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Performance
4. Fluid Statics, Dynamics, and Airspeed Indicators

From our previous brief encounter with fluid mechanics we developed two equations: the
one-dimensional continuity equation, and the differential form of Bernoulli’s equation. These
are repeated here:

Continuity (1-D):

The general form of the 1-D continuity equation is:

(1)

For incompressible flow, , and Eq. (1) reduces to a simpler form.

Incompressible flow 1-D continuity equation:

(2)

Differential form of Bernoulli’s equation:

(3)

We can examine an example of using the continuity equation for incompressible flow.

Example: The Virginia Tech Stability is a low speed facility and hence the air may be treated as
an incompressible fluid. The air flow into a 6ft x 6 ft test section from a region of the tunnel
(plenum) that is 24 ft x 24 ft. It the air in the plenum is moving at 10 ft/sec, what is the speed of
the air in the test section?

Since the flow is considered incompressible, then we can use the incompressible
continuity equation to estimate the speed. Lets designate the plenum section as location 1, and
the test section as location 2. Since no air leaves the wind tunnel we have:
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At the propeller (fan) the tunnel is circular and has a diameter of 15 ft. What is the velocity
through the propeller?

Again we can use the continuity equation to get:

Furthermore the amount of air moving through the tunnel is:

The Measurement of Pressure:

In the previous example problem, as the air flows around the wind tunnel, there are
variations of pressure. We determine how the pressure varies in the next section. Here, we want
to discuss some ways that are use to measure the pressure in a wind tunnel or any other air flow
situation, such as flow over a wing surface. We measure the pressure of any flow over a surface
(such as a wing surface, or wind tunnel wall) by making a hole perpendicular to that surface,
called a pressure tap, and measuring the pressure in that hole. The resulting pressure is called the
static pressure of the fluid at that point.

Manometers

One way to measure pressure is to use a manometer. A manometer is a U tube filled with
a liquid (such as mercury, water, or alcohol). One end of the tube is exposed to the atmosphere,
and the other end is attached, using flexible tubing to the pressure tap. The difference in pressure
will cause the fluid to rise in one leg of the U (the lower pressure side) and drop in the other (the
higher pressure side). The difference in the heights of the two sides is supported by the pressure
difference. This pressure difference is related to the height of the fluid by the hydrostatic
equation (Bernoulli’s equation with velocity equal to zero):

(4)

From Eq. (4) we can see that for any given (non-moving) fluid, the pressure at any level, h, is the
same. Hence the differences in the levels of the fluid in the U tube can be related directly to the
difference in pressure by Eq. (4). Since the fluids in manometers are incompressible, and gravity
may be considered constant over the length of the manometer, we can easily integrate Eq. (4) to
get:

(5)

where = density of the fluid in manometer

P1 = pressure at level h1

P2 = pressure at level h2
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The figure at the right represents a pressure
tap at point 3 attached to a U tube
manometer that is open to the atmosphere,
P2. Hence P3 is the static pressure in the wind
tunnel, P2 is atmospheric pressure, and P1 is
some intermediate pressure (that we will
show shortly is approximately equal to P3).

Here we can apply the hydrostatic
equation twice, once to the column of air
between P3 and P1, once again to the column
of manometer fluid between P1 and P2.

Just applying the equation strictly as it is written, we have:

where = density of tunnel fluid (in this case air).

= density of manometer fluid (in this case water).

