2. Getting Ready for Computational Aerodynamics:

from AIAA 82-0315, by D.R. Carlson

Fluid M echanics Foundations

We need to review the governing
equations of fluid mechanics before
examining the methods of computa-
tiona aerodynamics in detail. Devel-
opments in computational methods
have resulted in a dlightly different
approach to the fundamental conser-
vation statements compared with pre-
computer classical presentations. The
review also establishes the nomencla-
ture to be used in the rest of the chap-
ters. The presentation presumes that
the reader has previously had a course

in fluid mechanics or aerodynamics. Many excellent discussions of the foundations of fluid me-

chanics for aerodynamics application are available. Karamcheti! does a good job. Other books

containing good discussions of the material include the books by Bertin and Smith,? Anderson, 3

and Moran.* The best formal derivation of the equationsis by Grossman.®

2.1 Governing Equations of Fluid M echanics

The flow is assumed to be a continuum. For virtualy al aerodynamics work thisis a valid

assumption. One case where this may not be true: rarefied gas dynamics, where the flow has

such low density that the actual molecular motion must be analyzed. This is rarely important,

even in aero-space plane calculations. Aeroassisted Orbital Transfer Vehicles (AOTV's) are the

only current vehicles requiring non-continuum flowfield analysis.
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2- 2 Applied Computational Aerodynamics

The fluid is defined by an equation of state and the thermodynamic and transport properties,
i.e., theratio of specific heats, y, viscosity, i, and the coefficient of heat conduction, k. Govern-
ing equations and boundary conditions control the motion of the fluid. The governing equations
are given by conservation laws:

* mass continuity
* momentum Newton's 2" Law, F=ma
* energy 1st Law of Thermodynamics

Coordinate systems are also important in aerodynamics. The general equations of fluid mo-
tion are independent of the coordinate system. However, simplifying assumptions frequently in-
troduce a directional bias into approximate forms of the equations, and require that they be used
with a specific coordinate system orientation relative to the flowfield.

Cartesian coordinates are normally used to describe vehicle geometry. In this chapter we will
work entirely in the Cartesian coordinate system. It is frequently desirable to make calculations
in non-Cartesian coordinate systems that are distorted to fit a particular shape. General non-
orthogonal curvilinear coordinates are discussed in Chapter 9. Even when using Cartesian coor-
dinates, the X, y, and z coordinates are oriented differently depending on whether the flow is two-
or three-dimensional. Figure 2-1 shows the usual two-dimensional coordinate system. The stan-
dard aerodynamics coordinate system in three dimensionsisillustrated in Fig. 2-2.

—
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Figure 2-1 Coordinate system for two-dimensional flow.

In general Cartesian coordinates, the independent variables are %, y, zz and t. We want to
know the velocities, u, v, w, and the fluid properties, p, p, T. These six unknowns require six
eguations. The six equations used are provided by the following:

continuity 1 equation(s)
momentum 3 "
energy 1 "
equation of state 1
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Figure 2-2 Standard coordinate system for three-dimensional flow.

Assumptions frequently reduce the number of equations required. Examples include incom-
pressible, inviscid, irrotational flow, which can be described by a single equation, as shown
below. Prior to the 1980s almost all aerodynamics work used a single partial differential equa-
tion, possibly coupled with another equation. An example of this approach is the calculation of
potential flow for the inviscid portion of the flowfield, and use of the boundary layer equations to
compute the flowfield where an estimate of the viscous effectsis required.

2.2 Derivation of Governing Equations

We now need to develop a mathematical model of the fluid motion suitable for use in numer-
ical calculations. We want to find the flowfield velocity, pressure and temperature distributions.
The mathematical model is based on the conservation laws and the fluid properties, as stated
above. Two approaches can be used to obtain the mathematical description defining the govern-
ing equations.

