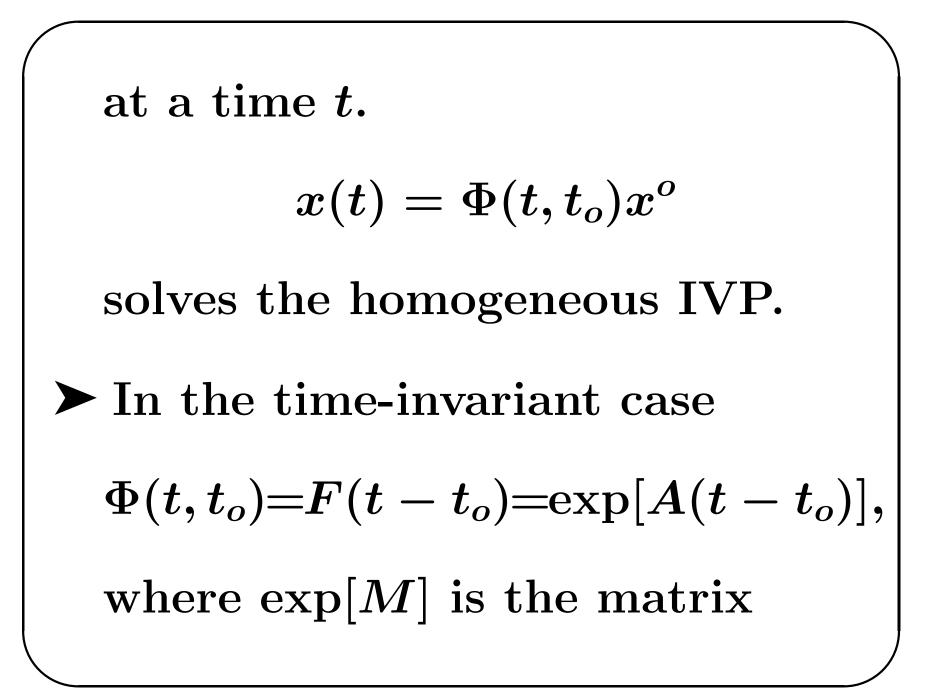
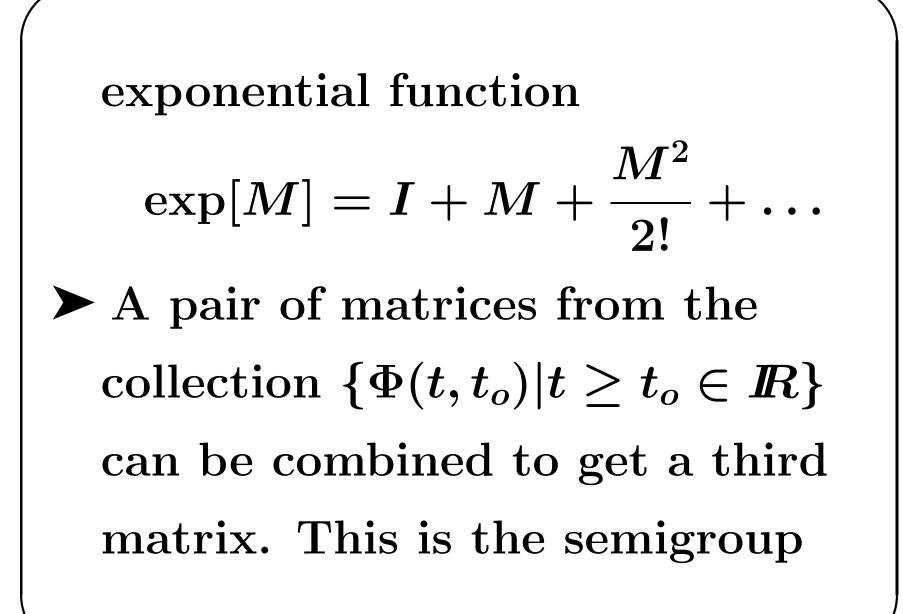
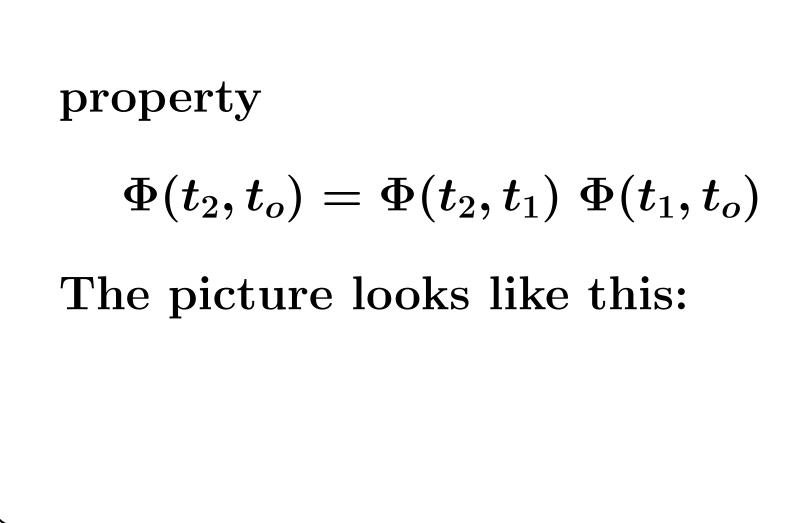
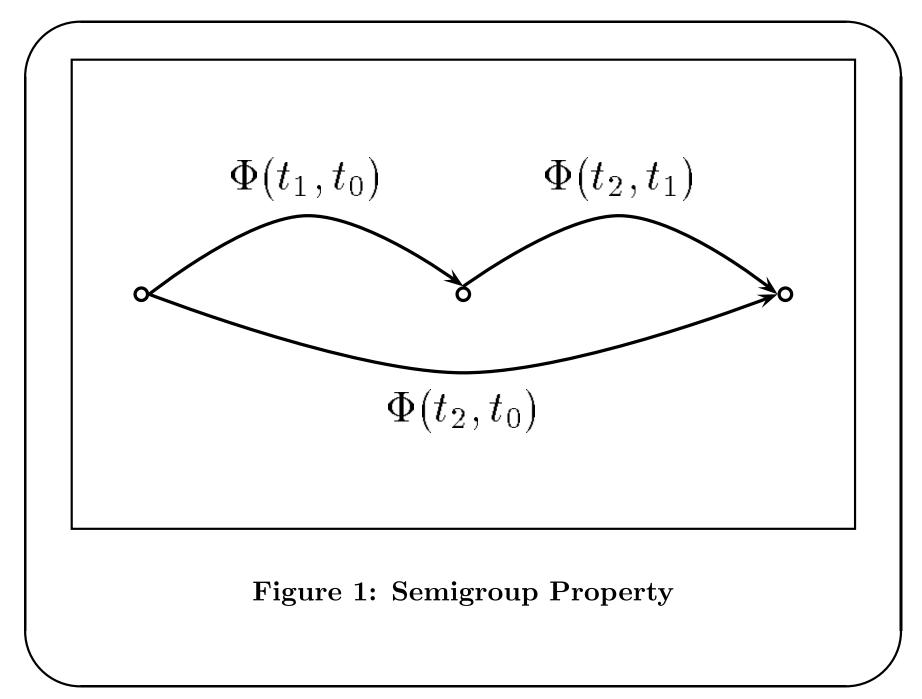


