
Stability and Control
Estimating Aerodynamic Properties

A necessary ingredient for determining the aerodynamic properties of an aircraft is to be
able to determine the aerodynamic properties of parts of the aircraft. If we look at the expression
for the pitch-moment curve slope, we can see some of the parameters that need to be estimated:

(1)

Here we see that in order to evaluate this expression we need to estimate .

Furthermore, these same parameters show up in the other coefficients as well. If we look at the
control effectiveness and control power terms, the additional parameter, , must be estimated.

For the zero-lift pitch-moment and the zero lift angle-of-attack, additional parameters such as the
wing-body zero-lift pitch-moment, and the wing-body zero-lift angle-of-attack are needed. Here
we will examine some ways of estimating some of these quantities. The primary focus will be on
the first four parameters identified above.

The discussion will be limited to straight tapered wings (and tails). A straight tapered
surface is one where the leading and trailing edges are straight. Most wings fall into this
category.

Wing Section Properties

If we slice a wing parallel to the free stream velocity the cross section that is visible is
the wing stream-wise airfoil shape. We can also slice a wing perpendicular to the leading edge or
to the quarter cord line or in fact perpendicular to any constant chord line. The resulting cross
section would be a different airfoil shape and would be referred to the airfoil perpendicular to x
chord position. In most cases we are interested in the stream-wise airfoil, also called the wing
section. If this section is then extended out to infinity, we can discuss the properties of the wing
section as if it were a two-dimensional (2-D) wing, and hence these are called 2-D airfoil
properties or 2-D wing section properties. We need the following three 2-D wing section
properties,

= 2-D lift curve slope

= 2-D zero-lift angle-of-attack

= 2-D pitch moment at zero lift =

This information is available for all NACA and some other standard airfoils. If we know some
of the geometry of an airfoil, we can estimate the 2-D lift curve slope in the following way:



1) Estimate (measure is better) the trailing edge angle,

where is the thickness to chord ratio of the airfoil. Note that this estimate can be off by 300%!

2. Then calculate the theoretical 2-D lift-curve slope:

3. Modify the value in (2) to account for Reynolds number

Re = 106

Re = 107

4. Calculate the final 2-D lift-curve slope

(2)

where the term in parentheses is obtained from (3) and the last term from (2).

If no information is available, and the wing is thin, an approximate value of the 2-D lift
curve slope is

must be given or obtained by other means (eg. CFD)



Wing Geometry

The straight tapered
wing can be represented by a
few geometric properties that
describe the wing. We can
define some geometric
properties of the wing that
we will use throughout our
discussion. Again you should
be reminded that these are
characteristics of lifting
surfaces. Hence similar
properties can be assigned to
the horizontal tail but they
will have different values.

Taper Ratio,

Mean Geometric Chord, c����

(3)

Aspect Ratio, AR

(4)

where b is the complete wing span, and S is the wing area.

Mean Aerodynamic Chord,



(5)

Half-Wing Lateral Mean Aerodynamic Chord Location,

(6)

Location of Leading Edge of Mean Aerodynamic Chord With Respect to Wing Apex
(Leading Edge of Root Chord),

(7)

Sweep of Any Fraction (%) Chord Line

In some of the estimation procedures to follow, the sweep angle of various chord lines are
required. We can define the nth fraction chord location, e.g. n = 1/4 for the quarter chord location.
Then if one fraction is represented by n, and another by m, then we can relate the sweep angle at
the nth location to the one at the mth location by:

(8)

Lifting Surface Lift Curve Slope

The objective of all this activity is to predict the lift curve slope of the wing (wb),
horizontal tail, and later the vertical tail surfaces. Hence the lift curve slope estimation presented
next must be applied several times, once for the wing using wing properties, once for the
horizontal tail using horizontal tail properties, and once for each other lifting surface using the
properties of that surface. The results given below are valid for all ranges of subsonic flight up
until the critical Mach number (that Mach number where somewhere on the aircraft the flow
becomes supersonic). The estimate is given by:



(9)

where x indicates the surface of interest, wb, ht, etc.

The value of is the ratio of the actual 2-D theoretical lift-curve slope with corrections

for compressibility (Mach number) effects divided by the flat plate theoretical lift curve slope

corrected for compressibility effects, . Consequently it becomes:

(10)

However, if we assume that the compressibility correction is the same for the actual as the

theoretical, e.g. , then we can write Eq. (10) in the following way:

(11)

where is the incompressible 2-D lift curve slope.

If is not given, and the wing is thin, then the theoretical 2-D lift curve slope can be

assume to be 2� and the value of k = 1!

Again, this estimate equation is valid for a wide range of aspect ratios and sweep angles,
and for the full range of subsonic Mach numbers up to the critical Mach number.

Supersonic Lift Curve Slope

For super sonic flight, the lift curve slope behaves differently. It can be given
approximately for thin wings as:

(12)



Wing Zero-Lift Angle-of-Attack,

Here it is assumed that we are given the zero-lift angle-of-attack of the wing section.
Then the zero-lift angle-of-attack for the complete wing can be determined for the following
cases:

1) Constant wing section (across the span), no sweep,

2) Constant wing section, sweep, wing section taken normal to x% chord line

(13)

where is the sweep angle of the x% chord line.

3) Constant wing section with twist. Reference all angles-of-attack to the root chord,
(think of ) for this calculation. Then,

where is the wing twist,( if linear it would be )

(14)

Wing

For this calculation we define the airfoil as that parallel to the free stream. It is assumed
we know the zero-lift pitch-moment for this 2D wing section. Then we can calculate the
complete wing zero-lift pitch-moment for the following cases:

1) Untwisted, constant section wings:

(15)



2) Untwisted, varying wing section:

(16)

Wing Aerodynamic Center,

The location of the aerodynamic center on the mean aerodynamic chord can be best
obtained from charts developed for this purpose. These charts can present the results in different
ways. Typically the aerodynamic center position is referenced to the leading edge of the mean
aerodynamic chord, but sometimes its given with respect to the leading edge of the root chord or
wing apex. Etkin and Reid, Appendix C, Fig C.3 gives the aerodynamic center location for
various aspect ratios and wing taper ratios. Values that fall between the graphs or lines on the
graphs can be interpolated.

Downwash Parameter,

There are several ways to estimate this parameter. For straight tapered wings, a quasi-
empirical, analytic method has been devised that includes the effects of taper ratio, aspect ratio,
and horizontal tail vertical position. The method is presented in Etkin and Reid, Appendix B.5,
and is reproduced here with an example.

(17)

where: is a correction factor for the aspect ratio and is given by,

(18)

and is a correction factor for the taper ratio and is given by,

(19)



and is the correction factor for the location of the horizontal tail given by,

(20)

where: b is the wing span,
(modified tail length)

is the height above or below the plane formed by the root chord and the body

fixed y axis, or the distance measured in the plane of symmetry from the
root chord line to the horizontal tail aerodynamic center. (Not shown
correctly in Etkin and Reid, at least in my edition)

The result of evaluating Eq. (17) is the incompressible downwash parameter. It can be corrected
for compressibility effects using the standard compressibility correction (Prandtl-Glauert):

(21)

Again, these estimations are only good for subsonic flight speeds through the critical Mach
number.

Example: AR = 2.31, b = 36.5 ft = 0, =15.88 ft = 52.4 deg,

= 31.57 ft

This result is for the incompressible (low speed) case.