If we combine the equations we can determine the tunnel pressure from:

This equation tells us the difference between atmospheric pressure (P2) and the tunnel pressure,
(P3). However, if we look at the equation carefully, we can see that if the tunnel fluid is air, the
density of air is much, much less than the density of the manometer fluid, . Assuming the

manometer tubes are not too long, is of order , then we can neglect the

first term and arrive at the required result. It is equivalent to assuming that P1 = P3, so we have:

(6)
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Specific Gravity (�sg)

The density of a fluid divided by the density of an equivalent amount of water is called
the specific gravity, or

(7)

Example:

A mercury barometer works by putting mercury into a closed tube and inverting it and
putting the open end in a reservoir of mercury. Hence the pressure on the reservoir surface is
atmospheric, and the pressure on the upper surface of the column of mercury is zero since it is in
a vacuum. If we designate the surface of the reservoir as point 1, and the upper surface of the
mercury column as point 2, we can write:

We would like to find, the barometric reading for the standard atmosphere at sea-level. For our
problem, P2 = 0 since it is a vacuum, (we will assume it is a vacuum) and the above equation
becomes:

The specific gravity of mercury is 13.598. If we use US customary units we have:

Hence the “pressure” at sea-level in a standard atmosphere is designated as 29.92 inches of
mercury. To get the real pressure you need to convert that number to feet, and then multiply by
the “weight density” of mercury ( or the specific gravity times the density of water times the
gravitational constant).

Some specific gravities of typical manometer fluids are:
Water 1.00 And in case your wondering:
Mercury 13.595 Ice 0.92
Ethyl Alcohol 0.81 Lead 11.3
Benzene 0.8846 Platinum 21.4
Gasoline 0.68 Crude Oil 0.87

The density of water is: US - 1.940 slugs/ft3 SI - 1000 kg/m3
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Integrating Bernoulli’s Equation

The differential form of Bernoulli’s equation is given by Eq. (3). We would now like to
apply that equation to aerodynamic flow problems. In this case V will not be zero, and in fact can
be quite large. There are three terms in the equation, dP/�, V dV, g dhG. Since we know g as a
function of hG as established in the discussion of the atmosphere, the last two terms can be
integrated directly. However, the first cannot be integrated until we know how the density varies
with pressure. Consequently there must be some relation �(P) that is known before we can
integrate the equation.

We realize that in many cases of interest, we may be dealing with relatively high speeds
with little change in altitude. Recall that the last time we used this equation we had zero velocity
and huge changes in altitude! Hence the last term was large because of the large changes in
altitude. With small changes in altitude, up to several tens of meters, the last term in the equation
can be ignored. Hence we have the reduced form of the differential form of Bernoulli’s equation:

(8)

We can integrate this equation under assumptions associated with two special cases. The first
somewhat restrictive, and the second less so.

Case 1 - Special Case - Incompressible Flow

The most common form of the integrated Bernoulli’s equation is for the special case of
incompressible flow. Under this assumption, � = constant, and Eq. (8) is easily integrated (thus
the popularity of this case). We should also remember that Eq. (3) and hence Eq. (8) was derived
for flow along a streamline so that Bernoulli’s equation is restricted to that situation. All that
being said, if the density is assumed constant, then the above equation is integrated to give:

Incompressible Bernoulli’s Equation

(9)
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Assumptions:

1. Inviscid (no viscosity) - since only forces due to pressures were considered
2. Incompressible flow - � = const
3. Flow along a streamline
4 Steady flow

Definitions:

1. The pressure P = Static pressure
2. The pressure P0 = Stagnation pressure

3. The quantity = dynamic pressure

Definition (3) holds for all flow regimes, incompressible or compressible.

Finally we can note that if all the streamlines in the flow originate from some common flow
condition, then Bernoulli’s equation holds throughout the flow.

Case 2 - Special Case - Compressible Flow (Isentropic - Adiabatic)

In order to integrate Eq. (8) for the case where the density is not constant, we must
determine how the density changes with pressure. If we assume certain conditions on the flow,
such as 1) no viscosity (friction), called an isentropic process, and 2) no heat added or taken
away, called an adiabatic process, then a rule under which the fluid variables behave is given by
the equation:

(10)

where P = pressure
� = density
� = ratio of specific heats = 1.4 for air

It is only important to know that such a rule exists, and that it is a good approximation of how the
pressure and density are related. If w solve for the density we get:

(11)

