Aircraft Dynamics

In order to discuss dynamic stability we essentially need to solve the differential
equations of motion. However, before jumping into the full blown problem of aircraft motion, it
isuseful to look at some approximations first, starting with the simplest mathematical model and
build up to the general case.

Roll motion approximation

| turns out that the rolling motion can be approximated by considering only the roll
equation of motion. This equation assumes that the aircraft is pinned along its x or roll axis. It
turns out that this approximation is fairly decent and gives a good approximation of the motion.
We have already used it when we discussed the steady state roll rate earlier. Theroll equation of
motion and the associated kinematic equation relating roll rate with the roll angle take the form:

L=Lp
, D
$=r

We now would like to examine the motion in the neighborhood of some steady state reference
motion. Just like our discussion of static stability, the dynamic motion must be examined with
respect to areference motion, usualy steady state. If we consider al variables whose derivatives
appear as “ state” variables, then steady state motion is that which can occur when these
derivatives are zero. Here, looking at Eq. (1), we can see that our steady state reference flight
condition is given by:
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We can a so note that the aerodynamic rolling moment is not afunction of theroll angle, ¢, and
therefore ¢ does not appear in the roll equation of motion. Consequently if we are only interested
intheroll rate, we can drop the ¢ equation and consider it “ignorable”. Under these
circumstances we could have areference flight condition suchas p = P * 0. So all theresults

that we develop can be considering the changein roll rate from rest, or from areferenceroll rate.
For the assumptions made here, we can consider the roll moment to have the following
functional dependence:

L=L(p%,) (3)

We now seek to linearize the roll equation of motion. A convenient way to carry this out
isto put all the derivative terms on the left, and the remaining terms on the right. For our simple
problem this activity leads to (we will drop the ¢ equation for reasons stated earlier),



p= ILL(p, 5,) (4)

To examine the properties in the neighborhood of our reference flight condition, we will let the
variables be equal to their values in the reference flight condition, plus an additional small
change or perturbation. Hence we have:
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If we substitute these quantities into Eq. (4) we get the following:

. .1
pref + Ap - TL(-pref-"Ap’ 6aref+A6a)

X

51 (6)
L.y, * 5,

oL
38,

1
I

X

Ap +
ref

A 6(1 + o
ref

Sincep,, fand L(p,,

dropped. What remainsis afirst order ordinary differential equation in the changein the roll
rate:

5, f) = 0, thefirst terms on each side of the equations are zero and are
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where L, = g—L and Ly = g—é and are called dimensiona stability derivatives. (Note that
p ¢ a
there are other definitions, for example some folks define L, = ILZ—L etc., that isthey include
X p

the moment of inertiain the term. It makes the equations look simpler, but can lead to confusion
so it won't be used here. It is, however, used in Etkin and Reid).

Computing the dimensional stability derivative

Since L = C,qSb, we can simply take the derivative with respect to the variable of
interest:
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Uncontrolled Responseto Initial Disturbance

If we hold the control fixed at its reference value, the A= 0, and the equation of motion
takes the form:

. Lp
Ap = FAp (10)

One method to solve this equation is to assume a solution of the form Ap = Ce** with the
derivative, Ap = CAe’. If we substitute this“solution” back into the differential equation, Eq.

(10) , divide through by Ce** (which can not be zero if we want a non-trivial solution) we are
left with the result that in order for our assumed solution to be correct solution to Eq. (10), then it
is necessary that A take on a particular value determined from the characteristic equation,

L
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The solution to the original equation isthen given by:
L
% (12)

Ap() = Ce

We can evaluate the constant C by specifying initial conditions, at ¢ = ,, Ap = Ap(0) = Ap,.
Substituting into the solution, Eq. (12) and doing some algebra, gives the result,

& -1y

Ap(H) = Ap,e % (13)

For most problems, the initial timeis zero, ¢, = 0, and Eq. (13) simplifies accordingly.



Equation (13) describes the motion after an initial roll rate disturbance is introduced into
the system. Anideal behavior would be one that goes to zero as time goes to infinity. That would
mean that the disturbance would die out and the system would return to the reference flight
condition, in this case to the reference roll rate (typically = 0). It is clear by looking at the
solution, and noting that I > O, that the disturbance will die out only if L< 0. Hencein genera

we can say that afirst order system is dynamically stableif its characteristic value, A, isless than
zero. The motion is adamped roll rate and this motion is called rolling convergence.

As an example, consider an aircraft that has S= 230 ft?, b = 34 ft, g = 134.6lbs/ft* (V =
677 ft/sec) and an x moment of inertia, I, = 28000slug ft2 In addition, the non-dimensional

stability derivativeis C, = -0.45. Then
P

L o 45b> _ (-0.45) 134.6(230)34.0°

P ; = -0.424 /sec
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and
Ap(t) — Apo e -0.424¢

Properties of First Order Solution
All the information regarding the properties of the first order responseis carried in the
characteristic value, A . For the sake of discussion, we can assumethevalueof A = a. Thenthe
solution is given by
Ap = Ap,e® (14)

Then the following properties can be determined:

1) The system is dynamically stable (the disturbance goesto zero intime) if a< 0.