I. Lagrangian: In this method each fluid particleis traced as it moves around the body.
Even in steady flow, the forces encountered by the particle will be afunction of its
time history as it moves relative to a coordinate system fixed to the body, as defined
in Figs. 2-1 and 2-2. This method corresponds to the conventional concept of New-
ton’s Second Law.
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2- 4 Applied Computational Aerodynamics

[1. Eulerian: In this method we look at the entire space around the body as afield, and
determine flow properties at various points in the field while the fluid particles stream
past. Once this viewpoint is adopted, we consider the distribution of velocity and
pressure throughout the field, and ignore the motion of individual fluid particles.

Virtually all computational aerodynamics methods use the Eulerian approach. The use of this
approach requires careful attention in the application of the conservation concepts, and Newton’s
second law in particular. Since these two approaches describe the same physical phenomena,
they can be mathematically related. Karamcheti! provides a particularly good explanation of the
ideas underlying approaches to the governing equations in his Chapters 4-7. Newton's Law gov-
erns the motion of afixed fluid particle. However, to establish a viable method for computation,
aerodynamicists employ the Eulerian approach, and define a control volume, which maintains a
fixed location relative to the coordinate system. The connection between the rate of change of the
properties of the fixed fluid particle (velocity, density, pressure, etc.) and the rate of change of
fluid properties flowing through a fixed control volume™ requires special consideration. The sub-
stantial derivative, discussed below, is employed to define the rate of change of fixed fluid parti-
cle properties as the particle moves through the flowfield relative to the fixed coordinate system.
An integra approach to the description of the change of properties of a fluid particle relative to
the fixed coordinate system is available through the use of the Reynolds Transport Theorem,
which is described by Owczarek® and Grossman® (section 1.2).

The conservation equations can be expressed in either a differential or integral viewpoint.
The differential form is the most frequently used in fluid mechanics analysis and textbooks.
However, many numerical methods use the integral form. Numerically, integrals are more accu-
rately computed than derivatives. The integral form handles discontinuities (shocks) better. The
differential form assumes properties are continuous. We will use aspects of each approach.

* The concept of a“control volume” arose as an engineering requirement for a means to formulate the physical
description to allow calculations to be made. It differs from the viewpoint adopted by physicists. An explanation
of the concept’ s originsis contained in the book by Walter G. Vincenti, What Engineers Know, and How They
Know It: Analytical Studies from Aeronautical History, John Hopkins Univ. Press, 1990. The chapter is entitled
“A Theoretical Tool for Design: Control Volume Analysis 1912-1953.”
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2.2.1 Conservation of Mass. the Continuity Equation

In this section we derive the continuity equation from a control volume viewpoint (in 2D),
and then we look at the equivalent integral statement and the use of the Gauss Divergence Theo-
rem to establish the connection. Other derivations are given by Moran® (sections 2.2, 2.3, 2.4)
Anderson? (chapters 2 and 6), and Bertin and Smith? (chapter 2).

The statement of conservation of massisin words smply:

net outflow of mass decrease of mass
through the surface = within the
surrounding the volume volume.

To trandate this statement into a mathematical form, consider the control volume given in
Fig. 2-3. Here, u isthe velocity in the x-direction, v is the velocity in the y-direction, and p isthe
density.

Figure 2-3. Control volume for conservation of mass.”

The net mass flow rate, or flux,” (out of the volume) is:

[X-out] - [X-in] + [Y-out] - [Y-in] = change of mass (decrease)

=% rxav, (2-1)
at

* Note that convention requires that control volumes be described using dashed linesto illustrate that the bound-
aries arefictitious, and fluid is flowing freely across them.

** A flux is aquantity which flows across the boundary of a defined surface. Typically we think of mass, momen-
tum and energy fluxes.
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Use a Taylor series expansion of the mass fluxes into the volume around the origin of the
volume. The flux per unit length through the surface is multiplied by the length of the surface to
get:

O dpu_AX[O
[X'OUt]_ﬂ)quEE%ﬁw
.o d - dpu AX
[X-in]= g)u ax %%&Y

_d o apv _aYd
[Y -out] = ﬁ)v+a_y %EAX

0 U
[Y-in]=ﬁ>v—aa—i:/5%( X . 2-2)

Adding these terms up we get:
Gus DUy, 90U Xy
+ QV+E¢D X - D apv[ﬁ{EAX———AXAY. (2-3)