We can now substitute Eq. (11) into Eq. (8) so that we can integrate it.
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This equation is easily integrated to obtain the following:

We can note that , so that . When the smoke clears,

we have the following integrated form of Bernoulli’s equation:

Compressible Bernoulli’s Equation

(12)

Assumptions:
1. Non-viscous
2. Adiabatic, Isentropic
3. Steady flow

Definitions: The temperature T = local temperature (absolute)
The temperature T0 = stagnation temperature (temperature when the fluid is

slowed to rest)
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Speed of Sound

Equation (12) takes on an interesting form if we introduce the concept of the speed of

sound. Without proof, the speed of sound can be shown to be given by: . If we use

the same adiabatic process that we used to get Eq. (12) it is easy to show that the speed of sound
is determined from:

(13)

We can note that the speed of sound depends only on the temperature!

For example, in a standard sea-level atmosphere, the speed of sound is determined from:

If we introduce the speed of sound expressions into the compressible Bernoulli’s
equation, we can perform the following operations:

(14)

where a = local speed of sound
a0 = speed of sound in stagnation region
T = local temperature
T0 = stagnation temperature
V = local airspeed
� = 1.4 (ratio of specific heats)
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Definition: Mach number = the local airspeed over the local speed of sound: .

Essentially, Eq.(14) gives us the temperature distribution in a compressible flow with
Mach number. We need now to determine the pressure and density distributions with Mach
number. To do this we need to use the process equation, Eq. (10), and the perfect gas law,
P = �RT. The fundamental equation to arrive at all these results is given by

Then

and

Putting it all together, we have the equations for compressible flow:

Equations for Compressible Flow

(15)

The first equation above is the integrated compressible Bernoulli’s equation. The remaining
equations relate pressure and density to the temperatures determined from Bernoulli’s equation.
The last equation (for the pressure) is the one that should mostly resemble the incompressible
Bernoulli’s equation.

We can examine that idea by expanding the pressure equation in a binomial series:
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If we apply the binomial series to the pressure equation, we can determine the following:

(16)

The terms in the square brackets together are considered the compressibility factor. Hence for the
value of M = 0, the compressibility factor is 1, and the equation reduces to the incompressible
Bernoulli’s equation. For M = 1, the compressibility factor becomes 1.276. Hence the
incompressible Bernoulli’s equation would give a 27.6% error if it were used. For the value
� = 1.4. the above equation has the values:

(16a)

Example: (High speed subsonic flow)

An aircraft is flying at sea-level at a speed of M = 0.8.

a). Determine the speed of the aircraft.
b) Determine the actual difference between the stagnation and static pressure sensed by the
aircraft.
c) Determine the speed of the aircraft based on incompressible flow with the same pressure
difference.

a) V = a M, where a is the speed of sound.

b) Pressure difference: First, compute the pressure ratio:
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We can determine the pressure difference from:

c) In this part it is assumed that we measure the pressure difference and that would be the true
pressure difference we just calculated. However, we will calculate the airspeed assuming the
flow is incompressible and use the incompressible form of Bernoulli’s equation:

then, substituting:

compared to the actual airspeed of 893.3 ft/sec or 272.3 m/s or about an 8.2 % error!
(Note that if we calculated the pressure difference using the correct airspeed and density using
the incompressible Bernoulli’s equation, we would have encountered a 17 % error (too low) in
the pressure difference, see Eq. (16a))

Measurement of Airspeed

The problem we wish to deal with now is how to measure airspeed in a wind tunnel or in
an aircraft. Furthermore, in an aircraft the information available may not be the same as it is in
the wind tunnel. In addition, we must consider what information is most useful to a pilot. . One
must consider the sensors required to measure airspeed and what sensors are available in the
different environments.
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General Comments :

As can be seen from previous work, two key ingredients for measuring airspeed are the
total (or stagnation) pressure, P0 , and the static pressure, P. These pressures can be measured
using a total pressure tube, or pitot tube. A pitot tube is a tube with a hole in its end that is
aligned with the flow so the flow the strikes the end of the tube is brought to rest at the hole, and
the pressure recorded at the hole will be total pressure.

