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Performance

8. Level, Non-Accelerated Flight

For non-accelerated flight, the tangential acceleration, , and normal acceleration,
. As a result, the governing equations become:

(1)

If we add the additional assumptions of level flight, , and that the thrust is aligned with the
velocity vector, , then Eq. (1) reduces to the simple form:

(2)

The last two equations tell us that the altitude is a constant, and the velocity is the range rate. For
now, however, we are interested in the first two equations that can be rewritten as:

(3)

The key thing to remember about these equations is that the weight, W, is a given and it is
equal to the Lift. Consequently, lift is not at our disposal, it must equal the given weight! Thus
for a given aircraft and any given altitude, we can determine the required lift coefficient (and
hence angle-of-attack) for any given airspeed.

(4)

Therefore at a given weight and altitude, the lift coefficient varies as 1 over V2. A sketch of lift
coefficient vs. speed looks as follows:
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It is clear from the figure that as the vehicle slows
down, in order to remain in level flight, the lift coefficient
(and hence angle-of-attack) must increase. [You can think
of it in terms of the momentum flux. The momentum flux
(the mass flow rate time the velocity out in the z direction)
creates the lift force. Since the mass flow rate is directional
proportional to the velocity, then the slower we go, the
more the air must be deflected downward. We do this by
increasing the angle-of-attack!]. Unfortunately there is an
upper limit to the lift coefficient called , and it occurs at the angle-of-attack called the stall

angle-angle-of-attack, . Furthermore, the speed at which this maximum lift coefficient (or

) is called the stall speed, . (Many other important speeds, especially those required for

take-off and landing, are based on the stall speed).

From the definition of the lift coefficient, we can solve for the speed for any lift
coefficient:

(5)

Consequently we can also determine the aerodynamically limited minimum airspeed for level
flight:

Aerodynamically limited airspeed

(6)

Note: is dependent only on angle-of-attack. An aircraft that is accelerating, for

example, doing a pull up, can generate a large angle-of-attack and hence cause a stall.
Consequently an aircraft can stall at any speed.

One of the reasons that we develop equations to model the aerodynamics characteristics
of an aircraft is that they can tell us how various parameters of interest affect other parameters.
From Eq. (6) we can see that for a given weight aircraft, the stall speed will increase with altitude
(density gets smaller, and is in the denominator). Furthermore, at a given altitude, the stall speed
increases with the square root of the weight, For example, if we write Eq.(6) for two different
weights and corresponding stall speeds, we can see that:
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(7)

At landing, the weight is less than that at take-off because of the fuel used during flight.
Consequently, the stall speed at landing is less than the stall speed at take-off.

How does the pilot figure all this out? Note that we can write the expression for stall
speed in terms of the equivalent airspeed:

(8)

We can observe that the stall airspeed in terms of the equivalent airspeed is a constant! We can
also recall that the airspeed indicators in all aircraft read airspeeds related to the equivalent
airspeed. In fact at low speeds the observed readings in all airspeed indicators (compressible and
incompressible) read very close to the equivalent airspeed. Consequently from the pilot’s point of
view, the stall speed is the same on the airspeed indicator regardless of the altitude! Hence the
pilot only has to remember one airspeed for stall. In fact s/he doesn’t even have to do that. The
airspeed indicator is marked with a white arc. The bottom of the white arc is the level-flight stall
speed (equivalent) for the maximum (permissible) gross weight of the aircraft. Any weight less
than that will have a slower stall speed.

Most aircraft have high-lift devices that increase the value of over the nominal value

that would occur if they were not used. The most common of these devices are trailing edge
flaps. Other devices include: leading edge flaps, leading edge slots, slotted flaps, double and
triple slotted flaps, and combinations of all the above. The purpose is to increase the value of

. If we can do that, the landing and take-off speeds can be reduced as indicated by Eq. (8).

Thrust Required (level flight)

The thrust required for level flight can be determined in many different ways, depending
upon what information is available. Under our usual assumptions, (thrust aligned with velocity),
the level flight equations are given by Eq. (3), repeated here:

(9)

If we divide one equation by the other, and rearrange terms, we have:
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(10)

Since and we can right Eq. (10) in the equivalent form:

(11)

Recall that the weight W is given and is not for us to choose. Consequently we can see
that the minimum thrust required occurs when L/D is a maximum. Again, since L = W, the
maximum value of L/D occurs when drag is a minimum. Hence the minimum thrust required
occurs at the minimum drag flight condition which is the same as the maximum L/D flight
condition. The so-called lift-to-drag ratio, L/D, is often referred to as the aircraft aerodynamic
efficiency, the higher the value of L/D, the more efficient. Typical values range from 1 - 60 with
hypersonic reentry vehicles in the 1 to 2 range, fighter planes in the range of 5 to 7, transports in
the range 8 - 14, and gliders from 25 - 60+.

