C-17.

Tyler, Jason R., and Instan-Tanious

Humble Roots: the Tale of the "Globemaster"

C-74 Globemaster

C-124 Globemaster II

The C-17 Globemaster III

- Manufactured by Boeing Integrated Defense Systems
- Developed from McDonnell Douglas YC-15
- Strategic tactical airlifter
- Major Assembly in Long Beach, CA with Component Assembly in Macon, GA
- 200+ Active US Military
- Winner of 1994 Collier Trophy
- First Flight Sept 15, 1991
- Commercial Version Considered (MD-17)

Configuration

Basic Geometry	
Wing Span	169 ft 9 in
Wing Span (Without Winglets)	165 ft
Wing Area	3800 ft ²
Wing Mean Aerodynamic Chord	25.35 ft
Wing Sweep (quarter chord)	25°
Wing Anhedral	3°
Wing Aspect Ratio	7.2
Horizontal Stabilizer Area	845 ft ²
Height	55 ft 1 in
Length	174 ft

Payload Considerations

Cargo Box	
Length (inc. Ramp)	88 ft
Width	18 ft
Height	12 ft 4 in
Ramp Length	19ft 10 in

Cargo Capacity:

- •Maximum Payload of 170,900 Pounds
- •6 5-ton expansible vans
- •18 USAF 463L Pallets (12 on the main floor, 4 on ramp)
- •140+ Passengers (102 Paratroopers)

AIAA-92-1262

Flight Controls

Electronic Flight Control System

- **4 Flight Control Computers**
- 2 Spoiler Control/Elevator-Feel Computers
- 2 Dual Air Data Computers
- 3 Three-Axis Rate Sensors
- 3 Three-Axis Accelerometers
- 1 Quadruple Sensor per Control Column
- 1 Quadruple Sensor per Rudder Pedal

AIAA-92-1262

- Quadruple Redundancy
- Hydro-mechanical Backup to electrical systems
- Glass Cockpit with dual HUDs

Flight Control Geometry

Spoilers (8 Sections)	
Surface Area (Total)	482 ft ²
Span (Single Wing)	48.2 ft
Average Chord	5 ft
Spanwise Location on Wing (Local Average Chord)	15% - 68%
Chordwise Location on Wing (Local Average Chord)	65.5% - 81%

Ailerons (2 Surfaces)	
Surface Area (Total)	127.34 ft ²
Span (Single Surface)	21.1 ft
Average Chord	3.09 ft
Spanwise Location on Wing (Local Average Chord)	70% - Winglet
Chordwise Location on Wing (Local Average Chord)	80%

Elevator (4 Sections)	
Surface Area (Total)	308.0 ft ²
Span (Single HT Side)	28.5 ft
Average Chord	5.4 ft
Chordwise Location on H.T. (Local Average Chord)	70%

Rudder (2 Sections)	
Surface Area (Total)	252 ft²
Span	31.5 ft
Average Chord	8 ft
Spanwise Location on V.T. (Local Average Chord)	0% - 85%
Chordwise Location on V.T. (Local Average Chord)	64%

Weights and Performance

Weights	
Max Takeoff Gross Weight	585,000 lbs
Operating Empty Weight	276,500 lbs
Max Payload Weight	170,900 lbs
Max Fuel Weight	180,806 lbs
Max Wing Loading	161.84 lb/ft ²
Max Power Loading	3.80

Note: Additional tanks can be added for longer range and increased fuel weight.

Performance	
Cruise Speed (FL 280)	Mach 0.77
Airdrop Speed	115-250 kts
Approach Speed	115 kts
Service Ceiling	45,000 ft
Landing Field Length (including TRs)	3,000 ft
Takeoff Field Length	7,740 ft
Range (160,000 lbs Payload)	2,240 nm
Range (40,000 lbs Payload)	4,200 nm
Cruise C _L	0.55

Deep Stall

- Originally, no Angle of Attack Limiting System
- Deep Stall Potential
- α-Limiter Designed and Installed to comply with Air Vehicle Specification

Propulsion (Forward and Reverse)

- Uses four F-117-PW100 (PW2040 used in the B757)
- 40,400 lb. thrust per engine
- 5.9 bypass ratio
- 30.8 overall pressure ratio
- T/W = 5.7
- Specially designed to be "fully reversible"
 - Core AND bypass exhaust redirected
- Uses cascades to direct thrust up and forward (to avoid FOD)
- Enough reverse thrust to push a fully loaded aircraft up a 2° slope

Figure 4. Thrust Reverser

AIAA-1992-1262-279

- 12% thick supercritical airfoil
- Developed by Richard Whitcomb to reduce wave drag by producing weaker upper surface shockwaves
- Equal drag to thinner non-supercritical airfoils allows for higher fuel volume

