Extending the Minimum Principle State-Dependent Control Constraints

➤ Our classes of optimal control problems thus far have all included a specification;
 u ∈ Ω ⊂ ℝ^m, Ω a fixed set.

► In many applications of interest, this is not sufficiently general. For example, the minimum-time horizontal turns in H.W. Set 6, should incorporate an *aerodynamic* limit on the

admissible load factor. We have L n = \overline{W} where the L is the lift, the component of the aerodynamic force normal to the velocity vector. The usual aerodynamic model expresses the lift in terms of the *lift-coefficient* $C_L = rac{L}{ar{a}S},$ where S is the wing-area and the dynamic-pressure \bar{q} is related to the the air-density ρ and the flight-speed V as $\bar{q} = 1/2
ho V^2$.

The aerodynamic-limit imposes an upper-bound on C_L $C_L < C_{L \max}$ In the simplest case, $C_{L \max}$ is a specified positive number. \blacktriangleright In terms of the load-factor n

It might seem that admitting
 Ω(x) is a minor change in the
 problem. Actually, it is a major
 extension.

 $(u,z)\in \Omega(x)\subset I\!\!R^{m+n}$ as represented by the functions eta(x,u,z)=0.Such transformation can be exploited in a finite-dimensional transcription similar to the **POST** and **OTIS** methods discussed earlier.

Extended Minimum Principle State-Dependent Control Constraints

 \blacktriangleright In addition to the *variational*

 \blacktriangleright Note that the min H operation now requires that the minimization be subject to the constraints $\beta_i > 0$ where we have abused the notation since the first ℓ

components of these are equalities. \blacktriangleright The problem of minimizing Hsubject to mixed (equality/inequality) constraints is a finite-dimensional problem and is amenable to the treatment in Chapter 3 of

G-M-W. The K-K-T theory for this problem leads to • $\beta(x, u^*) \geq 0$, with $\hat{\beta}(x, u^*) = 0$ $ullet
abla_u H^a(x,u^*) = 0 \in I\!\!R^m$ • $\mu_{\ell+j} \geq 0$ \blacktriangleright The *Lagrange* multipliers μ for this problem are called

Valentine multipliers. Valentine did a 1937(?) thesis at the U. of Chicago under G.A. Bliss. The adjoint differential equations $\dot{\lambda}(t) = -rac{\partial H}{\partial x}^T$

