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1 Motivation

As a first step in studying the modern theory of optimal control we examine
the situation wherein the dynamics are described by linear ordinary differential
equations:

ẋ(t) = A(t) x(t) + B(t) u(t), (1)

with x(t) ∈ Rn and u(t) ∈ Rm. The control values u(t) are restricted to some
set Ω ⊂ Rm. One important case of interest is that of simple bounds |ui(t)| ≤
1, i = 1, . . . ,m. More generally, we consider the set Ω to be closed, bounded
and convex.

For the optimal control problem we introduce a target ‘point’ z(t) ∈ Rn.
Here we allow z(·) to be a given smooth function of time. One could consider
stationary targets but, as we shall see, the moving target introduces no addi-
tional complexity. The optimal control problem is to find (for a given initial
condition x(to) = xo ∈ Rn, and given target function z(·)) a time t∗ and a cor-
responding control function u∗(·) so that the solution to (1) has x(t∗) = z(t∗)
and that this is the minimum time for which this occurs.

2 Homogeneous System

The study of such (linear, finite-dimensional) dynamical systems begins with the
homogeneous case u(t) ≡ 0. This leads to the study of the fundamental matrix
(or transition matrix) Φ(t, to) which satisfies the matrix differential equation

Φ̇(t, to) = A(t) Φ(t, to), (2)

with initial data Φ(to, to) = I, the identity matrix. The transition matrix can
also be thought of as a (collection of) map(s) which take the initial data to the
solution. That is,

x(t) = Φ(t, to)x
o (3)

is the solution to
ẋ(t) = A(t) x(t), (4)
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with initial condition x(to) = xo. Note that in general, the matrix-valued func-
tion Φ(t, to) has two arguments: t - the current time, and to - the initial time.
If, however, the matrix A is constant (the time-invariant case) then only elapsed
time matters and we write

Φ(t, to) = F (t− to) = exp[A(t− to)], (5)

where exp[M ] is the matrix exponential function

exp[M ] = I +M +
M2

2!
+ . . .+

Mk

k!
+ . . .

Φ ‘inherits’ another important property from the differential equation struc-
ture. Suppose we start at state xo at time to and propagate the solution for-
ward to time t1. The resulting state will be, of course, x(t1) = Φ(t1, to)x

o.
Now, use this as an initial state and propagate forward to time t2. Simple
calculations reveal that the state will be x(t2) = Φ(t2, t1)[Φ(t1, to)x

o]. On the
other hand, we could start at xo and go ‘all the way’ to t2 with the expression
x(t2) = Φ(t2, to)x

o. Comparing these two we arrive at the semigroup property:

Φ(t2, to) = Φ(t2, t1) Φ(t1, to)

The picture looks like this:

�(t1; t0) �(t2; t1)

�(t2; t0)

Figure 1: Semigroup Property

The term semigroup indicates that the set of matrices form an algebraic
group under multiplication. The product of two matrices from the set is another
matrix from the set. The semigroup terminology arise from the fact that, in
general, time flows in one direction to < t1 < t2. In the finite-dimensional case
we can have the tı in any order.
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3 Forced System

Now consider the inhomogeneous system (u(·) �= 0). The idea is to generalize
the homogeneous solution (3) by allowing the constant xo to vary; that is we try
to find a (vector-valued) function c(t) so that the solution to the inhomogeneous
system can be written as

x(t) = Φ(t, to) c(t).

Substituting this form in (1) we have:

Φ̇(t, to)c(t) + Φ(t, to)ċ(t) = A(t) [Φ(t, to) c(t)] + B(t)u(t).

Since Φ(t, to) satisfies the matrix equation (2) we get

ċ(t) = [Φ(t, to)]
−1 B(t)u(t).

