
Astromechanics

6. Changing Orbits

Once an orbit is established in the two body problem, it will remain the same size (semi
major axis) and shape (eccentricity) in the original orbit plane. In order to change from one orbit
to another, we must either change the velocity vector in either magnitude or direction or both.
The assumption that will be made for this introductory study of changing orbits is that we are able
to change velocity (magnitude and/or direction) instantaneously, without changing the radius
vector. Such an assumption is called the impulsive thrust assumption. If we consider an impulsive
thrust per unit mass of the vehicle, this will be equivalent to the change in velocity, what we

usually designate as . Consequently, we seek the  required to perform some specific orbit

change. This change could be in size, shape, and orbit plane. We should also note that this is a
vector and must be treated as such. Further, we will show later that the fuel burned in order to

generate such a is related to the magnitude of , . If we initially assume that

our  will be added tangentially (either in the same direction or opposite direction of the current

orbital velocity), then we can either add or subtract the magnitude of the  or to or from the
magnitude of the current velocity, and recalculate the new orbit properties. This scenario is the
simplest one and will be studied first.

Applying  Tangentially  

Since in this section we will be applying the velocity increment tangentially, we will deal
only with the magnitudes of the velocity, either increasing or decreasing the existing velocity, but
not changing its direction. Consequently for this part we have:

Tangential Thrusting Only

(1)

If we want to change the size of the orbit, regardless of its shape, we must change the
energy of the orbit. We can look at the basic energy equation to determine the best place in the
orbit to maximize our energy change for a given . Since the radius of the orbit doesn’t change
during the application of the  we can write the change in the energy as:

(2)

If we take the difference of the two we obtain the change in energy:

(3)



From Eq. (3) we can see that the best place to add (or subtract) energy for a given , is when V
is the largest. The largest velocity occurs at the periapsis. (Recall = const. Hence

V is greatest when r is the smallest). Consequently the most efficient place in the oribit to change
energy is at the periapsis. 
An Aside

Note that if we were dealing with small , we could approximate it with a differential
dV. We could get the same result, to first order, by just differentiating the energy equation,
holding the radius constant. For example:

(4)

Compare Eq. (4) with Eq. (3) to see that they are the same to first order in .

We can establish how the increment in velocity will affect the size of the orbit in a similar
manner by writing an expression for the new and old energy in terms of the new and old semi-
major axis:

(5)

We can difference the two expressions to get an exact relation relating velocity increment with
change in orbit size:

(6)

or inverting we get:

(7)

where .We can get a better insight if we assume we can replace the 

with dV, and the with da. The result is obtained by just taking the differential of the Energy
equation:

(8)



Example

Consider a circular orbit of radius r = 1 DU. We will add 20% of the circular velocity
tangentially to the orbit. What are the properties of the new orbit a, e, ra, rp. 

First lets find the properties of the current orbit: . Then the

energy and angular momentum are:

if we add 20% tangentially to the velocity, the new velocity will be V = 1.2 DU/TU. We can now
calculate the new energy and angular momentum:

From the energy expression we can calculate the semi-major axis:

Y

The eccentricity is obtained from:

The apoapsis and periapsis distance can be determined from:

As expected, since the increment in was added tangentially in the transverse direction that
point had to be either an apoapsis or periapsis. Since we are making the orbit bigger, it occurred
at the periapsis as was demonstrated. 
Example

We will consider an elliptic orbit and add (or take away) a tangentially at the periapsis.
Consider an elliptic orbit with the properties: a = 1 DU, e = 0.1. The properties of this orbit are:

Energy



Angular momentum

The apo and periapsis radii are:

 ;    

We now would like to add a =  at the periapsis. 

(Quantities in parentheses will represent the results of reducing the velocity, while those that
aren’t in parentheses represent adding to the velocity, only the calculations for addition are
shown)

We need to calculate the new velocity a periapsis and then use that to calculate the new
energy and angular momentum. First we need to calculate the velocity at periapsis of the original
orbit.

The new velocity is 

The new energy is:

The new semi-major axis is:

The new angular momentum is given by:

The eccentricity is obtained from:



Finally, we can compute the new apo and periapsis radii:

One thing that we can learn from the previous problem is that if we add velocity at the
periapsis, we will raise the apoapsis, and if we remove velocity at the periapsis, we will lower the
apoapsis. Hence a periapsis burn will raise (lower) the apoapsis, but the periapsis radius will stay
the same. It is easily shown that if we add or (remove) velocity at the apoapsis, we will increase
or raise (decrease or lower) the periapsis radius. 

