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W. H. Mason, June 27, 2015 
Curiosity Number 6.  Adventures in Thin Airfoil Theory 
I	am	reading	the	book	by	Doug	McLean,	Understanding	Aerodynamics.	He	makes	lots	of	
interesting	points	and	provides	lots	of	food	for	thought.	Although	not	really	part	of	the	big	
picture	concepts	he	addresses,	one	figure	caught	my	attention	(of	course	I	look	at	the	
pictures	first	before	diving	in).	His	figure	7.4.3b	compares	thin	airfoil	theory	with	a	full	
solution	from	MSES.	The	poor	agreement	surprised	me	and	I	decided	to	take	a	look	for	
myself	(my	mantra	to	students:	be	curious,	be	skeptical).	His	figure	is	given	below	as	Fig.	1.	

	
Figure	1.	From	McLean.	Comparison	of	the	pressure	distributions	between	thin	airfoil	
theory	and	a	complete	flowfield	solution	for	an	NACA	4410	airfoil	at	2°	alpha.	(Of	all	
the	airfoils	to	pick,	McLean	picked	one	that	apparently	wasn’t	tested	by	the	NACA.	
Why?	Why	not	use	the	NACA	4412,	one	of	the	most	widely	used	for	comparison?)	

In	particular,	I	was	surprised	because	of	a	figure	that	I	recalled	in	Van	Dyke,	NACA	R	1274,	
“Second	Order	Subsonic	Airfoil	Theory	including	Edge	Effects.”	I	thought	Van	Dyke	showed	
pretty	good	agreement	with	an	exact	solution	for	an	NACA	0012	airfoil	at	zero	alpha	
(thickness	comparison).	As	expected,	the	thin	airfoil	theory	fails	at	the	leading	edge.	A	lot	of	
Van	Dyke’s	effort	in	matched	asymptotic	expansions	eventually	focused	on	how	to	deal	
with	this.	In	Van	Dyke’s	report	the	problem	is	treated	using	Riegels’	Rule	(we	often	used	a	
version	of	this	in	the	solution	for	wings	when	transonic	small	disturbance	theory	was	the	
flow	model).	His	result	is	shown	in	Fig.	2.	Sure	enough,	for	thickness	the	comparison	
between	thin	airfoil	theory	and	the	exact	result	looks	pretty	good	except	at	the	leading	
edge.	This	is	much	better	than	shown	in	Figure	1.	
This	led	me	to	launch	an	investigation.	Could	McLean’s	result	be	right?	(It	turns	out	it	is).	
This	meant	I	had	to	compute	it	for	myself,	which	led	to	a	new	understanding	for	me.		
An	observation:	you	hardly	ever	find	pressure	distribution	results	for	thin	airfoil	theory.	
The	key	results	since	the	time	of	Glauert	have	been	the	alpha	for	zero	lift	and	the	related	
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pitching	moment.	I’d	compared	these	predictions	with	data	in	the	past	and	found	really	
good	agreement	for	zero	lift	alpha	and	of	course	the	classic	thin	airfoil	theory	lift	curve	
slope.	How	can	these	be	so	good	when	the	pressure	distribution	looks	so	poor	in	Fig.	1?		

	
Figure	2.	From	Van	Dyke	(NACA	R	1274).	Comparison	of	surface	speed	
predictions	for	an	NACA	0012	airfoil	at	zero	angle	of	attack.		
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Let’s	investigate.	Using	thin	airfoil	theory	we	check	the	thickness,	camber	and	angle	of	
attack	contributions	separately	and	then	combine	them.	We’ll	do	the	thickness	first,	then	
review	the	lift	curve	work	I’ve	done	before,	and	then	look	at	the	camber	at	zero	alpha	and	
finally	the	flat	plate	angle	of	attack.	I	had	previously	done	parts	of	this,	but	I	had	to	recreate	
some	of	the	capabilities.	At	each	step	we	will	compare	the	predictions	with	other	
calculations	(We	will	mainly	be	using	panel	methods	and	conformal	transformation,	thus	
you	could	ask	the	question	–	why	bother?	The	answer	is	that	if	you’re	retired	you	can	take	
the	time	to	do	this.	I	might	learn	something.)	
Thickness	

We	can	use	the	analytic	solution	given	by	Van	Dyke	for	the	NACA	00XX	airfoils	for	thin	
airfoil	theory.	To	check	his	solutions	we	run	both	a	panel	method	and	a	conformal	
transformation	solution.	The	results	are	given	in	Fig.	3.	Since	the	airfoil	is	10%	thick	
instead	of	12%	thick	the	agreement	should	be	better	than	the	results	shown	in	Fig.	2	
(which	were	for	surface	velocity,	not	pressure).		