Summing up and canceling AXAY we get:

dpu apv _0p
ax dy ot (2-4)
or in three dimensions;
0 0 0 0
_p+ puJr pV+ pW _ (2:5)

ot odx dy 0z
This is the differential form of the continuity equation. The more general vector form of the

equationis:

%m [{pV)=0. (2-6

Alternately, consider the arbitrary control volume shown in Fig. 2-4. The conservation of
mass can then be written in an integral form quite smply. The surface integral of the flow out of
the volume simply equals the change of mass given in the volume:

ﬂpVDﬁdS— ——pr dv . (2-7)
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surface
\ area

volume

Figure 2-4. Arbitrary fluid control volume.

This is true without making any assumption requiring continuous variables and
differentiability. It'sfor al flows, viscous or inviscid, compressible or incompressible.

To relate this expression to the differential form, we make use of the Gauss Divergence
Theorem, which assumes continuous partial derivatives. It isgiven by:

ﬁA ﬁdS: J]’J.DU\ av (2-8)
\'
and the equivalent statement for ascalar is:
ffonds= [[foradpav. (2-9)
\'

Using this theorem, the differential and integral forms can be shown to be the same. First, re-
write the surface integral in the conservation of mass, Eq. (2-7), as.

ffov Mds= ([0 Tpv)av (2-10)

using the divergence theorem, Eq. (2-8). The continuity equation integral form thus becomes:

f{f OpV)dv = —aﬂt J"\[J'pdv (2-11)

and since v refers to afixed volume, we can move d/0t inside the integral,

f{f@j ToV) + %)Edv -0, (2-12)

For this to be true in general, the integrand must be zero, which is just the differential form! Fur-
ther discussion, and other derivations are available in Moran,* sections 2.2, 2.3, and 2.4, Ander-
son,* section 2.6, and Bertin and Smith?, Chapter 2.
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2.2.2 Conservation of Momentum, and the Substantial Derivative

In this section we derive the general equations for the conservation of momentum. Thisisa

statement of Newton's an Law: The time rate of change of momentum of a body equals the net
force exerted on it. For afixed massthisis the famous equation

F=ma=m— (2-13)
Dt -

Substantial Derivative
We need to apply Newton's Law to a moving fluid element (the “body” in the 2M | aw state-
ment given above) from our fixed coordinate system. This introduces some extra complications.

From our fixed coordinate system, look at what D/Dt means. Consider Fig. 2-5 (from Karamche-
ti1). Consider any fluid property, Q(r ,t).

() at+ At

Particle Path

Figure 2-5. Moving particle viewed from afixed coordinate system.
The change in position of the particle between the position r at t, and r+Ar at t+At is:
AQ=Q(r+ As,t+ At) —Qr,t)_ (2-14)

The space change Asis simply equal to VAt. Thus we can write:

AQ=Q(r+ VALt + At) —Q(r,t) (2-15)

which isin aform which can be used to find the rate of change of Q:

BQ_ im AQ _ lim Q(r +VALt +At) —-Q(r 1)
Dt at-0At At-0 At (2-16)
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Note that the rate of change is in two parts, one for a change in time, and one for a change in
space. Thus we write the change of Q as a function of both time and space using the Taylor se-
ries expansion as:

Qr +VALt+At) =Q(r,t) +%—Q At +... +6—Q

VAt + ... (2-17)
th 0s :

rt

where the direction of sisunderstood from Fig. 2-5. Substituting into Eq. (2-16) and taking the

limit, we obtain:

im&9- 2@, Ry
At-0 At ot £§__
loca time variation with
derivative, or  change of position,
local derivative ~ convective derivative (2-18)

substantial derivative

This is the important consideration in applying Newton’s Law for a moving particle to a
point fixed in a stationary coordinate system. The second term in Eg. (2-18) has the unknown ve-

locity V multiplying aterm containing the unknown Q. Thisisimportant.