Example

A Boeing 747 weighs 750,000 lbs. If it is flying at a condition where L/D = 10, what is
the thrust required?

It should be clear that the thrust required is just the drag of the aircraft since T = D.
Consequently we can calculate the thrust required in another way by computing the drag on the
vehicle. Hence we note: Thrust required = Drag.

We can calculate the drag using the drag coefficient, the geometry of the aircraft, and the
density. We will need to use the following relations:

and . (12)

In addition we will assume a parabolic drag polar:

(13)
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If we assume level flight, then the altitude will be constant along with the density
associated with that altitude. We can now calculate the drag of the vehicle for a given altitude at
any airspeed.

Drag Calculation (Thrust required)

(14)

We can write this equation in two different forms, one primarily used when calculating drag for
low performance vehicles (read that low speed), and one primarily used when calculating drag
for high performance (read that high speed) vehicles.

Low Performance Vehicles

For low performance vehicles that operate in the low subsonic flight regime it is
convenient to assume that the drag polar parameters, and are constant, independent of

airspeed (Mach number). Under these conditions, the drag equation appears as:

(15)

where:

and

and are constant at a given altitude.
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High Performance Vehicles

For high performance vehicles that operate at all speeds including high subsonic and
supersonic speeds, we usually think in terms of Mach number rather than airspeed. In addition,
the parabolic drag polar parameters, , and are functions of Mach number. For this case we

can use the following relation for the dynamic pressure: (recall the speed of sound )

(16)

If we substitute this in for the dynamic pressure in Eq. (14) we have the high performance vehicle
drag equation:

(17)

where the explicit dependence of and on Mach number is indicated. The terms in the

square bracket are not constant, and can change with Mach number (airspeed). � = 1.4, and P is
the pressure at the altitude of interest.

General Comments About Drag

There are certain features that both Eq. (15) and Eq. (17) have in common. At high speeds
or Mach numbers, the first term on the right hand side is large, and at low speeds and Mach
numbers the second term on the right hand side is large. Hence the drag is large at both high
speeds and at low speeds (for an aircraft in level flight). In fact in the extremes, each of these
terms goes to infinity, the first term at M or V = �, and the second term at M or V = 0.
Consequently, somewhere between these extremes, there must be a minimum that occurs at the
minimum drag speed or Mach number.

The first term on the right hand side of each equation is called the zero-lift drag and
includes parasite drag and for high speed flight ( depends on M), wave drag. The second

term on the right is called the drag-due-to-lift or induced drag. The first term is what we
experience in automobiles that have no lift, and the second term is the price we pay to support
our vehicle on the airstream. Together they make for a very strange drag curve. It tells us that
under certain conditions ( at speeds below the minimum drag speed) that if we slow down, the
drag will increase, and if we speed up, the drag will decrease! If we are traveling at speed higher
than the minimum drag speed, if we speed up the drag goes up and vice-versa - things seem
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normal.

We can look at the general characteristics of the drag curve by looking at the less
complicated equation, Eq. (15). The general shape of the curve is the same, assuming
incompressible or low performance aircraft, as it is for high performance aircraft. Hence we will
look in detail at the simpler case and note how it might change if compressible effects were to be
included.

Thrust Required or Drag Curves

For incompressible (low speed) flight we can approximate the drag of the vehicle using
Eq. (15). We see that the drag consists of two terms, the parasite, profile, or zero-lift drag that is
is given by and the induced drag given by

. The total drag consists of the sum of these

two terms. The first term can be plotted and it looks like
the figure to the right. This type of drag is the one that
most people are familiar with and increases with the
square of the airspeed. This drag is the type that is
encountered with all vehicles (such as automobiles).

The second term is called the induced drag or
drag-due-to-lift. It behaves in an unusual way as
indicated in the figure. Here we note that the drag
decreases as the airspeed increases. This behavior is
counter intuitive! This portion of the total drag is the cost
that we have to pay for using the air to hold up the
aircraft. The faster we go, the easier it is for the air to
hold up the vehicles since it has to deflect the air less to
create the same lift (= weight).