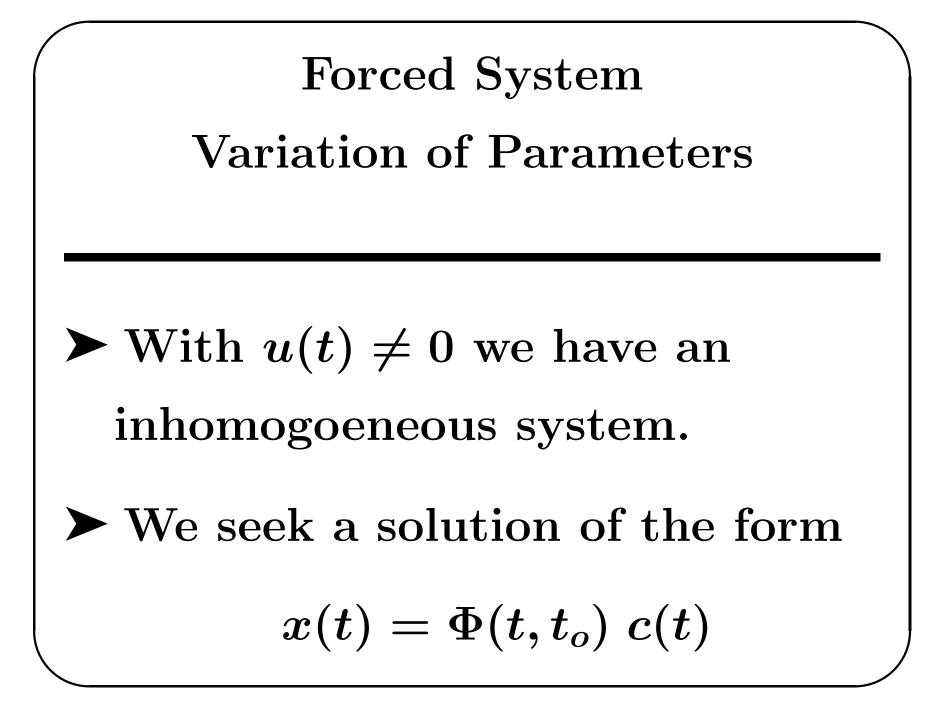
the matrix differential equation $\dot{\Phi}(t,t_o) = A(t) \ \Phi(t,t_o)$ with initial data $\Phi(t_o, t_o) = I$ ► The transition matrix is a collection of maps which take the initial data to the solution