The convective derivative introduces a fundamental nonlinearity into the system

We now put this result into a specific coordinate system:

9
6_2 = e, TQ. (2-19)

wheree,, denotes the unit vector in the direction of V. Thus, V = Ve, and:

29y, v mo. (2-20)
0s

Thus, we write the substantial derivative, Eq. (2-16), using Egs.(2-18) and (2-20) as.

D _ o0
— =—— +(V ), 2-21
o =5 TV D (2-21)
which can be applied to either a scalar as:
DQ _dQ
— ==+(V 2-22
Dt ot ( )Q ( )
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or to avector quantity as:
DV \Y4
VoV vmv. (2:23)
Dt ot
In Cartesian coordinates, V = u, v, w, and the substantial derivative becomes:

Du odu Ju Jdu ou
— =+ +V— +W—

Dt ot “ax 'ay "oz

Dv ov ov ov ov
= +V— +W—

u_
ox 09y 0z

Dt ot

mV:a—W+ua—V\/ +vﬂv+wa—W (2-24)
Dt ot ox oy oz,

To solve equations containing these nonlinear terms we generally have to either use finesse,
where we avoid solutions requiring Eq. (2-24) by using other facts about the flowfield to avoid
having to deal with EQ.(2-24) directly, or employ numerical methods. There are only a very few
gpecial cases where you can obtain analytic solutions to equations explicitly including the non-

linearity.

Forces
Now we need to find the net forces on the system. What are they?

* body forces
* pressure forces
* shear forces

Each of these forces applies to the control volume shown in Fig. 2-6 given below. Thet isa
general symbol for stresses. In the figure, the first subscript indicates the direction normal to the
surface, and the second subscript defines the direction in which the force acts. Fluids of interest

in aerodynamics are isotropic. To satisfy equilibrium of moments about each axis:
(2-25)
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Figure 2-6. Control volume with surface forces shown.

The connection between pressure and stress is defined more specifically when the properties
of afluid are prescribed. Figure 2-7 shows the details of the forces, expanded about the origin
using a Taylor Series. The force f is defined to be the body force per unit mass.

Oty Ay
YA Tyy a_y?
A Tyxﬁ’;vx%v
_______:y 0Ty AX
T e
T _ 90 X IAY ——y—> | . Txx+aTXX_
X ax 2 I f I ox 2
0Ty AX
S T (e
oo Ot by *
yX y 2
LT
Wooay 2
x>

Figure 2-7. Details of forces acting on atwo-dimensional control volume.
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Considering the x-direction as an example, and using the Taylor series expansion shown in
Figure 2-7, the net forces are found in a manner exactly analogous to the approach used in the
derivation of the continuity equation. Thus, the net force in the x-direction is found to be:

0 0
p XAy f, +&(T)<X)AxAy+ a—y(TyX)AyAx. (2-26)

Now we combine the forces, including the z-direction terms. Substitute for the forcesinto the
original statement, of F = ma, EQ.(2-13), and use the substantial derivative and the definition of
the mass, m= pAxAyAz. Then the x-momentum equation becomes { writing Eq.(2-13) asma = F,

the usual fluid mechanics convention, and considering the x component, ma, = FX} ,

Du o) 0 0
PAXAY Az = pAXDYAZTy + = (T5) X AyAZ+ a—y(Tyx)AyAxAH S\ T2y Az
(2-27)

The AxAyAZ' s cancel out and can be dropped. The final equations can now be written. Com-
pleting the system with the y- and z- equations we obtain,

0
p&l:prJraTxer ryx+arzx
Dt ox oy 0z
Dv 0Ty 0T,y 0Ty,

_:f+
Pot =Py T ox dy 0z

Dw _ GTXZ + ot yz ot z (2_28)

These are general conservation of momentum relations, valid for anything!

To make EqQ. (2-28) specific, we need to relate the stresses to the motion of the fluid. For
gases and water, stressisalinear function of the rate of strain. Such afluid is called a Newtonian
fluid, i.e.