The total drag curve is the sum of the
components of drag . The important item to note here is
that the drag curve has a minimum. The airspeed at
which this occurs is called the minimum drag airspeed,
and the associated lift coefficient, the lift coefficient for
minimum drag. From our previous work we also know
that the minimum drag condition is the same as the
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condition for maximum L/D. Note that the max L/D does not occur at !!! Furthermore,

since L/Dmax = the value of maximum L/D is independent of altitude.

By examining the drag equation, we can determine how altitude affects the drag for a
given weight aircraft, or how the change in weight would affect the drag at a given altitude.

(18)

If we assume a fixed weight, the affect of altitude can be seen by noting how the density enters
into each term. As the altitude is increased, the density decreases. Consequently the first term
(proportional to V2) decreases, and the second term (proportional to 1/V2) gets larger. The effect
then is to shift the drag curve to the right (since the minimum drag is the same at all altitudes!).

We can note from the figure
that the minimum drag is the same at
all altitudes, but the minimum drag
speed increases with altitude. Exactly
how the minimum drag speed changes
with altitude is easily determined if we
consider another approach to looking at
drag curves.

Recall that the definition of
equivalent airspeed is given by:

Then if we substitute this expression into the expression for calculating drag we have:

or

(19)
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Consequently [for low performance (speed) aircraft] we can make a single plot of Drag vs
equivalent airspeed that will allow us to calculate drag and airspeed at any altitude!

The figure at the right is the drag
vs equivalent airspeed. (It is also the sea-
level drag curve!). From it we can
compute the drag at any value of the
equivalent airspeed. To find the true
airspeed that will give the same drag at
any altitude we just calculate the true
airspeed at altitude from our now
familiar equation:

(20)

where .

Example

Our class executive jet has a zero lift drag coefficient of 0.02, and an induced drag
parameter of 0.05. Find the drag at sea-level if the speed is 400 ft/sec. Assume that we are below
the drag rise Mach number since our Mach number is M = 0.358 << 0.7. Hence we can use the
low performance(speed) drag equation assuming the drag parameter values are constant.

The drag at sea-level at 400 ft/sec is then calculated from:
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Suppose now that we wanted to know the drag on a vehicle moving at 653.70 ft/sec at
30,000 ft. (Mach 0.657). We will continue to assume that it is below the drag rise Mach number
(we kind of have to do that because we have no additional information!) We could just put that
number in the drag equation with the proper density (�30K = 0.000890 slugs/ft3). Or, we can
convert to equivalent airspeed and use our sea-level curve. Taking this approach we have

So the drag would be 892.6 lbs.

We can now answer a question raised previously, if we know the minimum drag speed at
sea-level, what would be the minimum drag speed at some altitude. The minimum drag speed at
altitude would be given by:

(21)

Although plotting a single curve of drag vs equivalent airspeed is nice, and works for the
low performance drag calculations, it does not work when we plot drag vs Mach number for
high performance aircraft.

Effect of Weight on Drag at a Given Altitude

If we hold the altitude constant, we can see the effect of changing the weight of the
aircraft by looking at the general drag equation (Eq. (18)). Here we can note that the weight term
only enters into the induced drag portion of the equation. Consequently, at a given altitude, an
increase in weight would increase the drag at low flight speeds and have little effect at high flight
speeds. The value of the minimum drag would increase (since L/Dmax wouldn’t change, but L =W
would!).

The figure on the right is a sketch of
what the effect of added weight would be
on the drag curve. There is virtually no
effect on the right branch of the curve with
all the effects occurring at low speeds.



11

High Performance Drag Considerations

The equation for high performance aircraft is generally given in terms of Mach number as

(22)

We seek a method to eliminate altitude effects from this equation in the same manner that we did
for the low performance drag equation by introducing equivalent airspeed. That procedure won’t
work here so we will try another. By multiplying each term by PSL/PSL, we get:

Now we can define the quantity:

Definition: , the ratio of pressure at altitude to pressure at sea-level.

With this definition, we can write an equation that contains sea-level pressure and is partially
independent of altitude, in the following way:

(23)

Here we normalize the drag force and the weight with the altitude to sea-level pressure ratio, �,
then we can plot a single curve, D/� vs M and can determine the drag at any other altitude from
it. This approach is used during flight testing. The flight test is performed at increasing altitudes
so as to keep W/� = const as the fuel is burned off.

If we return to Eq. (22), we can parameterize the drag equation in another way. First we
need to define the non-dimensional wing loading:

Definition: Non-dimensional wing loading, .
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If we substitute this definition into the drag equation (22), we can arrive at the following
parameterization of the drag equation:

(24)

Here we can associate the parameter � with altitude, and the parameter M with speed. This form
will not be pursued here since it doesn’t gain us anything over the original equation.


