Maneuvering Flight

The feature that maneuvering flight adds to the equations is the pitch rate. Two types of
maneuvering flight that we will look at are a symmetric pull up, and a horizontal turn. In either
case an added pitch rate is encountered that must be accounted for in the governing equations.
Exactly what this pitch rate is we can obtain from the equations of motion.

Pitch-up

For asymmetric pitch up we will ook at the vehicle asif it ismoving in alarge vertical
circle. Wewill consider the vehiclewhen it is at the bottom of this vertical. If we sum the forces
in the vertical direction at this instant we have
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where % isthe acceleration radially inward, in the direction of the lift. We can further note
that the angular rate of the aircraft as it moves around this vertical circleis % = ¢g,thesameas

the pitch rate. If in addition, we introduce the concept of aload factor, n = % , We can rewrite

the force equation as:
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that can be rearranged to give:
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Equation (3) is the pitch rate of an aircraft doing apull-up (at the bottom of the circle).

Horizontal Turn

If an aircraft is banked at some angle ¢, and is desired to maintain horizontal flight, then
the vertical and horizontal force-balance equations must be satisfied in the following way. The
vertical balance equation is
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The horizontal force equation becomes the radia equation of the turn and takes the form::
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However theturn rateisgivenby Q = Rl and is along the horizontal axes system’s vertical z
h
axis. Since the aircraft is banked at the angle ¢, the component of the turn rate along the y axis,
the pitch rate, is given by
PO
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If we multiply the horizontal force equation, Eq.(5) by sin ¢, theresult is
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or, rearranging:
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or inthefina form:
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Effect on pitch moment and lift equations

The pitch and lift coefficient equations now have an additional term due to the pitch rate
that makes them appear as follows:
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Here al the derivatives must be and are non-dimensional. Consequently we need to examine the

“q" derivatives closer. Consider the lift equation and theterm C, . The non-dimensional
q

derivative is defined as follows:
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Similarly for the pitch coefficient we have:
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From the definitions we can note that
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wherex =L, m.

Estimating C,
q

The major contribution to lift due to pitch rate is from the horizontal surfaces at extremes
ends of the fuselage such as the horizontal tail (or canard surface). This contribution comes from
aadditional increment in tail angle of attack due to the pitch rate. The horizontal tail has an
additional velocity due to the pitch rate given by w,, = q[,,. Theincrement of tail angle of

attack isthen given by (assuming small angles)
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Then the aircraft increment in lift coefficient is given by
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To get Eq (15) intermsof 4, it is necessary to multiply and divide by %/ or take the derivative

of Eq. (15) with respect to g and apply the second equation in Eq.(13). Doing the latter, we have
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or rearranging and noting 1, = V../ V2, we have
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Similarly for the pitch moment:
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However, unlike the lift coefficient, the wing and other parts of the aircraft contribute to the pitch
moment due to pitch rate. We can estimate the contributions from the wing using techniquesin
Appendix B of Etkin and Reid or for preliminary calculations, add about 10 % to the value
calculated in EQ. (18). Then the pitch moment due to pitch rate can be estimated using the
following eguation:
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where Kq: 1.10.

Elevator Control Deflection During Pull up or Horizontal Turn

Return now to the governing equations for the pull-up (or horizontal turn). We are
interested in determining the additional elevator deflection required for the maneuver over and
above that required for level flight at the same speed. Our strategy then is to determine the
elevator angle required for the maneuver, and subtract from it the elevator angle required for
level flight. The result will be displayed in the form of elevator angle/ g.

First we need the equations for maneuvering flight:
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For level flight we have
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where the subscript L stands for the level flight condition. If we subtract the equationsin Eqg. (21)
from the corresponding equations in Eq. (20) we obtain:
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where A = o - o;,and A8, = §, - §, , thedifferences of the maneuvering values from

thevaluesin level flight.

We can solve these two equations for the two unknowns, A «, and A 6,. Of particular
interest here is the elevator deflection:

AS, = - Cn (" = DG, * [, Cp, =G, 1, )4 (23)
¢, C, -C,C

o Lﬁe

For a pull-up we can recall from Egs . (3) and (11a)
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For ahorizontal turn this equation takes the form
n? -1, -
- )ge —
A~ _ gc _ n mpS _ n+l)| pSc (25)
=L - = (n-1)Cy LA
2V 2172 mpS n 4m

We can combine the results of Egs. (24) and (25), to give us an expression for “elevator angle per
g”
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where Fac = 1 for apull-up, and Fac = nt for ahorizontal turn.
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Notethat 1-g flight is straight and level. A 2-g pull up requires an elevator deflection
equal to level flight + (n-1= 1) timesthe elevator angle /g.



Stick-Fixed Maneuver Point

The next question we can ask is, is there alocation of the center of mass that would make
the elevator angle per g go to zero?. The answer of courseis, “yes’. We can determine this point
by notingthat C, = a(h - h,), subdtitute thisvalueinto Eq. (26), set A, = 0 and solve for

h. We designate the solution to be hmp, the stick-fixed maneuver point. We can also note that the
denominator term, even though it contains C,,  and Cma, ( both terms that depend on the center

of mass location), isindependent of the center of mass location. Hence we can just set the
numerator equal to zero. The result is the stick fixed maneuver point:
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is called the stick fixed maneuver margin.

Equation (26) can be rewritten in terms of the stick fixed maneuver margin in the
following form:
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Note that the stick fixed maneuver point is behind the stick fixed neutral point. So that for zero
elevator angle per g, the aircraft must be statically unstable. Also if the center of mass were
behind the stick fixed maneuver point, the elevator deflection to sustain a pull-up would be in the
opposite direction! That isto sustain, say a 2-g pull-up would require a down elevator!

Stick Force Per g

Related to elevator angle per g isthe stick force per g. The stick force per g is determined
by the increment in the hinge moment. Again, we will look at the change in the stick force from
straight and level flight. This change is caused by the change in the hinge moment and can be
represented as:
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Here the change in the hinge moment is given by:

AC, =b/Awa, + bAJ, (30)
The change in the tail angle of attack is given by
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Now A §,isgiven by Eq. (23) andA e can be obtained from the same set of equations. Carring

out these operations, we can obtain an expression for the stick force per g that yields the
following result:

( 4m ) _C
AFS _W. Sc L
_ 2 ab,~P2C “(h - hrop) (32)
S ( 4m)
— | A
pSc

b (1 - E)
ﬁ —h o+ A ! ou + 2b1(hht - h)

dbz a 4m
W( pSc CL?)

(33)

The stick force per g is also caled the stick force gradient. It is clear from the equations that the
stick force gradient (with respect to the g loading) has the following characteristics:
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Note that if the vehicle densities were the same, the stick force per g would be proportional to the
scale factor to the 4™ power, 4.

the stick force per g is o« 1




