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Performance

7. Aircraft Performance -Basics

In general we are interested in finding out certain performance characteristics of a
vehicle. These typically include: how fast and how slow an aircraft can fly, rate-of-climb, how
high (ceiling), its range, endurance, take-off and landing distances, etc. In addition, we are
interested in how changes in the aircraft parameters would affect these performance measures.
We can get some of these answers by using a mathematical model of the vehicle of interest, and
applying various analysis techniques. The first item of business is to get some mathematical
model at some (possibly crude) level. Previously we developed a point-mass model of an aircraft
because we were primarily interested in the effects of the forces on the vehicle. These differential
equations of motion took the form:

(1)

and

(2)

The first set of equations are an application of Newton’s Laws, while the second set are called
kinematic relations or trajectory equations. These variables and others are noted in the following
figure:

D = drag
L = lift
T = thrust
V = Velocity
W = weight
� = angle-of-attack

(AOA)
�T = thrust AOA
� = thrust angle relative

to reference line
� = flight-path angle
� = aircraft pitch angle
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In order to simplify the problem greatly, we usually assume (at least to start) that the
thrust is aligned with the velocity vector, i.e. �T = 0, or is small and can be neglected. Under
these assumptions, the equations-of-motion can be simplified to:

(3)

We can note another subtle change here in that . That is we are neglecting the variation

of gravity with altitude and assuming geopotential and geometric altitude are the same. In order
to deal with these equations and put in the form useful for simulation on a computer we put all
the derivatives on one side to get:

(4)

Equations (4) represent a set of ordinary differential equations that are nonlinear, or what
are usually referred to as nonlinear ODEs. In order to obtain a solution to these equations, we
must only have the four variables V, �, h, and x in them. However we observe a T, a D, and an L,
in addition to a � and a V that appear explicitly. To solve these we need to establish how these
functions (T, D, and L, depend on V, �, h and x, and/or time.

By a solution to Eq. (4), we want to establish how the dependent variables, V, �, h and x
depend on the independent variable, time (t) and are called state variables. Hence a solution is

. That is, a solution consists of determining the

time histories of these four variables. In general, we are unable to find a solution to these
equations for most realistic functions for T, D, and L. We can, however obtain numerical
solutions to these equations in either a sophisticated or in a crude way. Here we will opt for
crude. Before we do that, we will introduce a definition and some functions for drag and thrust.
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Definition : Load Factor (n) - The load factor is defined as the lift to weight ratio

Usually designated in “g” (5)

Hence we usually fly level in 1g flight, or do a 2g pull up.

With this definition we can rewrite the Eqs. (4) as:

(6)

From our previous studies, if we know lift, we know drag. Hence to get a unique solution
to the above equations, we need to specify T(t) and L(t), that in turn will give us n(t).

Drag Model

In order to make some headway here, we will consider the drag term first:

(7)

If we assume low speed flight, we can assume and, K are constant. If in addition we assume

that the altitude doesn’t change much ( ), we can write the drag as:
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(8)

where: and .

Thrust model

For the thrust model we will assume that the magnitude of the thrust is independent of
speed. However, we can set the magnitude by selecting a throttle setting, �T. Hence the thrust
model takes the form:

(9)

Numerically Integrating the equations of motion and kinematic equations

It is assumed that we know the initial conditions: At t = 0, , ,

, and . In addition we will also assume that we are given �(t) and n(t).

With this information, we will can determine a unique time history for the variables V, � , h, and
x.

Euler Integration

A crude method of numerical integration that can be used to “solve” the above equations
is called Euler’s method for integration. It is what is called a first order method and consequently
is not extremely accurate. It approximates the solutions by straight lines and thus for accuracy it
is necessary to take small steps. Regardless, we can use it because it is simple and provides
solutions that are close to the actual solutions. The idea is to approximate the derivatives in the
equations of motion by finite differences:
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We can now select a time increment, , and let (for example) for the generic

kth integration step. In this manner we can determine the time history of each variable as time
progresses from the initial time t0 = 0 to the present. Hence for the generic kth step, we have:

(9)

Where , and ,

and

For any accuracy, the time increment must be small, say 0.01 to 0.05 seconds. (Note that there
are several issues that govern accuracy. Too small a step will cause inaccuracies because of an
excess number of calculations with approximate (round off errors) numbers, while too big a step
will cause an inaccuracy because ).

Example

Here we will do the calculations for one integration step using the Euler method. We ahve
an aircraft the weighs 10,000 lbs, flying at sea-level. It has a drag polar of CD = 0.02~+~0.05 CL

2

It is equipped with a jet engine that is delivering 3000 lb thrust and maintains that thrust level
over a wide range of airspeed. In addition, the wing area is 200 ft. Under these circumstances, we
would like to determine the maximum speed in level flight.

One way to approach this problem is to numerically integrate the equations of motion for
the conditions given until there is no change in the airspeed. We are given T(t), (it equals a
constant 3000 lbs.), so we need to determine n(t) such that the flight remains level ( � = 0). Lets
start the problem with some arbitrary speed and the following initial conditions:
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We can compute the constants:

Hence

We need to select to insure that = 0:

We want for level flight, so clearly , for all k. Furthermore since T = Tmax

= constant, then = 1 for all k. at We can now numerically integrate the equations. It turns

out that both the and h equations are trivial h = � = 0 for all time, so we need only be
concerned with the airspeed and range equations. All the following is done in the computer, but
the details are shown here. For demonstration purposes, we will pick a step size of 0.10 sec. The
first step will be (for the airspeed equation)

where
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Then

Similarly, for x, we have:

Hence after 1 time step of 0.1 sec, the new airspeed is 300.75 ft/sec, and it has moved 30 ft. We
can repeat for the next step.

Etc.


