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/Extending the Minimum Principle\
State-Dependent Control

Constraints

Our classes of optimal control

problems thus far have all

included a specification;

u € Q) C IR™, ) a fixed set.
\_ /
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In many applications of interest,

this i1s not sufficiently general.
For example, the minimum-time
horizontal turns in H.W. Set 6,
should incorporate an

aerodynamaic limit on the
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admissible load factor. We have

n — —

W
where the L is the lift, the

component of the aerodynamic
force normal to the velocity

vector. The usual aerodynamic

model expresses the lift in terms

\_ /




AOE 5244 - E.M. Cliff

-~

of the lift-coefficient
L

:q—S’

where S is the wing-area and

Cr,

the dynamic-pressure q is
related to the the air-density p
and the flight-speed V as

qg=1/2pV=.




AOE 5244 - E.M. Cliff

-

-

The aerodynamic-limit imposes

an upper-bound on Cj,
CL S CL max e

In the simplest case, Cf, ,.x 1S a

specified positive number.

In terms of the load-factor n

~

/
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the result is
n < Cr maxl/2pV?>S,

so that the limit on the control
n depends on the value of state

component V.

We shall require that the
admissible set Q(x) C IR™ is
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4 specified by a finite number of O

smooth functions
B.(x, u) 0, 2=1,... .4
,Bg_|_]($,U) > 0,72=1,...,r
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State-Dependent Control

Constraints

It might seem that admitting
((x) is a minor change in the

problem. Actually, it is a major

extension.

/
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Consider our original problem
= f(x,u), with u € QIR™

Let’s introduce n additional
control variables z and

reformulate the problem as

€Tr = z
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B(x,u,z) = f(x,u) —2 =0

The transformed dynamics

appear to be trivial since

f(x,u, z) = z is completely
independent of the state ! All of
the dynamics is hidden in the

4 with the n equality contraints O

\ constraints -/
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4 (u, z) € Q(x) C IR™™ as A
represented by the functions

B(x,u,z) = 0.

Such transformation can be

exploited in a finite-dimensional

transcription similar to the

POST and OTIS methods

\ discussed earlier. /
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Extended Minimum Principle
State-Dependent Control

Constraints

In addition to the variational

12
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/ Hamaltonian \

H(S‘amau) <5‘9f($7u) >

E?:o)‘ifi (ZB, U)

we define the augmented

Hamaltonian

H(Xos A\, ptyx,u) = H (Mo, A, s T, 1)

Efi;“zﬁz (z, u)

\_ /
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Note that the min H operation
now requires that the
minimization be subject to the

constraints
G, >0

where we have abused the

notation since the first ¢

~

/
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4 components of these are

equalities.

The problem of minimizing H

subject to mixed
(equality /inequality) constraints
is a finite-dimensional problem

and 1s amenable to the

treatment in Chapter 3 of
\_ v /
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G-M-W. The K-K-T theory for
this problem leads to

e 3(xz,u*) > 0, with B(x, u*) =0

o V.H*(x,u*) =0 € IR™

.l,l,g_l_] > 0

The Lagrange multipliers u for

this problem are called

~

/
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Valentine multipliers. Valentine
did a 1937(?) thesis at the U. of
Chicago under G.A. Bliss.

The adjoint differential
equations
OH"

0 x

A(t) =

17
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4 is replaced by

A(t) =

OH

al

0O x
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