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Linear Equality Constraints

➤ Minimize a smooth function of

several variables F (x), x ∈ IRn

subject to linear equality

constraints

Ax = b ∈ IRm, m < n
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Constraint Set

➤ We can completely characterize

the feasible points as

{x = x1 + p|where p ∈ N (A)}

and x1 is some solution of

Ax = b.
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➤ Let the columns matrix Z be a

representation for N (A). Z will

have nc = n− rank(A) columns.

➤ We write x = x1 + Zpz where

pz ∈ IRnc is arbitrary.

➤ If we define

F̂ (pz) ≡ F (x1 + Zpz)
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we can minimize F̂ as an
unconstrained problem.

➤ Note

∇ZF̂ = ZT (∇F )

and

∇2
ZF̂ = ZT

(
∇2F

)
Z
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Null Space Representation

➤ Our usual procedure uses a Q-R

decomposition to get Z = N (A)

➤ In many problems we can split

the unkown x into two

sub-vectors xV and xU and
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compatibly partition the A

matrix to write

Ax = [V U ]

 xV
xU

 = b.

➤ The xU sub-vector is

interpreted as the independent

variables, while the xV
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sub-vector is interpreted as the
dependent variables.

Ax = b→ xV = V −1 [b− UxU ]

➤ This leads to a null-space

representation −V −1U

I

 .
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Quadratic Programming

(QP)

➤ An important special case of

linearly constrained problems

occurs when F is a quadratic

function
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➤ We seek to minimize

(1/2)xTGx+ cTx

subject to

Ax = b

➤ As noted for the general

problem with linear equality
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constraints we write

x = x̄+ p,

where x̄ is some feasible point

(Ax̄ = b) and p ∈ N (A).

➤ Using this representation we get

the equivalent problem

min
p

(1/2)pTGp+ (Gx̄+ c)Tp
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subject to

Ap = 0

➤ Since

p ∈ N (A)→ p = Zpz

we get the unconstrained
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problem

min
pz∈IRn�m

(1/2)pTz Z
TGZpz

+ (Gx̄+ c)TZpz
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Lagrange Mulitplier Estimates

➤ At a critical point ∇L = 0, or

∇F (x∗) = ATλ (∗)

➤ At a typical x the system (*) is

an incompatible, system (n

equations in m unknowns).
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➤ For such points (x̃) we might

replace (*) with

min
λ∈IRm

‖ATλ−∇F (x̃)‖2

➤ These are sometimes called

projection mulitpliers.

➤ An alternative is to use the

variable-splitting idea discussed
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above and solve the m bym

system

V Tλ = ∇xVF
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Inequality Constraints

Karush-Kuhn-Tucker

➤ If we consider inequality

constraints

Ax ≥ b or Ax− b ≥ 0

we get as a necessary condition
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for a minimizer

∇F (x∗) = ATλ

and

λ ≥ 0

➤ inactive constraints correspond

to rows of A with

Ax > b
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Such constraints will have λ = 0


