AOE 5244 Optimization Techniques HW Set 2

1. Let X be the inner-product (Hilbert) space of real n-tuples with inner-product $\langle x^1, x^2 \rangle_X = (x^1)^T Q x^2$, where Q is a symmetric, positivedefinite $(n \times n)$ matrix and let Y be the inner-product (Hilbert) space of real m-tuples with inner-product $\langle y^1, y^2 \rangle_Y = (y^1)^T R y^2$, where R is a symmetric, positive-definite $(m \times m)$ matrix. Suppose that an operator $T: X \mapsto Y$ is represented by a matrix A. What is the matrix representation of the adjoint operator T^* (same bases)?

2. Consider the sequence given by $\{y_k\}_{k=0,1,\ldots} \equiv c^{2^{-k}}$, where c > 0 (each term is thus the square-root of the previous term). Show that $\lim_{k\to\infty} = 1$ and establish the rate of convergence. Construct a few terms of the sequence for c = 10.

3. Given the matrix

$$A = \left[\begin{array}{rrr} 1 & 2 & 7 \\ 3 & 6 & 11 \end{array} \right]$$

Find the Q-R decomposition of A. Find $\mathcal{N}(A)$, $\mathcal{R}(A)$, $\mathcal{N}(A^*)$, and $\mathcal{R}(A^*)$. Verify that $\mathcal{N}(A) \bigoplus \mathcal{R}(A^*) = \mathbb{R}^3$.

4. Consider the Zermelo problem described in class and used in Prob 2 of H.W. Set 1. Write (a) Matlab .m file(s) to evaluate the cost functional for the transcribed problem with the time interal divided into N uniform intervals and the control piecewise constant on this grid.

Use the **fmins** procedure to solve this problem for $\kappa = 1$, and T = 8, and several values of N = 4, 8, 16, 32. Generate a graph of the optimal controls. Also, include on the graph the control given by $\tan \beta^*(t) = \kappa(T - t)$.