This leads to the Variation of Parameters formula

x(t) = Φ(t, to)

[
xo +

∫ t

to

[Φ(τ, to)]
−1B(τ)u(τ)dτ

]
. (6)

To further justify the formula one notes that

DET[Φ(t, to)] = exp

[∫ t

to

Trace[A(τ)]dτ

]
,

so that Φ(t, to) is never (theoretically) singular.
Based on the semigroup property we write

Φ(t0, t) Φ(t, to) = Φ(to, to) = I,

so that
[Φ(t, to)]

−1 = Φ(t0, t)

and (6) can be written

x(t) = Φ(t, to)

[
xo +

∫ t

to

Φ(to, τ)B(τ)u(τ)dτ

]
. (7)

4 Attainable / Reachable Sets

Certain results and constructions of optimal control theory are more easily un-
derstood in a geometric setting. Given an initial condition x(to) = xo ∈ Rn,
we seek the set of points that can be attained at some future time t > to using
controls in the admissible set Ω.

K(t; to, x
o) ≡ {z ∈ Rn|z = x(t) from (6) with some u(·)}.
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Note that the control function u(·) must respect the bound Ω. As a first step
we study a simpler related set:

R(t, to) ≡ {z ∈ Rn|z = y(t, u) ≡
∫ t

to

[Φ(τ, t0]
−1B(τ)u(τ)dτ} (8)

for some admissible control u(·). Comparing with the formula (7) we see that

x(t) = Φ(t, to)[x
0 + y(t, u)]. (9)

Thus, once the set R(t, to) is known we can find K(t; to, x
o) by translating [

adding xo ] and then transforming [ by the map Φ(t, t0) ]. One can view (9)
as a change of coordinates from x to y. If this form is substituted into the
system-model (1), one finds that:

ẏ(t) = Φ(t, t0)
−1B(t)u(t),

as expected from the definition of y in (8). K(t; to, x
o) is called the attainable

set, while R(t, to) is the reachable set (see the book by Hermes and LaSalle, Ref.
[1] ). Unfortunately, this terminology is not universal. An example of such an
attainable set is provided in Fig. (2)

It can be shown that the set R(t, to) is closed, bounded and convex (if Ω is).
Since K(t; to, x

o) is generated from R(t, to) by a translation followed by a linear
transformation, it also is closed, bounded and convex. It can also be shown that
R(t, to) varies continuously with t. To make sense of this statement, one must
describe what it means for two sets to be close. For all these discussions and
proofs see [1].

Our optimal control problem can be interpreted as seeking the minimum
time t∗ such that z(t) ∈ K(t; to, x

o). We can re-formulate this in terms of the
reachable set by transforming the target function using the inverse of the map
defined in (9)

w(t) ≡ [Φ(t, t0)]
−1z(t)− xo.

Now we seek the minimum time such that w(t) ∈ R(t; to). Note that even if
z(t) were constant, the corresponding point w(t) is generally time-varying.

5 Adjoint System

For fixed t0, t1 the map Φ(t1, to) gives the rule by which initial conditions are
mapped to solution points (of the homogeneous system). Suppose we have a
‘plane’ (more precisely an (n − 1) dimensional subspace) of ‘initial points’, say
Po. This will be mapped ‘pointwise’ by Φ(t1, to) to another plane at time t1.
Note that alternatively such planes can be described by a single vector, say ηo
which is orthogonal to the plane. Rather than describe Po by specifying n− 1
vectors in a basis, we specify [Po]

⊥ by giving a single vector ηo. We ask what is
the ‘map’ for the normal vector ηo [ see Fig. (3) ] ?
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Figure 2: An Attainable Set

P0

�0

P1

�1

�(t1; t0)

?

Figure 3: Mapping Planes
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Since < ηo, p >= 0 for all p ∈ Po and < η1, p >= 0 for all p ∈ P1, let’s try
to find η(·), so that

d < η(t), p(t) >

dt
= 0

whenever p(·) satisfies the homogeneous equation (3). Direct calculation shows
that

η̇(t) = −[A(t)]T η(t), (10)

this is known as the adjoint system.
For the inhomogenous system we can directly compute that

d < η(t), x(t) >

d t
=< η(t), B(t)u(t) >,

so that

< η(t), x(t) > = < η(to), x(to) > +

∫ t

to

< η(τ), B(τ)u(τ) > dτ.