Delta-V Required to Change Orbit to a Specified Size

The problem we would like to address here is that of determining the amount of 
required to raise or lower apoapsis (or periapsis) a specified amount. Here we will specify an
initial circular orbit such that the periapsis radius of the new orbit is the same as the circular radius
of the original orbit, . The apoapsis height of the new orbit will be specified as .

In order to determine the required , we need to determine the velocities at the periapsis and
apoapsis of a generic elliptic orbit. We have already done this calculation, but will repeat it here.
To calculate the velocity at any point in an orbit, we use the energy equation:

(9)

We can evaluate the energy equation at the periapsis and at the apoapsis in order to get the
velocities at these two points:

(10)

Now, if we are in a circular orbit, at radius , we already have a transverse velocity of 

. Then the increment in velocity is given by in the new orbit minus in the

original circular orbit. The increment in velocity is the velocity that I want minus the velocity that
I have. Generally this is a vector difference (that we will discuss later), but here, since the two
velocities are in the same direction, is just an algebraic difference. Consequently we have



Delta-V required to raise apoapsis from a circular orbit

(11)

We can calculate the required to lower the periapsis form a circular orbit. In this case
the radius of the circular orbit is the apoapsis radius of the new orbit. Again, we take the velocity
that we want, the velocity at apoapsis of the new orbit, and subtract from it the velocity of the
original circular orbit. In this case , and  is the new specified periapsis radius.

Delta V require to lower periapsis from a circular orbit

(12)

If we do this last calculation for a specific problem, we will see that is negative. All
this means is that the increment of velocity is in the opposite direction of the original velocity, and
that the vehicle is slowing down. Generally when we discuss the velocity increment, , we are
interested in the magnitude of it, since its value is related to the amount of fuel burned. 

Orbit Transfer

The previous section indicated how we could change from one orbit to another by
incrementing the velocity tangentially. Consequently, the two orbits, the original and the new one
are tangent to each other at some point. However, if we perform such a maneuver twice, we can
change from one orbit to another orbit that doesn’t intersect the first. In particular we can use this
method to transfer between tow circular orbits. The intermediate orbit that joins the two circular
orbits is called the transfer orbit, and if it is tangent to both circular orbits is called a Hohmann
transfer orbit.

The Hohmann Transfer 

The Hohmann transfer orbit between two circular orbits of radius  (inner) and  (outer)

is an orbit that is tangent to both circular orbits. Hence we have:

(13)



The Hohmann transfer orbit between two
circular orbits is shown in the sketch to the
right. Here we are in the inner orbit of
radius and add to the original

circular speed to enter the periapsis of the
transfer orbit (or raise the apoapsis). If we
did nothing more, we would remain in that
elliptical transfer orbit, However, when we
arrive at the apoapsis of the transfer orbit,
we add another  to increase our

velocity to the circular speed of the outer
orbit (or raise the periapsis). Such
increment of velocity will put us in the
outer circular orbit - transfer complete.
The increments of velocity at the two
tangent points can be computed using the
results that we developed previously. We can then sum the magnitudes of the two to get the
total required for the transfer. These calculations follow (recall Eq, (23))

(14)

The total  for the transfer is given by:

(15)

A transfer from the outer orbit to the inner orbit would require the exact same .
However the velocity increments would be in the opposite direction as we would be taking energy
out of the system to reduce its size. 

Example

Consider a fight from Earth’s orbit about the Sun to the planet Uranus’ orbit about the



Sun. Note, we are going from one orbit to the other ( not from planet to planet). We will assume
that both obits are circular with the radii given in Sun distance units called astronomical units
(AU). The Earth is in an orbit of 1 AU, and Uranus is in an orbit of 19.28 AU. What is
required to transfer from one orbit to the other?  The transfer orbit will be an elliptic orbit about
the sun that is tangent to both the Earth and Uranus orbits. Hence its aphelion radius is

, and its perihelion radius is . 

At perihelion:

At aphelion:

Total Delta-V

Compare this value with the required to escape from the solar system.

For escape, we need to enter into a parabolic orbit when we leave the Earth’s orbit



Hence the total fuel requirement to transfer from Earth’s orbit to Uranus’ orbit is greater than that
required to leave the solar system! 