	
Figure	3.	Comparison	of	pressures	due	to	the	basic	thickness	of	the	airfoil.	Thin	
Airfoil	theory	compared	to	“exact”	PANEL	and	Conformal	Transformation	
methods.	NACA	0010	airfoil	at	zero	alpha.	
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The	thin	airfoil	theory	is	pretty	good,	but	underestimates	the	pressures	slightly	from	about	
10%	to	50%	of	the	chord.	Since	the	ΔCp	looks	way	off	in	Fig.	1,	lets	look	at	the	lift	curve	
comparison.	It	should	be	way	off	too.	The	lift	must	be	way	different	between	thin	airfoil	
theory.	

Next	we	look	at	the	lift	results	from	thin	airfoil	theory.	The	lift	curve	slope	is	2π	and	the	α	
for	zero	lift	depends	on	the	camber	shape	and	magnitude.	For	NACA	4-digit	cambers	the	
analytical	solution	was	worked	out	in	Houghton	and	Carpenter1	(I	am	looking	at	the	4th	
edition,	Section	4.8.2).	Figure	4	compares	the	thin	airfoil	theory	result	with	wind	tunnel	
tests	(although	this	is	from	NACA	R	669,	1939,	the	table	is	reproduced	in	Hemke,	
Elementary	Applied	Aerodynamics,	where	it’s	much	more	legible	compared	to	the	pdf	file	
NASA	put	up	on	the	web).	I	find	this	agreement	to	be	remarkably	good.		

	
Figure	4.	Comparison	of	the	thin	airfoil	theory	predicted	zero	lift	angle	of	attack	
with	wind	tunnel	tests	for	the	NACA	4-digit	camber	lines	at	various	values	of	
the	maximum	camber.	

																																																								
1	The	NACA	4412	is	given	as	an	example	in	the	book.	However,	using	the	same	(somewhat	
lengthy)	formulas	I	get	slightly	different	values	for	the	results.		
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Now	lets	look	at	the	resulting	lift	curves	for	thin	airfoil	theory	compared	to	“exact”	
methods.	We’ll	look	at	a	12%	thick	airfoil	because	I	already	have	the	results,	including	wind	
tunnel	data	(not	available	for	the	NACA	0010	airfoil).	I	realize	that	for	McLean	the	
comparison	with	experimental	data	is	beside	the	point.	Figure	5	shows	the	predictions	
from	both	a	panel	code	(inviscid)	and	thin	airfoil	theory,	as	well	as	wind	tunnel	data.	
Curiously,	the	thin	airfoil	theory	agrees	with	the	test	data	better	than	the	“exact”	inviscid	
result	(although	completely	fortuitous,	I	always	get	a	kick	out	of	students,	and	a	couple	of	
faculty	at	USAFA,	running	in	to	show	me	this	result).	

	
Figure	5.	Comparison	of	the	thin	airfoil	and	exact	panel	method	results	for	
cambered	and	uncambered	NACA	4-digit	airfoils.	Wind	tunnel	results	are	also	
included.	

The	lift	at	the	value	of	two	degrees	alpha	for	the	NACA	4412	airfoil	looks	closer	to	my	eye	
than	I	would	guess	looking	at	the	pressure	distributions	in	Figure	1	(why	I	started	this	
adventure).	At	two	degrees	alpha,	the	McLean	case,	the	thin	airfoil	theory	estimate	for	lift	is	
0.675.	The	NACA	4412	lift	coefficient	prediction	from	the	Panel	method	is	0.7422,	and	the	
conformal	transformation	prediction	is	0.7684.	The	corresponding	values	for	the	NACA	
4410	are	0.7264	(Panel)	and	0.7542	(conformal	trans.).	Thus	the	12%	thick	airfoil	lift	
coefficient	inviscid	prediction	is	slightly	higher	than	for	the	10%	thick	airfoil	at	2°	alpha	
(about	2%).	For	the	4410	case	the	difference	between	thin	airfoil	theory	and	the	panel	
method	is	7%.	
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Look	at	Fig.	6	to	see	how	close	the	pressure	coefficients	are	when	there	is	a	3.7%	lift	
coefficient	difference	between	the	panel	and	conformal	transformation	calculations.	That’s	
why	I	was	surprised	at	the	differences	shown	in	Fig.	1.	

	
Figure	6.	Panel	and	conformal	transformation	method	results	for	the	NACA	
4410	airfoil	at	2°	alpha.	The	differences	in	the	pressures	appears	pretty	small.	