T=U— (2-29)
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where U is the coefficient of viscosity. In our work we consider 1 to be afunction of temperature
only. Note that in air the viscosity coefficient increases with increasing temperature, and in water
the viscosity coefficient decreases with temperature increases.

To complete the specification of the connection between stress and rate of strain, we need to
define precisely the relation between the stresses and the motion of the fluid. This can become
complicated. In general the fluid description requires two coefficients of viscosity. The coeffi-
cient of viscosity arising from the shear stressiswell defined. The second coefficient of viscosity
is not. This coefficient depends on the normal stress, and is only important in computing the de-
tailed structure of shock waves. Various assumptions relating the coefficients of viscosity are
made. The set of assumptions which leads to the equations known as the Navier-Stokes equa-
tions are:

* The stress-rate-of-strain relations must be independent of coordinate system.

» When the fluid is at rest and the velocity gradients are zero (the strain rates
are zero), the stress reduces to the hydrostatic pressure.

» Stoke's Hypothesisis used to eliminate the issue of mean pressure vs thermo-
dynamic pressure (thisis the assumption between viscosity coefficients).

Details of the theory associated with these requirements can be found in Schlichting’” and Gross-
man.® Using the conditions given above leads to the following relations:

2 ou
Tm:—p—§HDW +2I15(

2 ov
Tw=—p——=pON +2u—
vy p 3H May

2 ow 2-30
Tzz=—p—§HDN’ +2|1a—Z (2-30)

and

Ty =Ty = A
oo ”Ha_y ax

0

(v owL
- = + oW (2-31)
YT Ty TR Ty
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Combining and neglecting the body force (standard in aerodynamics), we get:

Du__dp 6@2__2D 0 U Dhu OVEOD@V au%
Dt ox axtThax 3" 0 aylthy T axd azP'Cax "oz

Dv 0 Uu ov@M o O DODEBW ovL

pa__a_)/+$<ﬁlll§ki/ ax% ayHZ“_"” azHiﬁé_erO_zE

Dw__dp, 9 0w au% 0 U Dov awm+a§ ow DDVE
Dt 9z axBOox & oy thz oyl ozt oz 3 E (232

These are the classic Navier-Stokes Equations (written in the standard aerodynamics form,
which neglects the body force). They are i) non-linear {recall that superposition of solutions is
not allowed, remember D/Dt}, ii) highly coupled, and iii) long! As written above it's easy to
identify F = ma, written in the fluid mechanicsformma = F.

When the viscous terms are small, and thusignored, the flow istermed inviscid.
The resulting equations are known as the Euler Equations

There are also alternate integral formulations of the equations. Consider the momentum flux
through an arbitrary control volume in a manner similar to the integral statement of the continu-
ity equation pictured in Fig. 2-4 and given in Eq.(2-7). Here, the momentum change, pV, is pro-
portional to the force. The integral statement is:

0
ﬁ pV (V)ds+ a_tJ’-\I/Ip Vav = F = Koume + Faurface. (2-33)

and this statement can aso be converted to the differential form using the Gauss Divergence
Theorem. Note that we use the derivative notation g /dt to denote the change in the fixed “po-
rous’ control volume that has fluid moving across the boundaries.

The derivation of the Navier-Stokes Equations is for general unsteady fluid motion. Because
of limitations in our computational capability (for some time to come), these equations are for
laminar flow. When the flow is turbulent, the usual approach is to Reynolds-average the equa-
tions, with the result that additional Reynolds stresses appear in the equations. Clearly, the addi-
tion of new unknowns requires additional equations. This problem is treated through turbulence
modeling and is discussed in Chapter 10, Viscous Effects in Aerodynamics.