Transfer time for Hohmann Orbit

Even though we haven’t introduce the time variable into the problem, we can still
calculate the time for a Hohmann transfer. Since the orbit properties are symmetric with the semi-
major axis, we can see that it will take the same amount of time to travel from periapsis to
apoapsis as it does from apoapsis to periapsis. Therefore the time it takes for the Hohmann
transfer is half the period of the orbit:

Time for Hohmann Transfer

(16)

Example

For our trip to Uranus in the previous example we can compute the travel time from Eq.
(16).

Time and Phase Angle to Launch

In the previous section we determined the travel time and Delta-V associated with
transferring between two circular orbits using a Hohmann transfer orbit. If we want to travel from
planet to planet ( or intercept or rendezvous with a satellite), we must be sure that we time our
launch just right so that the planet (or satellite) will be there when we arrive. Consequently we
need to determine the time to wait until launch or alternatively, the relative position of the two
planets or satellites (phase angle) at launch. There are several ways to calculate these values. The
method presented here requires the least amount of intuition and will always give the correct
result regardless if the problem requires going from inner to outer orbits or vice-versa. Consider



the initial planet or satellite to be (1)1, and the target planet or satellite to be (2).  We will make
use of the facts that we know the time of transfer, and that the arrival point is 180 degrees away
from the launch point. With these two bits of information we can determine the time to wait or the
phase angle at launch. 

Time to Launch

We can pick some reference direction from which to measure all angles. It will be assumed
that we know the initial positions of both satellite (1) and (2) at the current time that we will
designate as the epoch, . The departure from satellite (1) will be designated as the launch time,

. Then the position at launch of satellite (1) is:

(17)

where is the angular rate of satellite (1). The position of satellite (2) at the time of arrival

( ) is then given by:

(18)

where is the angular rate of satellite (2). The difference of the two positions must be some odd

multiple of 180 degrees or B. Hence we can write:

(19)

where k is some positive or negative integer. From Eq. (17) and (18) we can write Eq. (19) as:

(20)

Equation (20) can be rearranged to give us some insight into the problem:

(21)
         1 2         3              4

We can examine the terms in Eq. (21). The first term is the relative positions of the two satellites
at epoch (phase angle at epoch). The second term is just the angle the target satellite goes through
during the transfer. The transfer time-of-flight (TOF) is known. The term marked 3 is the relative
angular rate between the two satellites. The term marked 4 is the time-to-wait, the launch time
minus the epoch time. Hence we can solve for the time-to-wait:

Time to Wait for Launch



(22)

where k is a positive or negative integer selected to make the time to launch the smallest positive
number. That time-to-wait would be the first opportunity to launch. The next value of k would be
the next possible launch time, etc, each subsequent integer being the next possible launch time.

  An alternative way of thinking about the launch time is to determine the angles between
the two satellites when it is appropriate to launch, of the phase angle at launch. We can determine
this angle from Eq. (22). We simply define the epoch time to be the launch time, and

solve for the phase angle at launch, :

Phase Angle at Launch

 (23)

where again, k may be selected so that the phase angle has a magnitude of less than 2B. It can be
positive or negative at your discretion. Note that the phase angle is defined as the angle to the
target satellite minus the to the launch satellite so that a positive phase angle means that the target
satellite leads the launch satellite by the phase angle amount. 

Example

What is the phase angle required for the trip to Uranus?

At launch from Earth’s orbit, Uranus leads Earth by 111.348 deg.

Applying Delta-V Non-Tangentially



Up to this point we have only consider applying the velocity increment tangentially. For all
practical purposes, that is the most efficient way to gain or lose energy.  However, there are other
considerations that sometime require us change to an orbit that is not tangent to the original one.
We can compute the required in precisely the same manner that we have previously, except
we now need to remember that we are considering vectors. Suppose that we have a velocity in

our original orbit designated by , and at the same point (remember the velocity is changed

instantaneously) we desire to be at a velocity

in the new orbit. The change in velocity is just

the vector difference of the two:

, and is a vector. For now,

however, we are interested in the magnitude of

the  for fuel requirement calculations. A
typical scenario is shown in the figure where we

have the velocity in the original orbit, , the

desired velocity in the new orbit, , and the

increment in velocity required to change

velocities, .  If the angle between the two velocities is 2, then the magnitude of , is given
by the law of cosines:

(24)

where , , and .   Note that the direction of the difference of

two vectors can be remembered by the simple statement “head - tail.” The difference vector is
vector at the head end minus the vector at the
tail end. 

