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Introduction to Aerospace Engineering

8.0 Fundamental Ideas for Space Considerations

In order to get to space, we need to expend energy. In particular we must raise the vehicle
to the height of interest and, if we want to stay at that height (go into orbit) then we have to
achieve a certain speed. Hence we have to expend energy to increase the potential energy plus
increase the kinetic energy. The total energy at the end of the boost equals the energy at the
beginning of the boost plus the energy expended, minus the energy lost (due to drag, etc). All this
energy must come from the rocket motor.  So let us look at the potential and kinetic energy of an
object located as some altitude, h, above the Earth’ surface, that has some speed, V.

Kinetic Energy

From physics, we find that the kinetic energy (the energy due to motion) is expressed as:

(1)

where m = mass of vehicle
V = velocity of vehicle

Often times when considering space vehicles we are interested in the specific kinetic energy or the
kinetic energy per unit mass. We designate that with a T, or

(2)

Potential Energy

Since we are discussing the potential energy of a vehicle far from the Earth’s surface, we
must include the fact that gravity is not constant. In order to start this discussion, we will
introduce Newton’s law of Gravity. It states that the force between two bodies with mass is
proportional to the product of the masses and inversely proportional to the square of the distance
between them:

(3)

where m1 and m2 = mass of the two bodies
r = distance between the center of mass of the two masses
G = universal gravitational constant

This force is called an inverse square gravitational force.
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If we examine the force at the surface of the Earth where , and we consider the

Earth to be m1  and the object of interest to be m2 , we can write the weight of the object (at the
Earth’s surface) as

(4)

or

(5)

where : =  =  gravitational parameter of the Earth

= 3.986004415x105 km3/s2 = 1.407644x1016 ft3/sec2

= radius of Earth  =  6378.1363 km  =  2.09256x1013 ft

= 3963.1902 miles  =  3443.9181 Nautical miles

It turns out that the value of : is known more accurately than the parameter G, and is used more
often. Then the surface value of gravity can be expressed in terms of : or vice-versa:

 (6)

We can see how the force varies with gravity, or if we consider the force per unit mass ( or g),
and use Eqs. (5 & 6) we have:

(7)

where: g = acceleration due to gravity at any altitude, h
h = height above the Earth’s surface

= radius of the Earth

= acceleration due to gravity at the Earth’s surface

Equation (7)  tells us how the acceleration due to gravity varies with altitude above the Earth’s
surface. One might expect that the potential energy has a different form than that for constant
gravity (for a constant gravity field, PE = mgh or per unit mass, PE = gh, where h is measured
from some arbitrary reference datum), and that is indeed true. 
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Potential Energy

The potential energy for an inverse square gravitational force is referenced to a datum
plane at infinity! Hence all potential energies are negative! Without proof, it can be shown that
the potential energy is given (per unit mass)

(8)

Consequently, the total mechanical energy of a spacecraft or rocket is given by:

Energy equation (per unit mass)

(9)

where V  = velocity of vehicle
: = gravitational parameter of the central body (Earth, or Sun, planet)
r = distance from center of central body.

Consequently, the rocket engine must provide the energy to change the total energy from
that at the start of the mission (rocket vehicle on ground) to that at the end of the mission (rocket
vehicle in orbit for example), and also overcome some losses due to aerodynamic drag.  For now
let us just consider the rocket contribution to changing the kinetic energy (that is, lets neglect the
gravity and aerodynamic forces).  If we do that, then we can write Newton’s second law as:

(10)

where m = mass of vehicle
T = rocket thrust (the only force considered, remember gravity and aero forces

are neglected)
V = rocket speed
t = time

= rocket acceleration

Now it is known that the rocket thrust is related to the mass flow rate and the exit velocity of the
gasses. The resulting thrust is expressed by the relation:

 (11)

where = exit gas velocity relative to the rocket

= the rate of change of the mass of the rocket due to the gasses leaving it.
Note that it is a negative quantity because the rocket mass is decreasing!
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= nozzle exit pressure

= ambient (atmospheric) pressure

= nozzle exit area

The engine is most efficient when the contribution from the pressure terms is zero. We will
assume that such is the case and if not, close enough to neglect the pressure terms compared to
the so-called momentum thrust terms. If we substitute Eq. (11) (without the pressure terms) into
Eq. (10) we have:

(12)

After rearranging we have:

(13)

And finally, we can integrate between the initial mass, m1 and the final mass, m2: and obtain the
so-called rocket equation

Rocket Equation (no gravity or aerodynamic forces)

(14)

The quantity is called the mass ratio (one of many different mass ratios). Note that if the mass

ratio is greater than e = 2.7183, then the final velocity will be more than the exit velocity of the
gasses, which is usually the case. We now need to address the issue of the exit velocity.

