this problem leads to

• β(x, u∗) ≥ 0, with β̂(x, u∗) = 0

• ∇uH
a(x, u∗) = 0 ∈ IRm

• µ`+ ≥ 0

➤ The Lagrange multipliers µ for

this problem are called
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Valentine multipliers. Valentine

did a 1937(?) thesis at the U. of

Chicago under G.A. Bliss.

➤ The adjoint differential

equations

λ̇(t) = −
∂H

∂ x

T
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is replaced by

λ̇(t) = −
∂Ha

∂ x

T