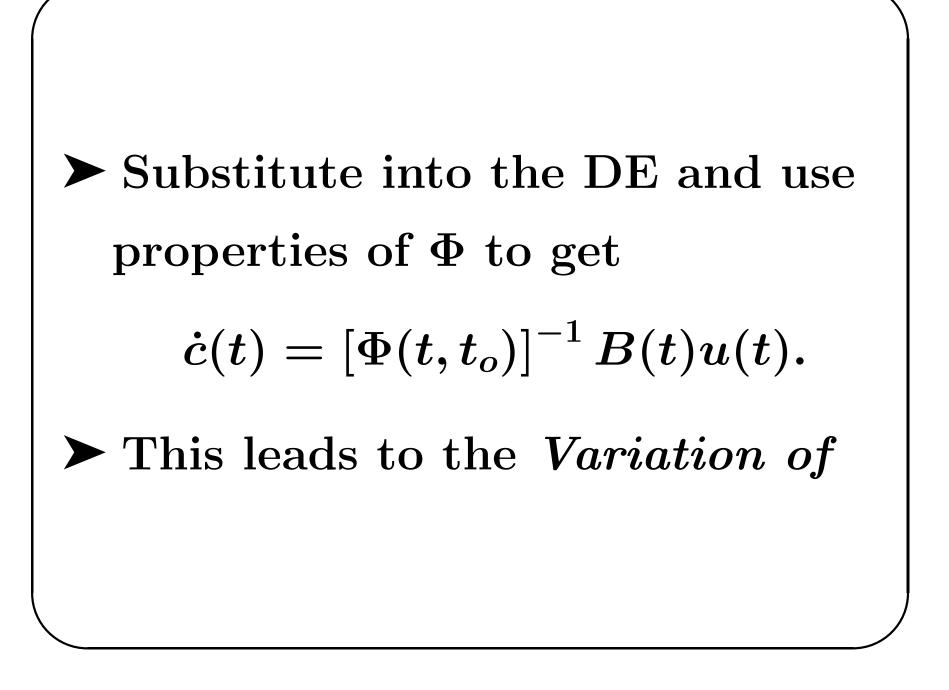




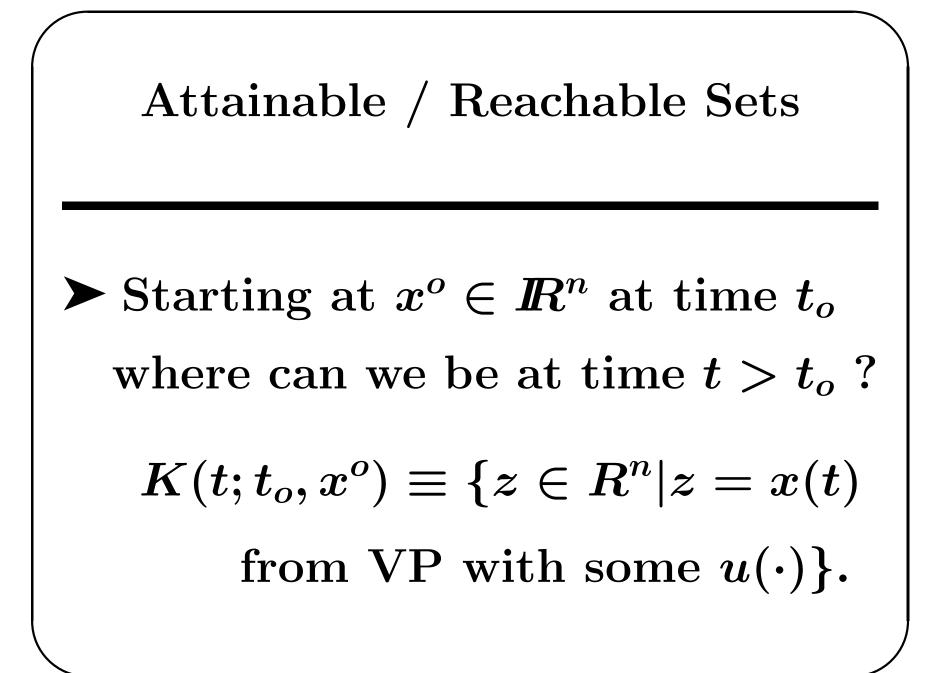








Parameters formula $x(t)=\Phi(t,t_o)\left[x^o
ight.$ $+\int_{t}^{t}\Phi(t_{o}, au)B(au)u(au)d au]$



If the set $R(t, t_o)$ is known we can find $K(t; t_o, x^o)$ by translating [adding x^o] and then transforming by the map $\Phi(t,t_0)$]. \blacktriangleright We can view this as a coordinate transformation $x \leftrightarrow y$. In terms of the y

coordinates the state equation is $\dot{y}(t) = \Phi(t,t_0)^{-1}B(t)u(t)$ $\succ K(t;t_o,x^o)$ is called the attainable set $\blacktriangleright R(t, t_o)$ is the reachable set \blacktriangleright The sets are closed, bounded and convex.

