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Trust-Region Methods

➤ Current values are used to

construct a local quadratic

model

Mk(p) = F (xk) +

gTk p+ (1/2)pTBkp
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➤ Additionally, we require a

trust-region radius, δk.

➤ Consider the sub-problem of

minimizingMk, subject to the

constraint ‖p‖ ≤ δk.

➤ Applying the optimality

condition from Chapter 3, the
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solution is given by

p(µ) = − [Bk + µI]−1 gk

where µ is selected so that

‖p(µ)‖ = δk, unless p(0) ≤ δk, in

which case it is the solution.

➤ Note that p(0) is the Newton

step and globally minimizesMk.
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Trust-Region Methods

➤ If the Newton step pN is outside

the trust region

δk < ‖p(0)‖ = ‖ [Bk]
−1 gk‖

we have to enforce the

constraint.
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➤ The constrained sub-problem of

solving for µ such that

‖p(µ)‖ = δk is hard. We seek an

approximate solution.

➤ The locus of points p(µ) is a

curved line from the Newton

step at µ = 0 and approaches a

small step along the negative
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gradient −gk as µ→∞.

➤ One approach (M. Powell) is to

approximate this curved locus

by a piecewise linear one (a

sequence of line segments).

➤ The Cauchy point pCP is the

point along the direction −gk
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that minimizesMk. Put

p = −αgk

inMk and minimize the

resulting quadratic function of

α.

➤ The result is

α∗ =
‖gk‖2

gTk Bkgk
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➤ To approximate the locus p(µ),

we use the line segment from

the current point to the Cauchy

point, followed by the line

segment from the Cauchy point

to the Newton point. This is the

dog-leg path.

➤ It can be shown that
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‖pCP‖ ≤ ‖pN‖. This relies on

the fact that Bk > 0.

➤ Furthermore, it can be shown

that the value of the Model

function monotonically

decreases as we move along the

piecewise linear dog-leg path.
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➤ We approximate the solution to

the sub-problem by choosing the

point on the dog-leg that is on

the boundary of the trust region

‖p‖ = δk.

➤ A double dog-leg strategy has

been suggested (see Numerical

Methods for Unconstrained
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Optimization and Nonlinear

Equations by J. Dennis and R.

Schnabel).
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Trust-Region Methods

Updating the radius

➤ Having solved the model

sub-problem we must decide

whether to accept this step or

not. If the step is not accepted

then we reduce the size of the
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trust region and re-solve the

model problem.

➤ Reduction of the trust-region

radius is done using the

back-tracking strategy.

➤ If the step is accepted and we

took the full Newton step, then
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we go to the next (major)

iteration. If we have not taken

the full Newton step we may

wish to increase the trust radius

and re-solve the current model

problem.

➤ This decision is based on

comparing the actual reduction
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in F

∆F = F (x+)− F (xk)

and the predicted reduction

∆Fpred = mq(α
∗)− F (xk)

➤ If the prediction is good

|∆Fpred −∆F | < .1|∆F |

or if the reduction in the
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function value is large

F (x+) < F (xk) + gTk (x+ − xk)

then we re-solve the model

problem with δ = 2δk.

If this new trial step does not

satisfy the sufficient decrease

test, we return to the earlier
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point and retain the trust region

radius.