Example

Consider a parabolic transfer orbit
from Earth’s orbit to the orbit of Uranus. The
transfer orbit will be tangent to the Earth’s
orbit a perihelion, and it will intersect the orbit
of Uranus. 
The inner orbit is the Earth orbit with

. The outer orbit is Uranus’ orbit,

.  The initial is determined by noting the burn is tangential to the original

circular orbit and changes the velocity from circular velocity to escape velocity (the velocity in a
parabolic orbit).



 

Arrival at Uranus’ orbit:

The transfer orbit is a parabola, so the equation for the orbit is .

Further, we can recall that the periapsis radius is . Then we can write the

equation of the transfer orbit as 

The flight path angle at arrival is given by:

The velocity at arrival is just   

and the circular velocity of Uranus is:

The angle between the desired circular velocity direction and the arrival parabolic orbit velocity
direction is just the flight path angle (the circular orbit velocity is at zero flight path angle). Hence

we can now use the law of cosines to determine the magnitude of the .

The total for the trip is just the scalar sum of the two:

Note that this value is significantly larger than for the Hohmann transfer calculated previously



(0.5351 AU/TU).

We can extend the ideas presented previously to calculate a complete round trip say from
Earth to Mars and return. If we assume some starting location for the planets, we can compute
the wait time, the transfer time, the wait time for alignment for return, and the return travel time.
The result will be a log of the trip. We will consider a round trip to Mars in the following
example:

Example - Round trip from Earth to Mars and Return using Hohmann transfers.

In this example  Mars will be considered the “target’ planet and Earth the “launch’ planet.
We will assume that each planet is in a circular orbit, and that we will use a Hohmann transfer
orbit to go from Earth to Mars and return. The properties of the two planet orbits are:

          

At perihelion we have:

At aphelion we have:



Total 

Time of flight (TOF)

Wait time to launch:

For the purpose of this example, we can assume that at epoch, Mars and Earth are aligned
on the same side of the Sun (conjunction). Hence the phase angle at epoch will be zero. The
equation for the time to wait is given by:

we need additional information to evaluate this equation, in particular n1 and n2..

The time to wait becomes:



           (k = 1)

Hence from that particular epoch, we would
have to wait nearly two years before the planets aligned for a minimum fuel Hohmann transfer
from Earth to Mars!

From here on out, we will reckon trip time from the launch time. So the new epoch will be  .

We can set and substitute into the wait-time equation and solve for the phase angle at

launch to get

Hence Mars must lead the Earth by 44.36 degrees when the vehicle is launched from Earth in
order for Mars to be in the right place when it arrives at Mars’ orbit.

From here on out, we will measure angles from the Earth’s position at epoch (launch
time). Under this convention, , and .

Arrival at Mars (t = t2)

We can calculate the position of the planets at the arrival time at Mars. The basic equation
is . The planet positions are given by

(Note we knew that Mars was at B even without doing the last calculation!)

The phase angle at Mars’ arrival is just the difference of the two:

Hence at arrival at Mars, Mars is 75.2 degrees behind the Earth, or Mars leads the Earth by 284.8



deg, whichever way you desire to think about it. 

Wait time on Mars

When it is time to leave Mars, we want the Earth to be located so that after the transfer
back to Earth’s orbit, the Earth will be in the right place to receive us. Since we are using a
Hohmann transfer to return, then we know that when we arrive back on Earth, it must be 180
degrees from where we launched from Mars. If we reckon time from Earth launch, we can
calculate the wait time on Mars in the following way. First lets designate the wait time on Mars as
the time to launch from Mars, , minus the time to arrive at Mars, , . We can

define the arrival time at Earth as . Now we can calculate the position of Mars at launch form

Mars, and the position of the Earth at arrival:

The difference of these two should be some odd multiple of B.

We can solve this equation for the time-to-wait

Time to Wait

(24)

where we select the integer  k2 to give us the smallest positive wait time.

Substituting in the numbers we have: (k2 = 1)

Note that if we picked k2 = 2, that would give us the wait time for the next opportunity to launch.

Positions and Phase Angle at Launch from Mars ( )

We can easily compute the phase angle at Mars launch by calculating the position of the
planets at that time:



The phase angle is just the difference:

Note that here we still retain the phase angle as the initial “target” planet minus the initial “launch”
planet, even though their roles have been reversed. So at this point, Mars is leading the Earth by
75.2 degrees. 

