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1 Introduction

These notes are intended to supplement the treatment in the Gill-Murray &
Wright text [1]. While the discussion in the text is mostly adequate for our
needs, it does present some unfortunate limitations in its outlook. We shall
present some material to broaden the approach. Our presentation is heavily
influenced by Luenberger [3]. There are a number of excellent texts for most
of this material (e.g. [2]). Numerical aspects of linear algebra are in the
recent book by Trefethen and Bau [4].

2 Vector Spaces

A vector space is a set of objects (the vectors), the real (or complex) field
of scalars and two operations connecting them. The operations are: vector
addition and multiplication by scalars. Associated with any two vectors is a
(unique) third vector - their sum. Also, given a vector and a scalar there is
a unique vector - the product. The operations must enjoy certain properties
(vector addition is commutative and associative). These are generally stated
in the form of certain axioms that the vector operations must satisfy ( see
[3], pp 11-12). Among these axioms is the requirement that the set contain a
unique vector 0, the additive identity element (meaning that v + 0 = v, for
all elements).

The usual ‘vectors’ in Rn are the most common example. Addition means
add component-wise. Somewhat more abstractly, we also mention the space
of continuous functions on the interval [0, 1]. Vector-addition and scalar
multiplication are defined in the obvious way. To be rigorous one should
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prove the ‘closure’ property, e.g. that the sum of two continuous functions
is a continuous function.

2.1 Linear Combinations

Given a finite set of vectors, and a corresponding set of scalars we can form
a ‘new’ vector by the operation

vnew = α1v1 + α2v2 + · · ·+ αpvp

In this case we say that vnew is a linear combination of the underlying vectors.

2.2 Linear Dependence

Strictly said, linear dependence is best thought of as a property of certain
finite-sets. That is, given a finite set of vectors, say S ≡ {v1,v2, . . . ,vp}
we say that S is a linearly dependent set iff there is a set of scalars (at
least one such set), not all zero, such that the corresponding linear com-
bination is the zero vector (i.e.

∑p
i=1 αivi = 0). A set of vectors that is

not linearly dependent is said to be linearly independent. Note that if S is
a linearly independent set and if

∑p
i=1 αıvı = 0, then necessarily all of the

scalars (αı) must be zero.
With this definition, any set that includes the zero-vector is linearly de-

pendent. For another example of a linearly dependent set, consider the vector
space R2 and the set of vectors given by

S ≡ {
(

1
0

)
,

(
0
1

)
,

(
1
1

)
}

In this case the scalars (α1 = 1, α2 = 1, α3 = −1) demonstrate the depen-
dence.

2.3 Subspaces

It happens that certain subsets of vectors have the ‘closure’ property, meaning
that addition or scalar multiplication of anything in this set produces another
element of the set. Such sets are called subspaces - they are vector spaces in
their own right. It’s clear that any subspace must contain the zero vector.
We agree that the set consisting of only the zero vector is a subspace and
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the whole space is also a subspace. We reserve the term proper subspace to
mean a subspace that is not the whole space and not the ‘zero’ subspace. In
the case of R2 (the plane), the proper subspaces can be interpreted as lines
through the origin. In R3 the proper subspaces are all the lines through the
origin and all the planes through the origin.

2.4 Addition of Subspaces

Since we can add vectors, it’s natural to define addition of subspaces. Given
two subspaces U and V (each a subspace of the same underlying vector
space), then by their sum we mean the set:

U + V ≡ {x ∈ X | x = u + v, for some u ∈ U and some v ∈ V}

One can prove that this set is, in fact, a subspace.
In the case of R2, if we take any two distinct proper subspaces, their sum

will be the whole space. In the case of R3, if we take any two distinct planes
their sum will be the whole space. However, there is a difference in these
two examples. In the former case the representation x = u + v is unique;
that is, given any x ∈ R2 there is a unique pair u ∈ U and v ∈ V. In the
latter case, there is some ‘overlap’ and the representation is not (necessarily)
unique. It is worthwhile to distinguish these cases; when the representation
is unique we speak of the direct sum and write U

⊕
V.

