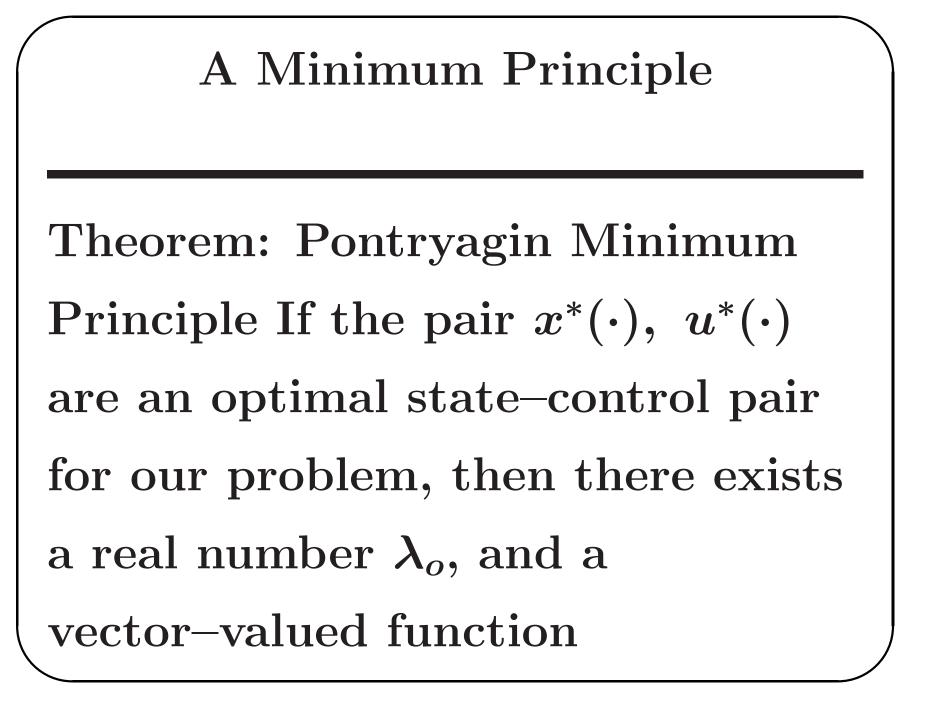


prescribed set $\Theta^0 \subset \mathbb{R}^n$ given by the intersection of p smooth surfaces. That is, $\Theta^0\equiv\{x\in R^n| heta_i^0(x)\!=\!0,i=1,\ldots,p\}$ ► Our modified optimal control problem is to find an admissible control $u^*(\cdot)$ and the

corresponding state-trajectory $x^*(\cdot)$ to yield a minimum value to the cost.



 $\lambda(\cdot): [0, t_1] \mapsto R^n$, such that: a) $\lambda_o \ge 0$ b) $\dot{\lambda}(t) = -\frac{\partial H}{\partial x}^T$ c0) $\lambda(t_0) \perp \Theta^0|_{x(t_0)}$ c0) $\lambda(t_1) \perp \Theta^1|_{x(t_1)}$ d) $H(\lambda_0, \lambda(t), x^*(t), u) \geq$ $H(\lambda_0,\lambda(t),x^*(t),u^*(t))=0$

for all $v \in \Omega$ > An analytic statement of condition (c0) is that there are scalars ν_i , $i = 1, \ldots, p$ such that $\lambda(t_0) =$ $u_1 \
abla heta_1^0(x) + \ldots
u_p \
abla heta_n^0(x).$