Positions and Phase Angle at Arrival at Earth ( )

In the same manner we can calculate the positions and phase angle at Earth arrival.

The phase angle is determined by taking the difference

Hence Earth leads Mars by 44.36 degrees, or Mars is 44.36 degrees behind the Earth. The astute
reader will note some symmetry (or asymmetry) in the problem. At launch Mars lead Earth by
44.36 degrees. A table indicating positions times and phase angles follows.

Trip Log

Time(TU) Days Earth
position

(deg)

Mars position
(deg)

Phase Angle
(deg)

0 0 0 44.46 44.36



+TOF 4.4539

t2 4.4539 258.92 255.19 180.00 -75.19

+twait 7.8096

12.2635 712.91

702.64
(342.64)

417.83
(57.83)

75.19

+TOF 4.4539

t4 16.7173 971.83
(2.66 yrs)

957.83
(237.83)

553.47
(193.47)

-44.36

Orbit Plane Change Maneuver

All the maneuvers discussed previously have been in the same original orbit plane. If we
would like to keep the same identical orbit, but change the plane in which it is located, we can use
a pure plane change maneuver. Again, all we need to do is remember we are dealing with vectors
and find the difference of the two vectors. In this case the two velocities are equal but in different
directions.  In the figure to the right, we are looking edgewise at the orbit, right down the position

vector. The original orbit has the velocity that lies in the plane of the orbit. We would like to

change the plane through an angle 2. The velocity in the new orbit plane is equal in magnitude,

but now lies in the new orbit plane. The question is, what is the velocity increment,  required

to make this plane change. Again, for now we are only interested in the magnitude, .

Also we have . Then, from the geometry we have



Delta-V for pure plane change (no change in V)

 Y (25)

We could also do a plane change that took us from one orbit to a different orbit in a
different plane. The restriction here as that we do it with a single burn.  Under these
circumstances, we can draw a similar figure, but the initial and final velocities will be different,
and at some angle 2 apart. The figure will be similar to the non-tangential burn we studied earlier.
Consequently, we can just write down law of cosines:

Delta-V for plane change with two different velocity magnitudes

(26)

Consider the following problem; We would like to change orbits from a small circular
orbit ( a low earth orbit) to a large circular orbit in a different plane (geosynchronous orbit). For
example we launch from Cape Canaveral into the low Earth orbit and would like to change to an
equatorial geosynchronous orbit. There are several strategies that we can use to perform this orbit
change:

1) Perform a small circle to large circle Hohmann transfer in the original plane, and then
perform a pure plane change.

2) Perform a pure small circular orbit plane change, then perform the Hohmann transfer
3) Perform a plane change to the new plane such that the velocity in the new plane is that

of a Hohmann transfer.
4) Perform a Hohmann transfer, but make the apogee burn one that performs the required

plane change and ends up with the required velocity for a large circular orbit.

Each of these scenarios will require a different amount of total , one providing the minimum.
You should be able to determine which provides the most fuel efficient strategy by considering
Eqs. (25) and (26). 

Converting   into Fuel Consumption

All the above maneuvers and orbit changes required a certain amount of . The results
were independent of spacecraft size. We would now like to find out what the required fuel usage
would be to provide that . One would expect the result to depend on vehicle mass. We use the
so-called “rocket equation”

(27)

where T = thrust



m = vehicle mass
Ve = exhaust exit velocity
V = velocity

The thrust is proportional to the rate that mass is flowing out of the vehicle and the exit velocity
of the rocket engine. We can rearrange Eq. (27) in a manner that allow us to integrate it.

(28)

where m1 = initial mass of the vehicle before the burn
m2 = final mass of the vehicle after the burn
Ve = engine exhaust (or exit) velocity

= magnitude of velocity change

The exit velocity of a rocket is related to a quantity called the specific impulse, Isp in the following
way

(29)

where is the sea-level value of the acceleration due to gravity. The difference in the initial and

final mass is the mass of the fuel burned. Hence we can write Eq. (28) in an alternative form that
contains the mass of the fuel directly:

(30)

Example

Consider a vehicle with an initial mass of 136 kg. Calculations show a 
= 1 DU/TU = 7.9054 km/s = 7905.4 m/s is required for some maneuver. The engine is has an



Isp = 400 s.    How much fuel is required?

, ,

     The ratio of fuel mass over initial mass is called the fuel fraction