2.5 Span of a Set

Given a finite set of vectors we can consider the set we generate by taking all
possible linear combinations of vectors from the set. This is called the span
of the set. It requires proof, but it should be ‘clear’ that the span of a set is
a subspace. This is a pretty common way to generate subspaces.

2.6 Basis and Dimension

The idea of generating subspaces by the spanning procedure can be sharp-
ened. If the beginning set is linearly dependent then, it’s clear that at least
one member can be ‘generated’ as a linear combination of the others. Thus,
if we throw out this member then the span of the reduced set will be the same
as the span of the original set. We can continue this process of throwing out
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members until we get down to a linearly independent set. If we throw out
any more vectors the span of the thus-reduced set will not be the same as
the span of the original. A spanning set that is linearly independent is said
to be a basis for the subspace.

It turns out that the number of elements in a basis is a property of the
subspace - this is the dimension of the subspace. Again, it requires proof
to show that if we start with two sets with the same span, this process of
throwing out results in linearly independent sets with the same number of
elements.

Our description characterizes a basis as a minimal spanning set. If we
throw out any more elements then the span of the resulting set is decreased.
It’s sometimes useful to think of starting with a small set and adding vectors
- to produce the desired spanning set. In this view if we add a vector to
a basis and keep the same spanning set, it’s clear that the new set is not
linearly independent. Hence one can also think of a basis as the largest
linearly independent set (with a given span).

Any basis has a naturally associated subspace; namely the space spanned
by the basis. While the basis is not unique (a given subspace has many bases)
the number of elements in any such basis is always the same. As noted above,
this number is the dimension of the subspace. When adding subspaces we
have dim[(U + V)] ≤ dim[U] + dim[V], with equality iff the sum is
direct.

2.7 A Vector and Its Representation

Once we have a basis then any vector can be uniquely described by providing
the scalar components in its representation. That is, if

vsample = α1v1 + α2v2 + · · ·+ αn,vn

then the n-tuple of scalars (α1, α2, . . . , αn) represent the vector vsample in
terms of the given basis.

Perhaps the canonical example of a n-dimensional space is Rn, wherein
the vectors are these n-tuples of scalars. In other examples the basis is fixed
so that we can blur this distinction and think of the collection of scalars as the
vector. In most cases this causes no harm, but we should be aware of it. To
make this more concrete, consider the space of continous functions on the unit
interval, and the subspace spanned by the set of vectors S = {cos(·), sin(·)}.
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Since the two vectors are linearly independent, the set S is a basis for this
two-dimensional subspace. Now however, there should be a clear distinction
between the pair (α, β) and the function f(t) = α cos(t)+β sin(t). In fact, we
derive alot of benefit from the fact that one can blur the distinction between
f(·) and the pair (α, β).

3 Transformations and Functionals

One of the things we do with spaces (or their subspaces) is to define certain
related maps or functions. Suppose X and Y are two vector spaces, then
a rule that associates a unique element of Y to every element of X is a
transformation or a map. In some settings this idea must be generalized so
that the rule is defined for only some proper subset D ⊂ X. We write this
as

T : D ⊂ X 7→ Y

A special case of particular interest occurs when the image space Y is the
scalar field; such a transformation is called a functional.

3.1 Linear Transformations

Linearity of maps is a natural idea in the vector space setting; it means that
applying the transformation to a linear combination of vectors, produces the
same result as applying the transformation to each component vector and
then forming the linear combination. In symbols, we have

T (

p∑
i=1

αiui) =

p∑
i=1

αiT (ui).

In the case when Y is the (real or complex) field we speak of a linear func-
tional.

