
Maneuvering Flight

The feature that maneuvering flight adds to the equations is the pitch rate. Two types of
maneuvering flight that we will look at are a symmetric pull up, and a horizontal turn. In either
case an added pitch rate is encountered that must be accounted for in the governing equations.
Exactly what this pitch rate is we can obtain from the equations of motion.

Pitch-up

For a symmetric pitch up we will look at the vehicle as if it is moving in a large vertical
circle. We will consider the vehicle when it is at the bottom of this vertical. If we sum the forces
in the vertical direction at this instant we have

(1)

where is the acceleration radially inward, in the direction of the lift. We can further note

that the angular rate of the aircraft as it moves around this vertical circle is , the same as

the pitch rate. If in addition, we introduce the concept of a load factor, , we can rewrite

the force equation as:

(2)

that can be rearranged to give:

(3)
q for pull up

Equation (3) is the pitch rate of an aircraft doing a pull-up (at the bottom of the circle).

Horizontal Turn

If an aircraft is banked at some angle , and is desired to maintain horizontal flight, then
the vertical and horizontal force-balance equations must be satisfied in the following way. The
vertical balance equation is

(4)

The horizontal force equation becomes the radial equation of the turn and takes the form::

(5)



However the turn rate is given by and is along the horizontal axes system’s vertical z

axis. Since the aircraft is banked at the angle , the component of the turn rate along the y axis,
the pitch rate, is given by

(6)

If we multiply the horizontal force equation, Eq.(5) by , the result is

(7)
or, rearranging:

(8)

or in the final form:

(9)
q for horizontal turn

Effect on pitch moment and lift equations

The pitch and lift coefficient equations now have an additional term due to the pitch rate
that makes them appear as follows:

(10)

Here all the derivatives must be and are non-dimensional. Consequently we need to examine the
“q” derivatives closer. Consider the lift equation and the term . The non-dimensional

derivative is defined as follows:

(11)

where

Non-dimensional pitch rate (11a)



Similarly for the pitch coefficient we have:

(12)

From the definitions we can note that

(13)

where x = L, m.

Estimating

The major contribution to lift due to pitch rate is from the horizontal surfaces at extremes
ends of the fuselage such as the horizontal tail (or canard surface). This contribution comes from
a additional increment in tail angle of attack due to the pitch rate. The horizontal tail has an
additional velocity due to the pitch rate given by . The increment of tail angle of

attack is then given by (assuming small angles)

(14)

Then the aircraft increment in lift coefficient is given by

(15)

To get Eq (15) in terms of , it is necessary to multiply and divide by , or take the derivative

of Eq. (15) with respect to q and apply the second equation in Eq.(13). Doing the latter, we have

or rearranging and noting , we have

(16)



Similarly for the pitch moment:

(17)

then

(18)

However, unlike the lift coefficient, the wing and other parts of the aircraft contribute to the pitch
moment due to pitch rate. We can estimate the contributions from the wing using techniques in
Appendix B of Etkin and Reid or for preliminary calculations, add about 10 % to the value
calculated in Eq. (18). Then the pitch moment due to pitch rate can be estimated using the
following equation:

(19)

where = 1.10.

Elevator Control Deflection During Pull up or Horizontal Turn

Return now to the governing equations for the pull-up (or horizontal turn). We are
interested in determining the additional elevator deflection required for the maneuver over and
above that required for level flight at the same speed. Our strategy then is to determine the
elevator angle required for the maneuver, and subtract from it the elevator angle required for
level flight. The result will be displayed in the form of elevator angle / g.

First we need the equations for maneuvering flight:

(20)

For level flight we have

(21)

where the subscript L stands for the level flight condition. If we subtract the equations in Eq. (21)
from the corresponding equations in Eq. (20) we obtain:



(22)

where , and , the differences of the maneuvering values from

the values in level flight.

We can solve these two equations for the two unknowns, . Of particular

interest here is the elevator deflection:

(23)

For a pull-up we can recall from Eqs . (3) and (11a)

(24)

For a horizontal turn this equation takes the form

(25)

We can combine the results of Eqs. (24) and (25), to give us an expression for “elevator angle per
g”

(26)
elevator angle per g

where for a pull-up, and for a horizontal turn.

Note that 1-g flight is straight and level. A 2-g pull up requires an elevator deflection
equal to level flight + (n-1= 1) times the elevator angle /g.



Stick-Fixed Maneuver Point

The next question we can ask is, is there a location of the center of mass that would make
the elevator angle per g go to zero?. The answer of course is, “yes”. We can determine this point
by noting that , substitute this value into Eq. (26), set and solve for

h. We designate the solution to be , the stick-fixed maneuver point. We can also note that the

denominator term, even though it contains , ( both terms that depend on the center

of mass location), is independent of the center of mass location. Hence we can just set the
numerator equal to zero. The result is the stick fixed maneuver point:

(27)

The quantity

(28)

is called the stick fixed maneuver margin.

Equation (26) can be rewritten in terms of the stick fixed maneuver margin in the
following form:

(29)

Note that the stick fixed maneuver point is behind the stick fixed neutral point. So that for zero
elevator angle per g, the aircraft must be statically unstable. Also if the center of mass were
behind the stick fixed maneuver point, the elevator deflection to sustain a pull-up would be in the
opposite direction! That is to sustain, say a 2-g pull-up would require a down elevator!

Stick Force Per g

Related to elevator angle per g is the stick force per g. The stick force per g is determined
by the increment in the hinge moment. Again, we will look at the change in the stick force from
straight and level flight. This change is caused by the change in the hinge moment and can be
represented as:



(30)

Here the change in the hinge moment is given by:

(30)

The change in the tail angle of attack is given by

(31)

Now is given by Eq. (23) and can be obtained from the same set of equations. Carring

out these operations, we can obtain an expression for the stick force per g that yields the
following result:

(32)

where and the stick free maneuver point is determined from

(33)

The stick force per g is also called the stick force gradient. It is clear from the equations that the
stick force gradient (with respect to the g loading) has the following characteristics:

Note that if the vehicle densities were the same, the stick force per g would be proportional to the
scale factor to the 4th power, .


