Aerodynamic Analysis of the A10

Matt Rasnick, Adam Masishin, Josh Shiben

Description of the A-10

- The A-10 was built to fill the need for a close air support, ground attack vehicle
- It is heavily armed, capable of carrying multiple laser guided munitions, along with its primary weapon: a built in 30mm GAU-8/A Avenger Gatling Gun

Gun Test Video
Aftermath

- The A-10 is designed to survive, and remain flying even when suffering massive damage
- Low wing loading of 200 kg/m² (40 lbs/ft²)

www.flightglobal.com

Key Flight Conditions

- Cruise Speed
 - 1525 m
 - $-173.1 \, \text{m/s}$
 - M=.521
- Combat Speed
 - 1525 m
 - 196 m/s
 - M = .590

Tornado Model Geometry

Nose Considered (0,0,0)

- CG (wings only) = (10.6, 0, 0.26)
- Wing
 - Apex = (7, 0, 0)
 - Partition 1
 - Root Chord = 3.04 m
 - Half -span = 2.8 m
 - Sweep = 0
 - Dihedral = 0°
 - Taper = 1
 - Root Airfoil 6716
 - Tip Airfoil 6716
 - -1º Incidence
 - Partition 2
 - Root Chord = 3 m
 - Half-span = 6 m
 - Sweep = 0
 - Dihedral = 7°
 - Taper = 0.65
 - Root Airfoil 6716
 - Tip Airfoil 6713
 - -1º Incidence

- Tail
 - Apex = (14.2, 0, 0)
 - Partition 1 (Horizontal)
 - Root Chord = 2 m
 - Half -span = 2.7 m
 - Sweep = 0
 - Dihedral = 0
 - Taper = 1
 - Root Airfoil 0012
 - Tip Airfoil 0012
 - No Twist
 - Partition 2 (Vertical)
 - Root Chord = 2.1 m
 - Half-span = 2.2 m
 - Sweep = 0
 - Dihedral = 90°
 - Taper = 1
 - Root Airfoil 0012
 - Tip Airfoil 0012
 - No Twist

Tornado Geometry/Panel Output

Neutral Point

- @ 8.45 m from nose
- Results in static margin of 13.1%
- Within 0.1% for all flight conditions

Spanloading of Wing, Local C_I Plots For Combat Strafing/Bombing Runs

Alpha Sweep for Combat Run -90:5:90

Damage Analysis

 The A-10 is designed to absorb massive amounts of ground fire and remain flying

http://www.teamwarthog.org/html/history.html www.kowabunga.org

Damage Example

- Assume 1 wing shot off
- CG based on wings, but also assumed that a fuselage was present so that the CG wasn't as skewed

Spanload with Damage

Spanload shifted outboard from before, and now the tail must make up a lot of the lost lift

C_I with Damage

 Increased C_I on wing to make up for lost lift, but a max C_I of 1.2 still is within reason

LamDes Modeling

LamarDesid	n Program	- A-10 '	Thunderbolt	_	
			43.64		0.0
5.	0.	0.	-0.00	. 4	. 2
-7.00	0.00	-0.0	1.		
-7.00	-02.8	-7.0	1.		
-7.70	-08.8	-7.0	1.		
-9.70	-08.80	-7.0	1.		
-10.04	-02.80	-0.0	1.		
-10.04	-00.00				
3.	0.	0.	.20	. 4	.2
-14.20	-00.0	0.	1.		
-14.20	-02.7	00.	1.		
-16.20	-2.70	00.	1.		
-16.20	-0.00				
1.0 10.0	20. 0.3	0.58 40	.0 0.0006		
0.65	0.65	0.0	-0.00	1.0	
0.030	1.0	0.0	0.0	0.0	0.0

Static Margin

Wing Twist

Spanloading

A-10 Takeoff

- A-10 is built to takeoff on short and rugged runways
- It can take off fully loaded (22,950 kg) in 1,220 m
- Only high lift systems are 2 segment, 3 position Fowler Flaps and a very small inboard leading edge slat

A-10 Lidrag

- e=.858
- CL=1.049

A-10 Friction

Component	Wetted Area (m²)	C _F	ΔC _D
Fuselage	61.80	0.00212	0.00288
Canopy	6.97	0.00256	0.00041
Twin Engines	25.28	0.00270	0.00147
Wing	94.02	0.00263	0.00726
Horizontal	16.62	0.00293	0.00139
Twin Vertical Tail	8.72	0.00298	0.00074
Total	213.41	0.01147	0.01415

All data was found at M=.56, at the standard cruise alt (1525 m)