➤ The optimal control problem can be viewed as seeking the minimum time t^* such that $z(t) \in K(t; t_o, x^o)$

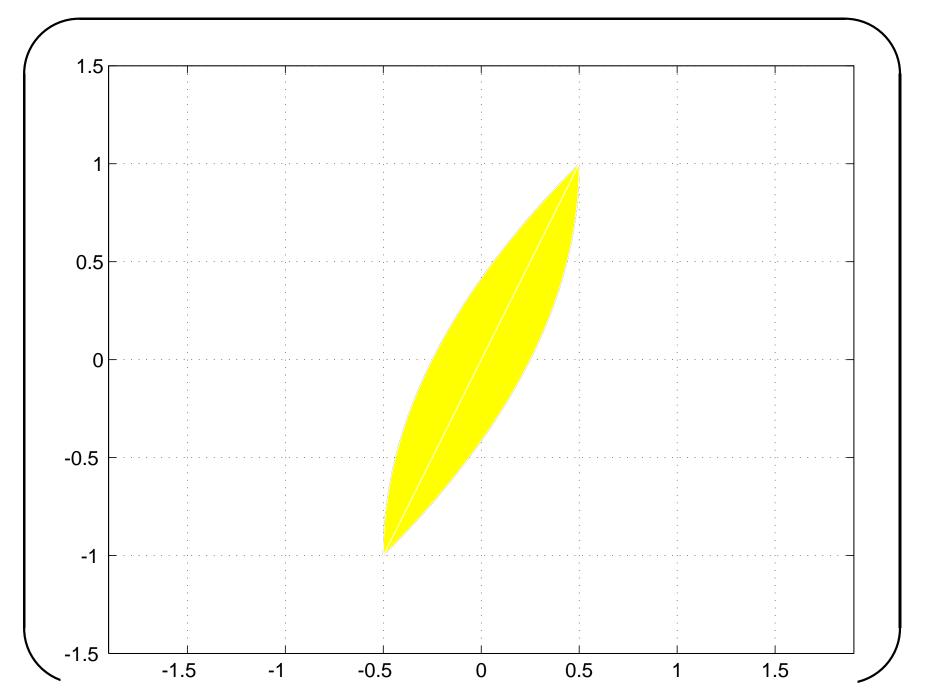
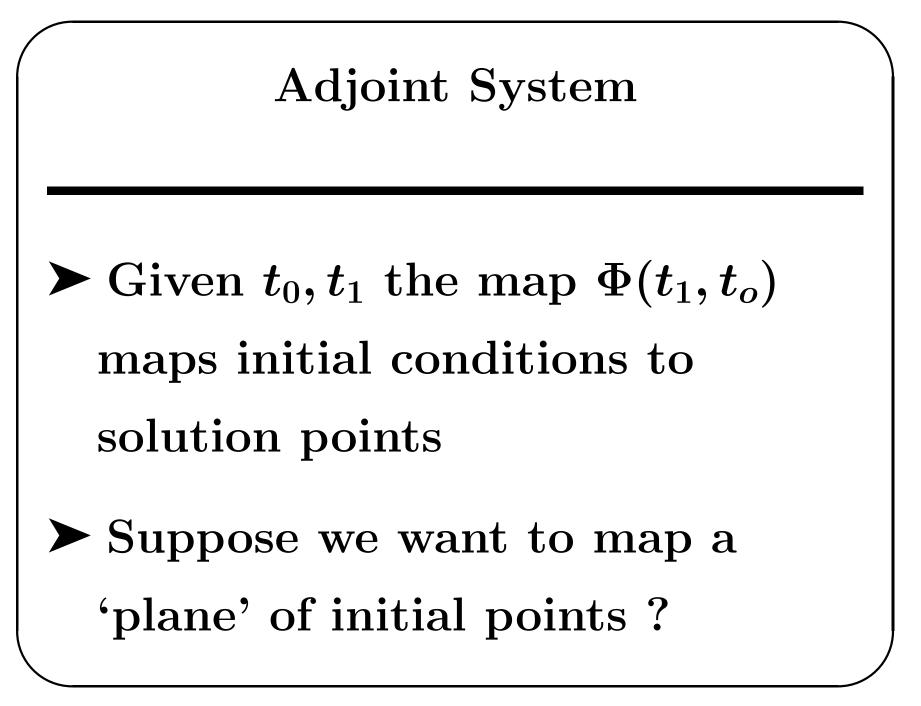


Figure 2: An Attainable Set



 \blacktriangleright A n-1 dimensional plane can be described by n-1 linearly independent vectors spanning the plane or by a single vector normal to the plane. $\blacktriangleright \Phi(t_1, t_o)$ maps the vectors in the plane. What maps the normals ?