2) Thetimeto half amplitude of theinitial disturbanceis
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3) The “time constant” for this systemis

1
T = ——
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If we apply these measures to our example problem we obtain the following values:

t,, = = 1.63 sec T = —— = 2.358 sec



The significance of the time constant can be determined by re-examining the solution. If
we writeit in terms of the time constant t, we have:

Ap() _
Ap, e (15)

We can then make a plot (or table) of the ratio of the response to initial displacement vs ¢/t (or
equivaently measure time in time constants, i.e. 1 time constant, 2 time constants, etc.

Here we see that if we displace the vehicleinroll, that it will 1t Ap/Ap,

return to within 5% of the original displacement in 3 time constants and

to within 2% in 4 time constants. So we might say that the vehicle 0 1

returnsto its reference state in 4 time constants. Hence the time constant 1 0.368

isameasure of performance, a short time constant it behave rapidly, and i

along time constant, it behave sluggishly. 2 0.135
3 0.0497
4 0.0183

Responseto Control Input

If we now displace the control surface, we can solve the differential equation with the
specified control input. Under these circumstances, the equation of motion becomes

L
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In order to solve this equation we need to first specify the control input. For our purposes here,
we will specify astep in put to the control. That isit is zero until timet, (=0), and is a constant
vaueforalt>t,, A6, = A= constant. Therefor for times greater than zero the equation of

motion looks like:
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where aand b are defined appropriately.

The solution to this equation consists of a homogeneous solution plus a particular solution. The
homogenous solution isin the same form as the uncontrolled solution presented earlier. The
particular solution can be obtained by assuming a solution that has the same form as the input. In
this case the particular solution assumed isaconstant, Ap = D = const. Substituting this value

into Eq. (17) we get



0O-=aD+b4 - D-=-24 (18)

so that the total solution is given by
b
Ap(t) = Ce® - ;A (19)

From initial conditions we can find the value of the constant C. Att=0, Ap(0) = Ap,andC

turnsouttobe C = éA + Ap, . Combining these results gives the fina solution for the
a

response to a step of amplitude A:

Ap(f) = —Ag[l - e%| + Ap,e™
Cla Lp, %t (20)
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If we assume that the initial roll rate is zero and note that ast -, Ap ~Ap_, the steady state roll
rate, we can write the solution to the step input as

L,
Ap(r) = Apss[l - eT" } (21)

If we compare Eq. (21) with Eqg. (15) it is not difficult to come to the conclusion that if
we put in a step aileron input, we will get to 98% of the steady state roll rate in 4 time constants!
Hence the time constant is a measure of the time it takes to get to any specified steady state roll
rate. Note that it takes the same time to get to 98% of 360 degrees/sec as to get to 98% of 90
degrees/sec (note that the aileron deflection would be less to maintain a 90 deg/sec steady state
roll rate).

The result we obtained for roll motion are approximate. However this approximation is
generally agood one.

PureYaw Motion

The next level of difficulty in describing vehicle dynamicsisto consider an aircraftin a
wind tunnel pinned along the z axis so that it is free to yaw. The equation of motion is given by

N =Ly (22)




We can consider the reference flight condition as the steady state condition with N, . = 0.
Further we can assume that the yaw moment is afunction of sidedlip angle, yaw rate, and rudder
deflection, N = N(B, B, 7, 8). In addition, we can note that in the wind tunnel a unique
relation exists between the heading angle, ¥, and the sidedlip angle, p. Namely, ¢ = -Band

¥ = -B. We can now make the same substitutions that we did in the roll equation. Let the
variables take on the values of the reference conditions plus a small disturbance. We have:
U+ A = ~( B+ AB). ¢ + A = —(B,, + AB) = r,, + Ar. Wecanwritetheyaw
moment equation as:
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Noting that al the reference conditions are zero, and making some of the substitutions indicated
previously, we can rewrite the Eg. (23) in terms of Bin the following manner:

ap o | N M ap s Mg MW (24)
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For the uncontrolled case we have:
AR N Ny Ap Ny AB =0 (25)
—_ R + — =
IZ IZ IZ

We can compare this with the standard form for a second order ordinary differential equation:

Ai + 20w A% + 0 Ax = 0 (26)

We can write the original equation intheform A + bAB + cAP = 0. Itisclear that
the equation is completely described by the coefficients b and c. If welook at the “standard”
form, we that it is also completely described by the two parameters (, and w, . It turns out that

these two parameters are more useful than b and ¢ in describing the characteristics of the solution
to this equation and hence are used more often. The relations are clear:

N, - N, N,
¢ - I w, = e = TB (27)
2ye  2,/LN, x




The Characteristic Equation and Char acteristic values (eigenvalues)

The utility of these parameters becomes more clear when we seek a solution to the second
order ordinary differential equation, Eq. (25) or Eg. (26). Again, we assume a solution of the

formx = Ce*.Thenx = CAe*, and # = C A% e* . If we substitute these into the differential
equation and divide through by C e** (which is non zero) we end up with:

A+ 2o+ =0 (28)
Eq. (28) isthe characteristic equation and gives us the values of A for which are assumed

solution isthe solution. That is,x = Ce** isasolution to Eq. (26) only if A satisfies Eq. (28).
The solution to Eq. (28) is given by:

A, = Co, £ 0,V -1 (29)

There are three possible cases that must be treated:

{ > 1_(Over damped) For this case there are two real roots given by Eq. (29). Hence the
solution is given by:

1t

x#) = CieM' + Cye™ (30)

whereC, and C, are determined from initial conditionsat ¢ = 0, x(0) = x, and X(0) = X, to
give:
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x(f) = (31)

The important feature to note here is that x(t) behaves like two first order systems, each with its
own time constant, and each with its own time to half amplitude. If we want to consider the
system properties, then we take the properties associated with the longest time constant and time
to half amplitude as the system properties.

Tosiom = STCALET of (32)
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¢ = 1 (Critically damped) For this case there are two real roots that are equal:

A'1,2 = _C“on = _('on (33)

The corresponding solution is

x(f) = Cie* + Cyre™ = xje + (%, - Ax,)e™ (34)

The important thing to note hereisthat if the solution is negative, x(f) - 0ast - «

¢ <1 (Under-damped case) For this case the solution is a complex conjugate pair:

A, =Co +iwyl-{
12 c n n C (35)
=ntiw
wherel = -{w andisthereal part, and w = w, /1 - {2, istheimaginary part.
The solution to the differential equation is given by:
x(®) = e”’(C1 coswt + C, sinwt)
ot X, —nx, (36)
= e xo coswt + ® Sinwft

In all cases, itisclear that if the real part of the characteristic valueis negative, the
system isdynamically stableand x(f) - 0 as ¢ - co!

For the last case, the motion is oscillatory with decreasing amplitude in timeif it is stable,
and increasing amplitude in timeif it is not stable. We can characterize these motions by the time
to double or half amplitude, the period, and a time constant in the following manner:




We can aso define acyclesto half amplitude:

12
Np=—--= (38)

Longitudinal Pinned Aircraft

We can repeat the above exercise for avehicle pinned in the wind tunnel aong they axis
so that it is free to pitch. If we do that we note the following relations: 6 = «, 6 = & = ¢g. We
can write the pitch equation of motion and assume a functional form for the pitch moment:

16 = M(e,é,q,8,) (39)

Proceeding as we did for the yaw moment we can arrive at the following second order ordinary
differential equation:

Ao = —2 A8 (40)
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Again we can set the control input to zero and just consider the response to initial conditions.

.1 .M,
Ad - —(Mq+Ma)Aoa - —2Aa=0
1, L, (41)
Ad + 20w, Ad + w. Ao = 0
By comparing coefficients we can see that:
M + M, M
(== O =TT (42)
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An Example: Consider avehicle that has the characteristics: W = 636600 |bs,

l,=33.1x10° dlug ft?, S= 5500 ft*, b = 195.68 ft, c= 27.31ft, g = 92.697|bs/ft?,

gS =509834 Ibs, and V = 279.1 ft/sec. We can cal culate the appropriate coefficients from the
non-dimensional coefficients given: Cma = -1.26, Cmq = -20.8, and C,na = -3.2.



M, = C, 75b = -126(509834)27.31 = -17.5437x10° ft Ibs/rad = ~3.0619x10° ft Ibs/deg
M - 6
M, _ 17S8B7x10° (0 oo
I 33.1x10°
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M =cC, 956 _ g 309834CT3) _ 14160212 filbs/rad

Y 2279.1)
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T ¢ 45¢ _ 35 SOBBQTIN) 40659 fsec

I M2y 33.1x10°(2) 279.1

Thefinal equation becomes:

A& - (-0.4281 - 0.0659)A¢& - (-0.530)Aa
A + 0494A6 + 0.530Aa = 0

The characteristic equation is given by:
A2 + 0.494)1 + 0.530 = 0

The characteristic values (eigenvalues) are given by:

A

-0.247 £ i0.685 /sec
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Hencen = -0.247 /sec,and o = 0.685 /sec. We can compute the properties of this oscillatory

motion:

In2 In2 2T 2T 1

bp=—=—=-7= 2.800 sec T === =_""=9.175 sec T = —— = 4.048 sec

|n| 0247 P @ 0685 0.247

We can also calculate other parameters from the coefficients directly:

b 0.494
®, =y = /0530 = 0.723 /sec  ( = = = 0.339
n o Ve ¢ 20w, 2(0.723




Notethat  # w,, and that the period isbased onw and not w,! From the geometry of the

complex number, and the parameters in the equations, we can arrive at some other relationships
that occasionally are useful:
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Finally, if we wanted to we could write the solution for the response to initial conditions A e,
and Aé,:

A&O +0.247 Aao
0.685

Aa(r) = e 7| Aa,cos0.6857 + sin0.685¢

Generally we are not interested in the actual motion, just in the characteristic of the motion, time
to double or half amplitude, period, frequency, and time constants.