Specific Impulse

The specific impulse can be defined as the thrust divided by the weight flow rate, or 

(15)

where = specific impulse, ( has units of seconds)

 = propellent weight flow rate

However, the important thing for us to know is that the exit velocity of a rocket is directly related
to the specific impulse of a given fuel. The relation is quite simple:
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(16)

Consequently, if we know the specific impulse for a given propellant combination, we can
determine the exit velocity of the exhaust, and use Eq. (14) to determine the speed after a given
amount of propellant is burned. Some values for typical liquid fuels are:

Propellant (seconds)

liquid oxygen, kerosene (LOX/RP-1) 310

liquid oxygen, liquid hydrogen (LOX/LH2) 455

fluorine, hydrogen (F2/H2) 465

nitrogen tetroxide, unsymmetrical
dimethylhydrazine (N2O4/UDMH)

(storable fuel)
290

typical solid fuels 170 - 250

plasma jet, arc jet 300 - 700

 If we go to ion propulsion, the Isp can be 10,000! However, the thrust level is at a small fraction
of a Newton, so that fuel cannot be used on launch vehicles, but it works quite well in space. 

Mass ratios

If we consider a rocket, we can define many different mass ratios. To start, we can divide
the rocket mass into several different types:

(17)

where  = initial mass of rocket

= mass of payload

= mass of structure

= mass of fuel

It is clear that the final mass is just the structural mass plus the payload mass:

(18)

The ratio of the payload mass over the total initial rocket mass is called the payload ratio.
Define the payload ratio, or payload mass fraction, :
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(19)

and the step or effective structural factor or structural ratio, :

(20)

Note that the structural ratio does not include the payload in the denominator. In this way, the
structural ratio is associated with the vehicle and does not have to be changed every time the

payload is changed. However, sometimes the overall structural mass fraction, , is defined as:

(21)

Then the relation between the effective structural factor and the overall structural mass fraction is
determined from:

(22)

We can define the total fuel (total propellant) mass fraction, :

(23)

It is clear that the following relation is true:

(24)

The mass ratio of the initial mass over the final mass, , was defined previously, but we can

now write it in several ways:



7

Mass Fraction

(25)

The mass ratio takes on its largest value when there is no payload ( ). Then the maximum

increase or upper bound for the change in velocity for a rocket is:

(26)

If we assume that current technology provides a structural ratio of about then the

maximum speed obtained from rest would be about 2.3 times the exhaust velocity. 

The payload mass fraction can be written in many ways as a function of other mass
fractions. Consider:

and solve for to get:

(27)

One of the major design objectives for spacecraft and boosters is to obtain the highest
possible payload ratio or equivalently, given the gross lift-off weight (mass) maximize the payload
weight (mass), or given the payload weight (mass), minimize the gross lift-off weight (mass). 
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We can estimate the time to burn by making a few assumptions and using what we know.
Consider, for example, the thrust to weight ratio of a vehicle:

now make the assumption that  and substitute it into the above equation to get after

rearranging:

(28)

Example: Consider a spacecraft with a gross weight of 6896 N (1552 lbs) (mass of 703 kg) that is
to be the payload of a single stage booster capable of a = 7930 m/s. The = 350 s. ( From

Hale, Introduction to Space Flight, Prentice Hall, 1994)

a) Estimate the Gross lift-off weight 

Lets first calculate the things we know and see where it gets us. We can get an estimate of
the mass ratio from the “rocket equation” if we neglect the gravity and atmosphere effects. In
order to use that equation, we need to have the exit or exhaust velocity:

Then the mass ratio is obtained from the rocket equation:

Now the final mass include both the payload and the structural mass, so we must select a
structural mass ratio before we can determine the lift-off mass. Or, we can look at a range of
structural mass ratios and see how the initial gross lift-off weight (GLOW) is affected by the
structural ratio (or step structural ratio).  We can estimate the fuel ratio from the mass ratio as
follows:
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Hence the propellant will take 90% of the booster initial mass (weight). We can now estimate the
payload fraction, but we note that given the fuel mass ratio, it depends only on the structural ratio.
From Eq. (27) we have:

or rearranging:

We can see that the conventional state-of-the-art structural ratio of   will not work here

so we will have to go to a technology-pushing value of   . With this value, we have 

The fuel mass is 

 and the structural mass is 

If we use some unobtainium for our structure, so that we can reduce the structure fraction to
0.05, then the initial mass becomes:

and we reduce the initial mass by an order of magnitude!

b) If the initial launch thrust to weight ratio was 1.5, what would be the lift-off thrust, and what
would be the approximate burn time.

The estimated time to burn is:

Multistage Rockets

It can be seen from previous calculations that a single stage rocket is limited by the
payload and structural ratio as to its maximum speed capability. The structural ratio is one of the
main contributors to this limit. However we can improve rocket performance by discarding the
structural mass that is no longer required. This procedure is called staging. We an think of each
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stage as a single rocket. Then we can have a stage payload ratio, a stage structural ratio, and a
structural fuel ratio. Furthermore, these ratios can be different for each stage. However, the key
that links the stages together is that the payload of the nth stage is the n+1th stage. If the vehicle
has N stages, then the N+1th stage is the final payload. If we assume that all the stages have the
same exhaust velocities, then the final velocity, or burnout velocity is equal to the sum of the
stage burnout velocities:

(29)

 
The overall payload ratio is the product of each stage payload ratios:

(30)