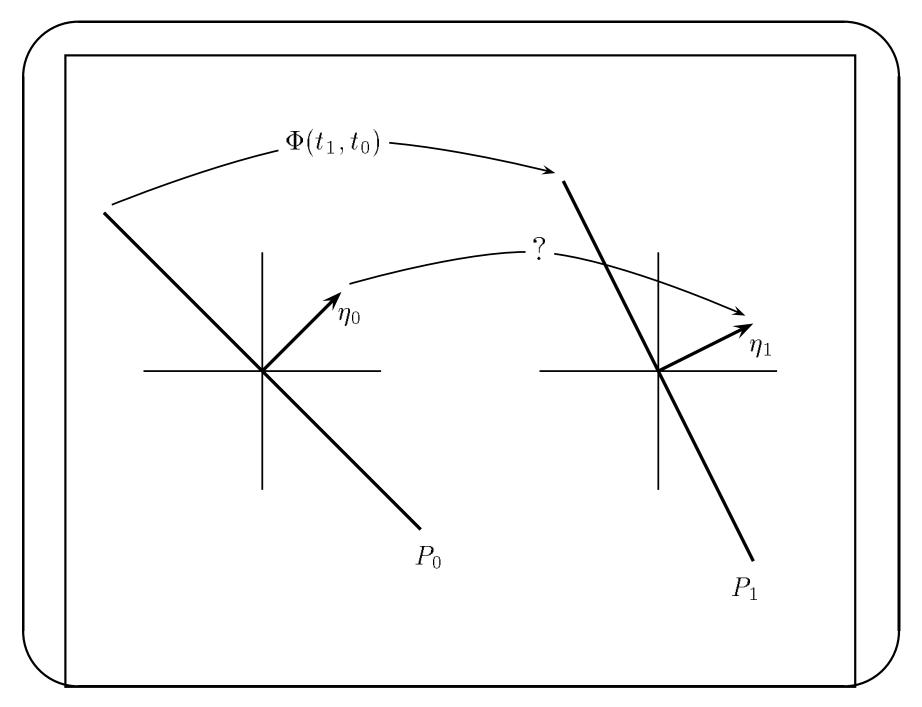
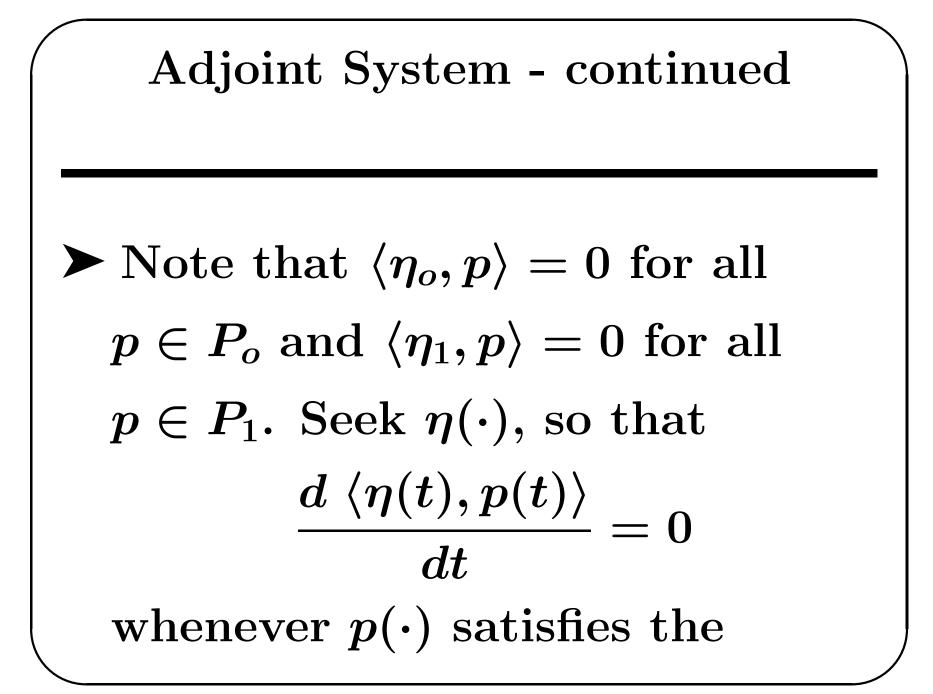
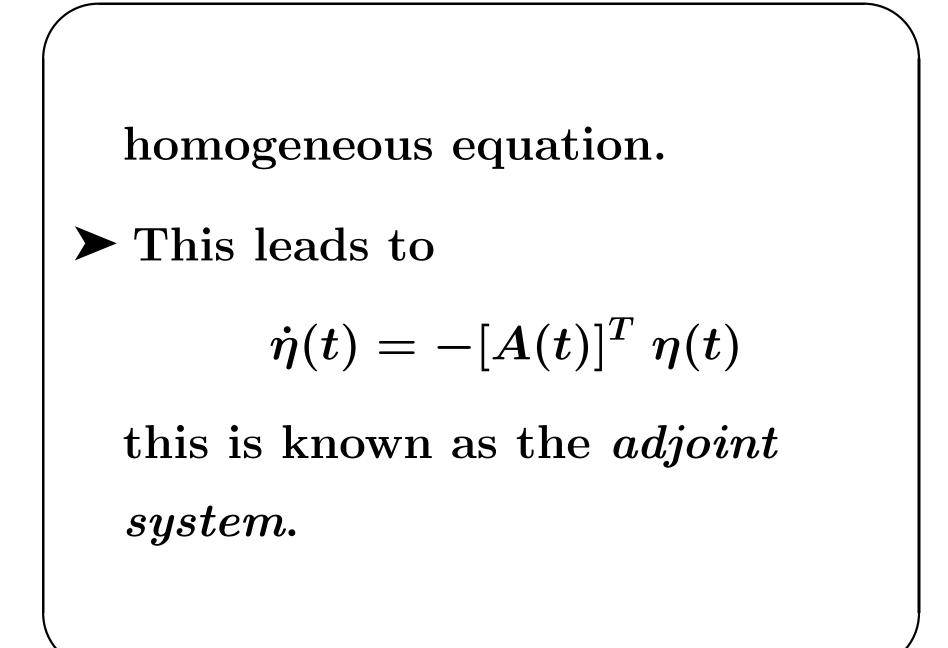