Winglets

 $S = 35.85 \text{ ft}^2 \text{ (total)}$

30° Sweep Angle

15° declination from vertical

Supercritical Airfoil

Vortex Generators

Increase "effective span" and decrease wingtip losses which decreases lift induced drag for improved cruise efficiency.

http://www.fas.org/man/dod-101/sys/ac/c-17-1999415c17.jpg

http://www.flickr.com/photos/31864937@N00/1318527070/in/set-72157594530625401/ Aarons, Riopelle, Tanious

High-Lift Systems

- Slotted Lowering-flaps system
- Externally blown flaps
 - Directly blown by turbofan exhaust
 - Requires extremely strong material flaps
 - Can generate very large nosedown pitching moments
- Need for very large horizontal stabilizer
- Slats control LE flow at high angles of attack

NASA Langley full-scale tunnel model http://oea.larc.nasa.gov/PAIS/Partners/C_17.html Aarons, Riopelle, Tanious

High-Lift Systems cont'd.

Although we are unable to model the C_L caused by addition of powered lift devices, we estimate $C_L = 4 - 5$ for STOL operation

C-17 Aerodynamic Analysis

Aerodynamic Analysis

Mean Aerodynamic Chord = 25.35 ft

 x_{LE} mac = 15.4049 ft y_{LE} mac = 31.6118 ft

Neutral Point = 28.247 ft

Total Aircraft:

SM = -2.45% (norm w/ wing mac) Neutral Point = 39.127 ft CG (min trimmed drag) = 39.75 ft E = 1.0513

*Neutral Points calculated in VLMPc

*CG and E calculated in LAMDES

↑ X

CG for Minimum Trimmed Drag

From LAMDES, Balanced at CG location for minimum trimmed drag

From LAMDES, Balanced at CG location for minimum trimmed drag

Special Abilities

Short Takeoff and Landing	
Shortest Takeoff Distance	3,700 ft (unloaded)
Shortest Landing Distance	2,300 ft (unloaded)

Unrestricted Climb

Get out of trouble FAST

Air Drop Capabilities

- Over 100 Paratroopers
- Up to 120,000 pounds

Full Thrust Reversal

 Aircraft can Self-propel up 2% Slope in reverse

http://oea.larc.nasa.gov/PAIS/Partners/C_17.html

References

Chambers, Joseph. Partners in Freedom: Contributions of the Langley Research Center to U.S. Military Aircraft of the 1990's. "Boeing C-17 Globemaster III". Oct.2003. Washington, D.C.: National Aeronautics and Space Administration. Accessed Mar. 2009. http://oea.larc.nasa.gov/PAIS/Partners/C 17.html>

Drela, Mark. XFOIL: Subsonic Airfoil Development System. Ver. 6.96. 7 Apr. 2008. http://web.mit.edu/drela/Public/web/xfoil/>.

Etkin, Bernard and Lloyd Duff Reid. Dynamics of Flight: Stability and Control. Third Ed. New York, NY: Wiley, 1996.

Iloputaife, Obi. *Design of Deep Stall Protection for the C-17A*. AIAA-96-3784. Long Beach, CA: American Institute of Aeronautics and Astronautics, 1996.

Jackson, Paul, ed. Jane's All the World's Aircraft: 2008-2009. Coulsdon: Cambridge, 2008.

Mason, W.H. "D.4 - LamDes" *Applied Computational Aerodynamics*. Virginia Tech: Blacksburg, VA. January 1997. http://www.aoe.vt.edu/~mason/Mason f/CAtxtAppD4.pdf>

National Aeronautic Association. *Collier Trophy Winners: Collier 1990-1999 Winners*. 2004. Washington, D.C.: National Aeronautic Association. Accessed Mar. 2009. http://www.naa.aero/html/awards/index.cfm?cmsid=150>

Pratt & Whitney. F117: Exclusive Power for the C-17 Globemaster III Transport. Hartford, CT: Pratt & Whitney. Accessed Mar. 2009. http://www.pw.utc.com/vgn-ext-templating/v/index.isp?vgnextrefresh=1&vgnextoid=4d9f0030296eb010VgnVCM1000000881000aRCRD

Tavernetti, L. The C-17: Modern Airlift Technology. AIAA-92-1962. Irvine, CA: American Institute of Aeronautics and Astronautics, 1992.

United States Air Force. *US Air Force Fact Sheet: C-17 Globemaster III.* Oct. 2008. United States Air Force. Accessed Mar. 2009 < http://www.af.mil/factsheets/factsheet.asp?fsID=86>.

VLMpc. Ver. 2. 14 Nov.2002. http://www.aoe.vt.edu/~mason/Mason_f/VLMpcv3.f >