A sketch of a pitot tube is
shown to the right. The end of the
center tube is attached to a pressure
sensor and it will read the pressure
P0 since the flow will come to rest at
the tip of the tube. These tube can
be observed to be located at various
points on different aircraft. In flight-
test aircraft it is usually located at
the nose on an “instrumentation
boom.” On typical general aviation aircraft it is located on the outboard of the wing so as not to
be in the propeller wash, and on jet propelled aircraft, it can generally be found on the side of the
fuselage or on the top of the vertical tail, again, out of the region of jet wash or other jet effects.

Static pressure is measured by putting a pressure tap in a surface parallel to the flow. One
way to do this is to use a static tube. A static tube is shaped like a pitot tube, but the pressure taps
are along the side, rather than at the front. Here the flow is still moving at the free stream speed
and the pressure will be the static pressure. In an aircraft, the static pressure taps can be located at
points along the fuselage. In fact one of the pre-flight inspection checklist item is to be sure the
static pressure ports are not clogged or
obstructed. These pressure taps are the
source of the static pressure for
airspeed measurement, and for the
altimeter discussed previously.
Generally, as indicated in the drawing,
the pressure taps are located on both
sides (actually all around) the tube and
on both sides of the fuselage. The
reason for these locations is to account
for any misalignment of the tube (or
fuselage) with the wind.

Finally, in wind tunnel applications, it is convenient to combine the pitot tube with the
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static tube to provide a pitot-static tube with a hole in the front to measure the total pressure, and
holes around the side to measure the static pressure. We can make use of the total and static
pressure to estimate the airspeed. How we do this depends on some assumptions that we make.

Incompressible Flow

For flow at Mach numbers in the range of M < 0.3, the errors in the total and static
pressure difference is approximately 2% and can be neglected. Under these conditions, the flow
may be considered incompressible, and we can use the incompressible form of Bernoulli’s
equation to determine the airspeed.

(17)

From which we can solve for V:

(18)

V in this equation is called the true airspeed.

In order to measure the true airspeed for low speed flow, we need the difference in the
stagnation and static pressure and the density. We can generally get the density from measuring
the temperature, and using the perfect gas law:

(19)

In the wind tunnel we can generally use a pitot-static tube to measure P0 and P and a temperature
sensor to measure T. We can then compute the airspeed.

Incompressible Airspeed Indicator

In an aircraft, we generally attach the pitot tube and the static port to a pressure sensor so
that the output of the sensor is the difference of the two pressures. This difference is what the
airspeed indicator receives, and that is all! So how is the airspeed determined, since we don’t
have T? The airspeed indicator is calibrated as if the density is sea-level density. So that what the
airspeed indicator reads is airspeed that would give the same pressure difference at sea-level.
Hence we have:
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Incompressibly Calibrated Airspeed Indicator

(20)

Definition: Equivalent Air Speed - Equivalent air speed is defined by the following equation.
The definition holds for all flight regimes, low speed, high speed and supersonic.

(21)

where:

= dynamic pressure
= density at standard sea-level conditions

= local density
V = true airspeed

= equivalent airspeed

= ratio of density over standard sea-level density (often tabulated in standard
atmosphere tables)

Example:

An aircraft is flying at 3000 m and has a true airspeed of 120 kts. What is the reading
observed on the airspeed indicator? What is the dynamic pressure, the static pressure and the
total pressure?