Finally	we’ll	look	at	my	calculation	of	McLean’s	figure	(Fig.	1).	The	result	is	given	in	Fig.	7.	It	
looks	pretty	much	exactly	like	McLean’s	figure,	although	I	didn’t	modify	the	thin	airfoil	
theory	with	a	Riegels’	Rule	adjustment.		
For	the	results	shown	in	Fig.	7	the	conformal	transformation	method	CL	is	0.7542,	while	the	
thin	airfoil	theory	prediction	is	0.675	from	the	classical	force	solution,	and	from	the	
integration	of	the	so-called	lumped	vortex	solution	method2	used	to	find	the	pressure	
distribution	in	Fig.	7	is	0.67492,	in	almost	exact	agreement	with	the	analytical	solution.	The	
difference	in	lift	coefficients	is	about	10.5%.		
The	somewhat	surprising	difference	in	pressures	(to	my	eye)	is	apparently	correct.	And	a	
10%	difference	in	lift	is	reasonable	for	first	order	thin	airfoil	theory	compared	to	the	
“exact”	conformal	transformation.		

																																																								
2	This	is	the	name	used	by	Katz	and	Plotkin	for	placing	a	point	vortex	at	the	¼	chord	of	a	
panel	and	satisfying	the	boundary	condition	at	the	¾	chord	location	on	a	panel.	
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Figure	7.	Comparison	of	the	conformal	transformation	method	and	thin	
airfoil	theory	predictions	for	the	pressure	distribution	on	an	NACA	4410	
airfoil	at	α	=	2°.	

It	seems	we	need	to	look	a	little	further	into	the	comparison	between	thin	airfoil	theory	
and	“exact”	methods.	Thus	we	compare	the	pressure	distributions	for	a	10%	thick	
uncambered	NACA	airfoil	(NACA	0010).	This	is	to	see	if	there	is	an	interaction	between	
camber	and	thickness	(suggested	by	Weber’s	second	order	theory3).	Figure	8	shows	this	
comparison.	It	was	made	for	an	angle	of	attack	of	6	degrees,	which	produces	a	CL	roughly	
the	same	as	the	lift	coefficient	in	Fig.	7.	Although	the	trend	of	pressure	distributions	on	the	
forward	portion	of	the	upper	surface	are	similar	to	those	seen	above,	to	my	eye	the	
agreement	is	much	better	for	this	case	than	the	cambered	case.	Now	the	lift	coefficients	
differ	by	about	7%	compared	to	the	previous	difference	of	about	10.5%.	It	looks	to	me	like	
the	thickness	and	flat	plate	angle	of	attack	contributions	are	at	least	slightly	more	accurate	
than	the	camber	contribution.	
																																																								
3	Weber	(ARC	R&M	3026)	doesn’t	describe	her	method	explicitly	as	second	order,	but	that’s	
how	it’s	frequently	described.	There	is	a	good	table	in	Houghton	and	Boswell,	Further	
Aerodynamics	for	Engineering	Students	that	shows	the	components	of	her	method	(Fig.	
2.20,	pg	88).	
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Fig.	8.	Comparison	of	the	pressure	distributions	for	thin	airfoil	theory	with	
conformal	transformation	results	for	an	uncambered	NACA	0010	airfoil	at	6	
deg.	angle	of	attack.	

Because	the	results	of	thin	airfoil	theory	and	conformal	transformation	in	Fig.	8	appear	to	
be	in	better	agreement	than	shown	in	Fig.	1	or	Fig.	7,	we	need	to	double	check	the	camber	
calculation.	To	do	this	we	try	to	validate	the	effect	of	camber	on	the	solution	in	thin	airfoil	
theory.	The	first	chart	is	a	check	of	my	numerical	calculation	method	with	the	analytic	
solution	for	a	biconvex	camber	line	since	there	is	an	analytic	solution	in	just	about	every	
aerodynamics	book.	This	is	given	in	Fig	9.	The	results	are	acceptable	for	validation	of	the	
method,	although	they	don’t	overlie	perfectly.	There	is	some	room	for	interpretation	
converting	the	point	vortex	–	control	point	solution	method	to	ΔCp.	Note	that	we	have	
previously	shown	(and	it	is	also	shown	in	Katz	and	Plotkin)	that	the	difference	between	
placing	the	point	vortex	on	the	actual	camber	line	and	satisfying	the	boundary	condition	on	
the	actual	camber	line	and	placing	the	vortex	on	the	axis	and	satisfying	the	boundary	
conditions	on	the	axis	is	very	small.	
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Figure	9.	Comparison	of	analytic	and	numeric	values	of	ΔCp	for	a	5%	max	
camber	biconvex	camber	line	(also	shown	in	Katz	and	Plotkin)	