3.2 Representation of a Linear Transformation

Suppose we are in the situation T : X 7→ Y, that dim[X] = n, dim[Y] = m
and that we have bases, say U, and V, for X and Y, respectively. Then for
any x ∈ X, we have x =

∑
αu, so that

T (x) = T (
∑


αu) =
∑

αT (u).
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Now for each  ∈ {1, 2, . . . , n}, T (u) ∈ Y so that any such vector has a
unique representation, say T (u) =

∑
ı=1,m tıvı. Indeed, we can write this

in matrix terms as
β1

β2
...
βm

 =


t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tm1 tm2 . . . tmn

 ·


α1

α2
...
αn

 .

The m-tuple of scalars (β1, . . . , βm) represent the image of T (x) in terms
of the basis V. In particular, the -th column of the matrix represents the
image of the vector u ∈ U ⊂ X in terms of the basis V ⊂ Y.

As an example, consider the earlier example of the space of contin-
uous functions and the subspace X spanned by the set of vectors S =
{cos(·), sin(·)}. In this setting consider the linear map defined by T (x)(t) =∫ t

0
x(s) ds; from any function we get a new function - the indefinite integral.

As a result of properties of the selected functions, it should be clear that T
maps vectors in X back into vectors in X. In fact, in terms of the given basis
the linear operator T is represented by the matrix

M =

[
0 −1
1 0

]
.

4 Norms and Inner Products

The vector space axioms provide an algebraic structure that is useful for
many applications. For many purposes it is also necessary to have some way
to say that two vectors are ‘close’. Our starting point for this is the idea of
a norm. Fundamentaly, a norm is a mapping (real-functional) that assigns
to each vector a real number - the length of the vector. The most common
notion is, of course, the Euclidean norm computed as the square-root of the
sum of the squares of the components. Note that in this case the vector space
is the set of such n-tuples Rn. For the moment we shall call this a Euclidean
space and denote it by En.

Of course, not every functional will capture the properties needed to make
a norm useful. In fact, the list of required axioms is short:

1. ‖v‖ ≥ 0 for all v, and ‖v‖ = 0 if, and only if v = 0.
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2. ‖u + v‖ ≤ ‖u‖+ ‖v‖

3. ‖αv‖ = |α| ‖v‖

A vector space and an associated norm are called a normed space. A
commonly cited non-Euclidean example is C[0, 1] - the space of real-valued
continuous functions on the interval [0, 1]. The vector space structure has
been noted above and the norm in this case is given by ‖v‖ ≡ max0≤t≤1 |v(t)|.
The notation C[0, 1] means the vector space with this norm. Note that we

can define a different norm on the same vector space (e.g. ‖v‖ ≡
∫ 1

0
|v(t)| dt.

The normed space with this integral norm is different from C[0, 1].

4.1 Inner Products

It turns out that there is a way to generalize the Euclidean case that will
produce a special class of norms and normed spaces. An inner-product is a
complex (possibly real) valued function that assigns to any pair of vectors a
scalar value - their inner (or dot) product. We shall write this as: < u,v >.

Again, we require certain axioms to end up with a useful concept

1. < u,v >= < v,u > (overbar means complex conjugate)

2. < (u1 + u2),v > = < u1,v > + < u2,v >

3. < αu,v > = α < u,v >

4. < v,v > ≥ 0 and < v,v > = 0 iff v = 0.

With these properties it turns out that ‖v‖ ≡ √< v,v > is a norm. The vec-
tor space X, together with the inner-product define an inner-product space
(sometimes called a pre-Hilbert space). Here again, the most common exam-
ple is the Euclidean case:

< (α1, α2, . . . , αn), (β1, β2, . . . , βn) > =
∑
i=1,n

αi βi = αTβ.

Note we have mixed in some matrix notation here. A common non-Euclidean
example is the space of continuous functions along with the inner-product
< u,v >≡

∫ 1

0
u(t) v(t) dt.
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4.2 Orthogonality

Just as in the Euclidean case we say that two vectors are orthogonal if the
inner-product is zero. In this case one can easily show the Pythagorean
Theorem holds: ‖(u + v)‖2 = ‖u‖2 + ‖u‖2.