15

The dynamic pressure is given by:

Note that at these low speeds, the dynamic pressure is << than the static pressure at 3000 m
(70,100 Pa, or 1,464 lbs/ft2)

The total or stagnation pressure is determined from Bernoulli”s equation:

Compressible Airspeed Indicator

In order to have an airspeed indicator that accounts for compressibility effects at high
subsonic Mach number we need to use the compressible form of Bernoulli’s equation. Recall:

(22)

Hence true airspeed is given by: (numbers for � = 1.4)

(23)

Unfortunately, only is available to the airspeed indicator. We now define the calibrated

airspeed by using the above equation with the value of the speed of sound, and the lone pressure
in the denominator defined at sea-level:
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(23)

Calibrated airspeed for compressible subsonic flow (M > 0.3).

Example

An aircraft is at a pressure altitude of 10 km altitude where the temperature is measured
to be 230 deg K. The stagnation pressure is measured to be 4.24x104 N/m2. Find the true
airspeed, calibrated airspeed., and equivalent airspeed.

At a pressure altitude of 10k, the static pressure is P = 26420 N/m2. We can calculate the
Mach number from Eq. (22):

Since it is not a standard atmosphere, (temperature is given), we must calculate the speed of
sound using the given temperature:

Calibrated airspeed

In order to compute the calibrated airspeed, we need the sea-level speed of sound, and

pressure. These are , and 1.01325^105 N/m2.
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Then:

Equivalent airspeed is given by . Hence we need to know the density. Since it is not

a standard atmospheric condition, we must calculate it from the pressure and temperature:

Calibratedcomp airspeed gives a reading closely related to (by not exactly equal to) equivalent
airspeed (it is equal to equivalent airspeed for an incompressibly calibrated airspeed indicator).

Supersonic Airspeed Indicator

Although the above equations hold for supersonic flow, M > 1, they cannot be used to
measure airspeed. The reason is that as the supersonic flow comes to rest at the tip of the pitot
tube, a shock wave forms so that the assumptions used to derive the high speed flow equations
above are no longer valid. We can, however develop equations that can be used across a shock
wave, after which the above equations can work. If we combine these two sets of equations, we
can come up with the a relation between the total pressure after the shock, P02, the static pressure,
P, and the Mach number, M. This relation is called the Rayleigh Pitot tube formula:

Rayleigh Pitot Tube Formula (Supersonic flow)

(23)
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where = stagnation pressure after the shock wave

P = static pressure (same before or after shock wave)
M = Mach number before the shock wave

Measuring Airspeed in a Subsonic Low-Speed Wind Tunnel

We can measure the airspeed in a low
speed wind tunnel in several different ways. One
way is to insert a pitot-static tube directly into the
airstream and apply the incompressible form (for
low speed, and the compressible form (for high
subsonic speed) of Bernoulli’s equation.
However, another method is often used to
measure speed in low-speed wind tunnels that
does not require any instrument to be inserted into
the flow. This method makes use of the
incompressible form of Bernoulli’s equation, and
the incompressible form of the continuity
equation:

(24)

Here the points 1, and 2 refer to two different locations in the wind tunnel.

The location of point 1 is up stream of the test section in the settling or plenum chamber
of the wind tunnel, and the location of point 2 is in the test section of the wind tunnel where the
airspeed is to be determined. We can measure the static pressure at each of these locations by
putting a pressure tap in the wall of the wind tunnel. Then by knowing the pressure difference,
the area ratios and properties of the fluid, we can determine the speed in the test section. From
the continuity equation, we have:

If we substitute this expression for V1 back into Bernoulli’s equation we obtain:

(25)
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or equivalently:

(26)

Example
In a low-speed wind tunnel, the contraction ratio (area of plenum over area of test section)

is 3. What would be the pressure difference (P1 - P2) in inches of water between the pressure in
the plenum and the pressure in the test section, that is required to maintain a dynamic pressure of
4 inches of water in the wind tunnel?

From Bernoulli’s equation we have for the dynamic pressure:

Then for the wind tunnel we have:

The manometer reading then is given by:

Hence if we set the tunnel manometer attached to the plenum and the test section to 3.55 inches
of water, we will achieve a dynamic pressure in the wind tunnel of “4 inches of water” or 20.80
lb/ft2


