

final time we include an additional state $x_3 \equiv \tau$ $\dot{x} = \cos \theta + \kappa y$ $\dot{y} = \sin \theta$ $\dot{\tau} = 1$ with $-\pi \leq \theta \leq \pi$.

 \blacktriangleright We are to minimize $J[x(\cdot),u(\cdot)] = \int -\left[\cos heta+\kappa y
ight] \; dt$ ► with $au(t_f) - T = 0$

► Note the M.P. allows $\lambda_0 \ge 0$. If $\lambda_0 = 0$ then we get $\lambda_y = 0$. We already have $\lambda_x = 0$ and the condition H = 0 then implies $\lambda_{\tau} = 0$. Since we know that $(\lambda_0, \vec{\lambda}) \neq 0$ we can rule out the possibility that $\lambda_0 = 0$. \blacktriangleright For our problem the optimal