The adjoint system finds special use in guidance studies wherein one is concerned
with the effects of inputs and/or errors on the final state. Let Ψ(t, t0) be the
transition matrix for the adjoint system. We can show that

[Ψ(t, t0]
T = [Φ(t, to)]

−1,

so that (7) can be written as

x(t) = Φ(t, to)

[
xo +

∫ t

to

[Ψ(t, t0]
TB(τ)u(τ)dτ

]
. (11)

6 Evolution of Sets

As t increases one envisions the set R(t) evolving; its boundary sweeping through
the state space. Points on the boundary are of particular interest.

Suppose that y∗ is a point on the boundary of R(t̂) and that η̂ is an outward
normal at this point. If ỹ is any other point in the (the convex set) R(t̂) then

< η̂, (ỹ − y∗) > ≤ 0,

or
< η̂, y∗ > ≥ < η̂, ỹ > . (12)

If we consider one of these inner-product terms and the integral expression for
y(·) we find, for example, that

< η̂, ỹ > = < η̂,

∫ t

to

[Φ(τ, t0)]
−1B(τ)u(τ)dτ >

=

∫ t̂

to

< [Φ(τ, t0)]
−T η̂, B(τ)u(τ)dτ >

=

∫ t̂

to

< η(τ), B(τ)u(τ)dτ > .
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The last step follows from the property of the adjoint system and η(·) is the
solution of (10) with boundary condition η(t̂) = η̂. Making use of this result in
(12) we have

∫ t̂

to

< η(τ), B(τ)u∗(τ)dτ > ≤
∫ t̂

to

< η(τ), B(τ)u(τ)dτ > . (13)

For now we specialize to consider the control bound |ui(t)| ≤ 1. We have
the following result: A point q∗ is a boundary point for R(t̂) if, and only if,
q∗ = y(t̂, u∗), where the control u∗ is given by

u∗(t) = sgn[ηTY (t)], (14)

where
Y (τ) ≡ [Φ(τ, to)]

−1B(τ)]

and where η is the outward normal to a support plane of R(t̂) at the point q∗.
In the usual case, the boundary of R(t̂) is smooth and the support plane is
the tangent plane. More generally, a support plane divides the state space into
two ‘halves’: one ‘half’ contains the convex set R(t̂) and the other ‘half’ has no
points in R(t̂).

To further develop the characterization of u∗ implied by (14) let’s specialize
to the case of scalar control so that Y (·) and B(·) are vector-valued (i.e. a single
column). In this case we have

< η̂, Y (t) > = < η̂, Y (t) >

= < η̂,Φ(t, to)
−1B(t) >

= < Φ(t, to)
−T η̂, B(t) >

= < Ψ(t, to)η̂, B(t) >

= < η(t), B(t) >

The first vector in the inner-product is the (time-varying) adjoint vector, a
solution to the adjoint system (10). The condition (14) indicates that we choose
the control according to the sign of the switching function σ(t) ≡< η(t), B(t) >.
For vector-valued control with box constraints we get a switching function for
each control component.

7 Summary

Consider the linear dynamical system (1) u(t) ∈ Ω ⊂ Rm (Ω closed, bounded
and convex). We are interested in characterizing control histories (i.e. functions
of time) that lead to points on the boundary of the attainable set K(t; to, x

o).
Theorem: If x∗(T ) is on the boundary of the attainable set K(T ) and

u∗ : [0, T ] �→ Ω ⊂ Rm is a corresponding control then there is a vector–valued

7



function η(·) : [0, T ] �→ Rn so that

η̇(t) = −AT (t) η(t)

and

ηT (t) B(t) u∗(t) ≥ ηT (t) B(t) v

for all v ∈ Ω.
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