The idea of orthogonality of two vectors can be extended by saying that a
vector is orthogonal to a set S iff it is orthogonal to every element of the set.
For given S the collection of all vectors orthogonal to the given set is called
the orthogonal complement of S ( we say S-perp and write S⊥). In fact, one
can prove that S⊥ is a subspace (even if S isn’t). If we start with a set that
is a subspace S ⊂ X, then we have a neat decomposition:

S
⊕

S⊥ = X.

This means that any vector in X can be uniquely decomposed into a part
that’s in S and a second part in its orthogonal complement. In the plane we
picture a line through the origin (S) and a second line at right-angles to it
(S⊥). In three-dimensions we might have a plane for (S) and a perpendicular
line for the orthogonal complement. Finally, if S is a subspace then S⊥⊥

(meaning [S⊥]
⊥

) gets us back to S.

4.3 Adjoints and Transposes

Suppose we have two inner-product spaces (X and Y) and a linear map
between them T : X 7→ Y. For a given x ∈ X and y ∈ Y we can compute
the real-number < Tx, y >Y, the inner-product in the Y-space.

Now we get a little wierd. For the given T and fixed y suppose we want
to evaluate the inner-product for a variety of vectors x ∈ X. We complain
that this is alot of work: first map the new x to Y by computing T (x), and
then compute the Y-space inner-product. For this fixed T and y is there an
element in X that will work with the X-space inner-product ? We are asking
for an element x∗ ∈ X so that

< x, x∗ >X = < Tx, y >Y ∀x ∈ X.

In fact, this requirement defines a new linear operator T ∗ : Y 7→ X. T ∗

called the adjoint of the operator T . In the real-Euclidean case, where T is
represented by a matrix M the calculation looks like:

< Tx, y >Y = < x, x∗ >X

(M x)T y = xT (MT y).
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The matrix representation of T ∗ is simply the transpose of the matrix repre-
sentation of T . If the scalars are complex we need to transpose the matrix
and conjugate the entries.

5 Decomposing Linear Operators

It turns out that a linear map between two vector-spaces (T : X 7→ Y),
provides a ‘natural’ way to decompose the spaces. First consider the subset
of points in Y that can be produced as the T -image of something in X. This
may be all of Y, but it need not be. This set is called the range-space of T ,
and, as the name implies, it is a subspace of Y. The usual symbol is R(T ).

Another set (this one in X) is those points that get mapped under T to
the zero vector in Y. The set obviously includes the zero vector (in X), but it
can include alot more. This set is called the null-space of T (written N (T ))
and is also a subspace (now of X). Based on the orthogonal complement
construction we clearly have

N (T )
⊕
N (T )⊥ = X

R(T )
⊕
R(T )⊥ = Y.

5.1 Decomposition - Inner-Product Spaces

We now examine the decomposition ideas when we have (finite-dimensional)
inner-product spaces. It turns out that in this case we have

[R(T )]⊥ = N (T ∗), and
R(T ∗) = [N (T )]⊥.

Let’s consider what the first claim means in the Euclidean-case. We will
abuse notation by using the term matrix to mean both the transformation
and its representation. Let M : En 7→ Em. The -th column of M is a vector
(say) m ∈ Em. The range space R(M) is the subspace of Em spanned by
the set of these column vectors. The subspace [R(M)]⊥ ∈ Em is the set of
vectors orthogonal to each and every such column vector, m ∈ Em.

The matrix MT has the m for its row vectors - so that the action of any
such row on vectors in [R(M)]⊥ will be zero. This means that any vector in
[R(M)]⊥ is also in N (M∗). The argument can be reversed to show inclusion
the other way — the two subspaces ([R(M)]⊥ and N (M∗)) are the same.
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