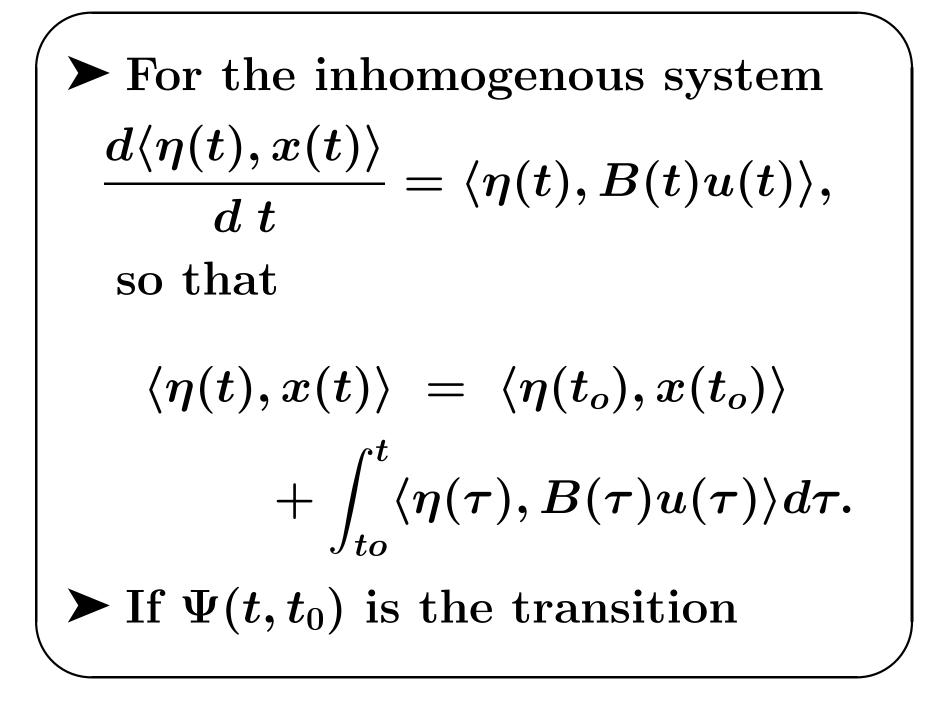
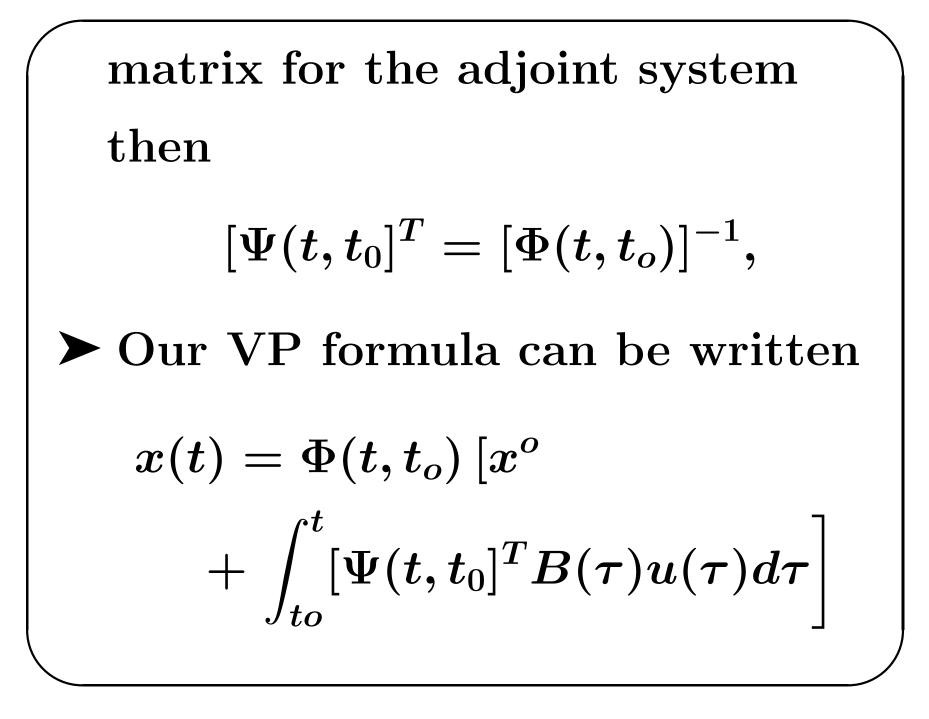