Next,	it	is	worth	looking	at	the	camber	lines	for	the	NACA	4-digit	airfoils.	In	particular,	we	
look	at	the	slopes	for	various	airfoil	designations.	The	camber	lines	are	made	up	of	forward	
and	aft	parabolic	arcs.	We	will	look	at	the	64,	65	and	66	mean	lines	because	these	are	the	
ones	given	in	Abbott	and	vom	Doenhoff.	The	first	digit	denotes	the	max	camber.	Other	
values	are	scaled	from	this	value.	The	second	digit	specifies	the	location	of	the	maximum	
value	of	the	camber	line.	The	slope	variation	is	continuous,	but	with	the	exception	of	the	
NACA	65	series	camber	line	(that	corresponds	to	a	biconvex	camber	line)	there	is	a	kink	
where	they	meet.	(the	change	of	slope	at	the	intersection	implies	a	jump	in	the	curvature).	
Visually	we	see	the	camber	line	slopes	in	Fig.	10.		
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Figure	10.	Comparison	of	camber	line	slopes	for	the	NACA	4-digit	series	
camberlines	64,	65,	66.		

Fig.	11	presents	the	ΔCp.’s	corresponding	to	these	camber	lines.	The	65-	series	camberline	
corresponds	to	the	biconvex	airfoil	result.	The	chordload	shows	the	abrupt	change	in	
camber	slope	for	the	64-	and	66-	series	camber	lines.	Also,	the	angle	of	attack	for	these	
cases	use	the	values	of	the	ideal	angle	of	attack	included	with	the	camber	lines	in	Abbott	
and	Von	Doenhoff	and	they	perform	as	advertized,	so	that	there	is	no	load	at	the	leading	
edge	(the	definition	of	the	so-called	“ideal”	angle	of	attack).	There	is	an	analytical	solution	
for	these	cases	in	Riegels,	Aerofoil	Sections,	but	the	equations	are	lengthy	and	coding	them	
up	will	be	a	task	for	another	day,		see	Type	S2,	on	page	64	of	the	English	translation.	The	
solution	is	attributed	to	Dr.	G.	Jungclaus.	
Concluding	comments:	

Although	the	difference	between	thin	airfoil	theory	and	an	exact	solution	shown	by	McLean	
surprised	me,	it’s	correct.	However,	McLean	also	shows	the	results	for	an	NACA	2405	
airfoil.	The	agreement	is	better	for	that	airfoil.	I	think	the	improved	agreement	is	mainly	
due	to	the	relatively	smaller	contribution	from	the	camber	line	rather	than	the	reduced	
thickness.	I	conclude	that	the	classic	camberline	contribution	from	thin	airfoil	theory	is	not	as	
accurate	as	the	thickness	and	flat	plate	angle	of	attack	components	of	the	theory.	This	is	
definitely	a	curiosity.	
There	is	probably	no	point	to	pursue	this	analysis	further.	Although	Van	Dyke’s	Report	
1274	addresses	second	order	thin	airfoil	theory,	he	concentrates	on	the	edge	effects,	not	
the	lift	problem.	He	presents	a	way	to	compute	the	second	order	results	using	tables,	but	it	
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doesn’t	look	like	there’s	enough	detail	to	develop	a	computational	implementation.	I	coded	
up	Weber’s	method	years	ago,	both	on	a	programmable	calculator	and	in	BASIC.	I	don’t	feel	
the	need	to	do	it	again	for	a	modern	platform.		
In	the	past	people	played	games	with	the	pressure	coefficient	formula.	Sometimes	the	
linear	theory	results	were	improved	using	a	more	exact	pressure	formula.	We	will	not	look	
at	that	type	of	ad	hoc	adjustment	here.		
I’d	never	delved	in	this	much	detail	into	thin	airfoil	theory	before.	Although	it	took	some	
work	it	was	interesting.	I	saw	the	effect	of	the	“kink”	in	the	4-digit	series	airfoil	cambers,	
and	it’s	effect	on	the	chordload.	I	also	found	out	for	myself	what	the	ideal	angle	of	attack	
meant.	Finally,	I	discovered	that	some	of	the	methods	I	hadn’t	used	in	years	solved	these	
problems	instantly	on	today’s	computers.	
	

	
Figure	11.	Chordloads	for	the	NACA	4-digit	airfoil	camber	lines	at	the	ideal	
angle	of	attack.	
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