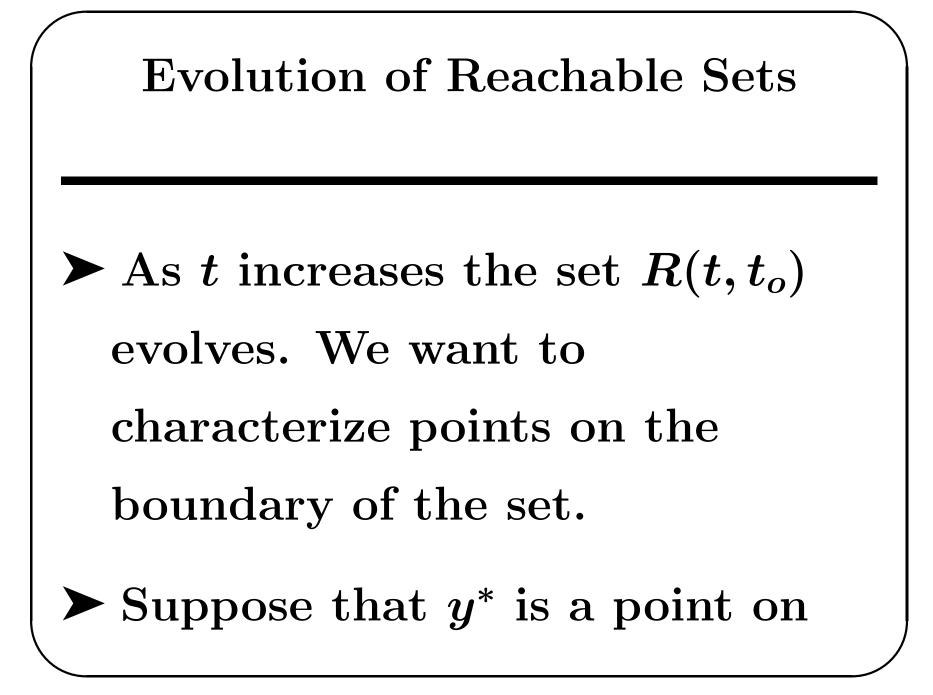
Figure 3: Mapping Planes



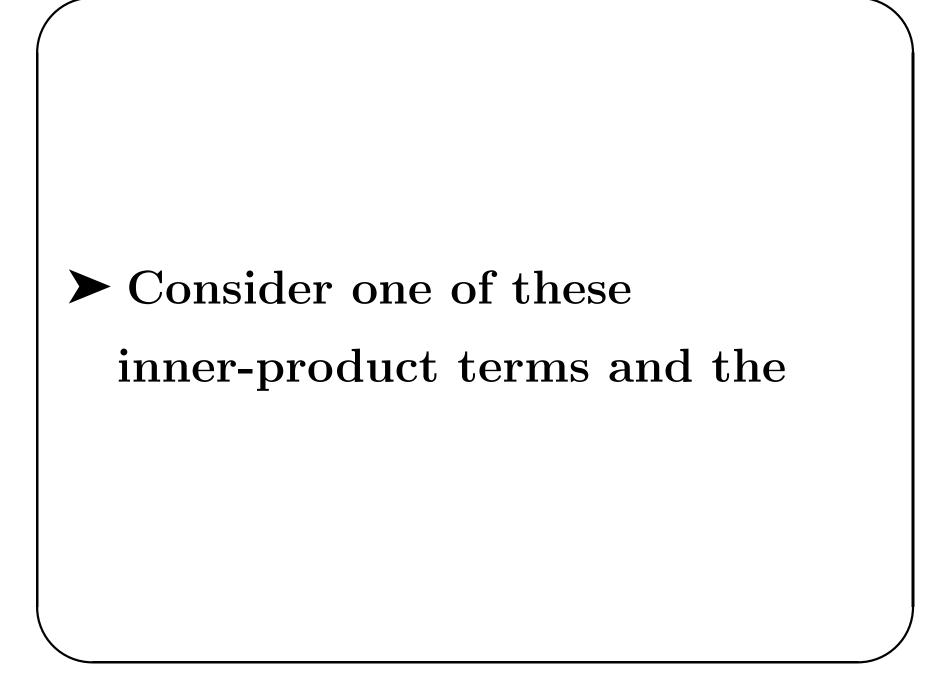






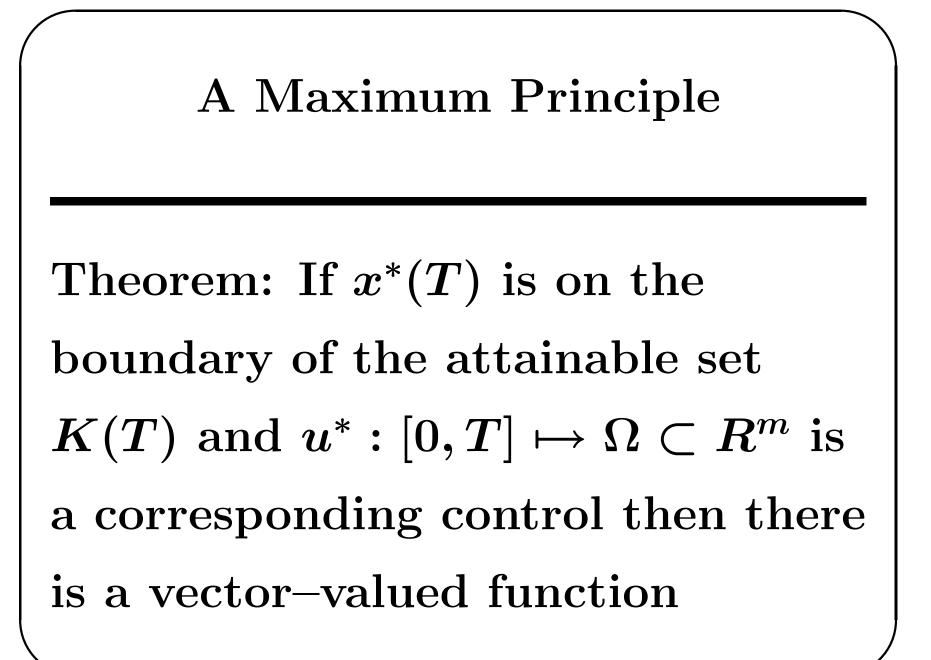


the boundary of $R(\hat{t})$ and that $\hat{\eta}$ is an outward normal at this point. If \tilde{y} is any other point in the (the convex set) $R(\hat{t})$ then $\langle \hat{\eta}, (ilde{y}-y^*)
angle \ \leq \ 0,$ or $\langle \hat{\eta}, y^*
angle \ \geq \ \langle \hat{\eta}, ilde{y}
angle.$



$$egin{aligned} & ext{integral expression for }y(\cdot)\ &\langle\hat\eta, ilde y
angle\ &=\langle\hat\eta,\int_{to}^t[\Phi(au,t_0)]^{-1}B(au)u(au)d au
angle\ &=\int_{to}^{\hat t}\langle[\Phi(au,t_0)]^{-T}\hat\eta,B(au)u(au)d au
angle\ &=\int_{to}^{\hat t}\langle\eta(au),B(au)u(au)d au
angle. \end{aligned}$$

Combining these we have $\int_{t_{-}}^t \langle \eta(au), B(au) u^*(au) d au
angle$ $\leq \int_{t_{-}}^{\hat{t}} \langle \eta(au), B(au) u(au) d au
angle$



 $\eta(\cdot):[0,T]\mapsto R^n$ so that $\dot{\eta}(t) = -A^T(t) \; \eta(t)$ and $\eta^T(t) \; B(t) \; u^*(t) \geq \eta^T(t) \; B(t) \; v$ for all $v \in \Omega$.