Thursday, January 16, 1997



report typos and errorsto W.H. Mason Fluid Mechanics Foundations 2- 15

2.2.3 The Energy Equation

The equation for the conservation of energy is required to complete the system of equations.
Thisis astatement of the 1st Law of Thermodynamics. The sum of the work and heat added to a
systemwill equal the increase of energy. Following the derivation given by White:®

dEt = o) Q + év\—JN
change of fotal energy ~ change of heat added ~ change of work done. (2-34)
of the system on the system

For our fixed control volume coordinate system, the rate of changeis:

D& _5+w
Dt (2-35)
where:

Et:p%+%vz—ng

and e is the internal energy per unit mass. The last term is the potential energy, i.e. the body
force. In aerodynamics this term is neglected. Et can also be written in terms of specific energy
as.

(2-36)

E; = pey, (2-37)
where:
1 2
=e+=V
eV (2-38)
To obtain the energy equation we need to write the RHS of EQ.(2-35) in terms of flow prop-
erties. Consider first the heat added to the system.” The heat flow into the control volume is
found in the identical manner to the mass flow. Using Fig. 2-8 for reference, obtain the expres-
sion for the net heat flow.

YA ——————— —
AX I
Go—s  + |V —Gw
- Y
X
>

Figure 2-8. x-component of heat flux into and out of the control volume.

* Here we neglect heat addition due to radiation. See Grossman® for the extension to include this contribution.
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The heat fluxes are:

_% 0q Ax
Uxip, kTS Y

ox 2
and the net heat flow into the control volume in the x-direction is %~ xour O
- % AXAy -

Similarly, using the same analysis in the y and z directions we obtain the net heat flux into
the control volume (realizing that the AxAyAz terms will cancel):

0 0
0% , % 0%

.: = - -
Q Oox oy oz[ g (2-40)

Now relate the heat flow to the temperature field. Fourier’s Law provides this connection:
q=-kOT (2-41)

where k is the coefficient of thermal conductivity. Eq.(2-41) is then put into Eq.(2-40) to get the
heat conduction in terms of the temperature gradient:

Q=-00=+00kaT). (2-42)

Next find the work done on the system. Using the definition of work = force x distance, the
rate of work is:

- . (2-43)
W = force x velocity

Using the control volume again, we find the work, which is equal to the velocity times the
stress. The work associated with the x-face of the control volume (for two-dimensional flow) is:
WX ZUTXX +ery_ (2_44)

The complete description of the work on the control volume is shown in Figure 2-9.
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i+ (v,
YA y‘
ut +i(UT )ﬂl
yX ay X9
— ———————:1\VT +i(VT )—
| | Xy 1) Xy 2
AX
UT (urxx) 4—: AY —— I_> UT, + (urxx)?
I |
AX AX
VT — VI ) — vl
Xy a( Xy) > \ 7YY/ >~
g~y i
0 Dy
VTW_a_y(VTW)7

Figure 2-9 Work done on a control volume.

Using the x-component of net work as an example again, the work done on the system is

WXiI"I = onut, Or.

ow,, AX ow,, AX ow.
B Ty e Ty = -Gy &

Including the other directions (and dropping the AxAyAzterms, which cancel out)*:

W:-divwzai)((ur)o(+wxy)+%(myx+vryy). (2-46)

Substituting Egs.(2-37) and (2-38) into (2-35) for Et Eq.(2-42) for the heat, and Eq.(2-46)

Dp! e+ 3V? )
=0 {kOT) - divw - (2-47)

Dt

for the work, we obtain:

* Here we are using White' s notation. Realize there is a difference between Wand w.
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Many, many equivalent forms of the energy equation are found in the literature. Often the equa-
tion is thought of as an equation for the temperature. We now descibe how to obtain one specific
form. Substituting in the relations for the T'sin terms of p and the velocity gradients, Egs. (2-29)
and (2-30), we obtain the following lengthy expression (see Bertin and Smith? page 41-45). Mak-
ing use of the momentum and continuity equations to “simplify” (?), and finally, introducing the
definition of enthalpy, h = e + p/p, we obtain a frequently written form. Thisisthe classical ener-
gy equation, which is given as:

Dh Dp _

—-——= 0O0okdm) + ®
P Dt Dt ~—¢—m ) . Tesioati (2-48)
heat conduction ~ VIScous dissipation
(always positive)
where
EQ @1 B_D_FM [BV_'_QJE?_'_@W ov g
O goxt 0yd % oy [ Day az0C
d=p0 i
= g 209u_ov_ow[F C
0 z 6 X B& ay 6ZH C (2-49)

The energy equation can be written in numerous forms, and many different but entirely
equivalent forms are available. In particular, the energy equation is frequently written in terms of
the total enthalpy, H, to good advantage in inviscid and boundary layer flows. A good discussion
of the energy equation is also given by White®

Thereisalso an integral form of this equation:

ﬂ'p(e+V2/2)(VD§)ds +%J’ﬂp(e+vzl2)dv: Q+W. (2-50)

Here again note that we use the derivative notation g /9t to denote the change in the fixed “po-

rous’ control volume that has fluid moving across the boundaries.
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2.3 Boundary Conditions

If al flowfields are governed by the same equations, what makes flowfields different? Bound-
ary conditions are the means through which the solution of the governing equations produce dif-
fering results for different situations. In computational aerodynamics the specification of bound-
ary conditions constitutes the major part of any effort. Presuming that the flowfield algorithm se-
lected for a particular problem is aready developed and tested, the application of the method
usually requires the user to specify the boundary conditions.

In general, the aerodynamicist must specify the boundary conditions for a number of different
situations. Perhaps the easiest (and most obvious physicaly) is the condition on the surface. The
statement of the boundary conditions is tightly connected to the flowfield model in use. For an
inviscid steady flow over a solid surface the statement of the boundary condition is:

VR [h =0 (2-51)

which simply says that the difference between the velocity of the component of flow normal to
the surface and the surface normal velocity (the relative velocity, V) is zero. This simply means

that the flow is parallel to the surface, and is known as the non-penetration condition. If V isthe
fluid velocity and V¢ is the surface velocity, then this becomes,

(V-Vg)m=0- (2-52)

Finally, if the surfaceis fixed,

VvV =0. (2-53)
If the flow is viscous the statement becomes even simpler: V = 0, the no-dlip condition. If the
surface is porous, and there is mass flow, the values of the surface velocity must be specified as
part of the problem definition. Numerical solutions of the Euler and Navier-Stokes solutions re-
quire that other boundary conditions be specified. In particular, conditions on pressure and tem-
perature are required, and will be discussed in later chapters.

As an example, recall that to obtain the unit normal the body is defined (in 2D) in the form
F(x,y) = 0, the traditional analytic geometry nomenclature. In terms of the usual two-dimensional
notation, the body shape is given by y = f(x), which is then written as:

F(x,y)=0=y-f(x) (2-54)
and
_ ]
n= ioF| (2-55)
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Conditions also must be specified away from the body. Commonly this means that at large
distances from the body the flowfield must approach the freestream conditions. In numerical
computations the question of the farfield boundary condition can become troublesome. How far
away is infinity? Exactly how should you specify the farfield boundary condition numerically?
How to best handle these issues is the basis for many papers currently appearing in the literature.

Another important use of boundary conditions arises as a means of modeling physics that
would be neglected otherwise. When an approximate flowfield model is used, the boundary con-
ditions frequently provide a means of including key elements of the physicsin the problem with-
out having to include the physics explicitly. The most famous example of this is the Kutta
Condition, wherein the viscous effects at the trailing edge can be accounted for in an inviscid
calculation without treating the trailing edge problem explicitly. Karamcheti® discuss boundary
conditions in more detail.

2.4 Standard Formsand Terminology of Governing Equations

To understand the literature in computational aerodynamics, several other aspects of the
terminology must be discussed. This section provides several of these considerations.

2.4.1. Nondimensionalization

The governing equations should be nondimensionalized. Considering fluid mechanics theory,
nondimensionalization reveals important similarity parameters. In practice, many different non-
dimensionalizations are used, and for a particular code, care must be taken to understand exactly
what the nondimensionalization is.

Sometimes the dimensional quantities are defined by ( )*’s or (')’s. In other schemes the
non- dimensionalized variables are designated by the special symbols. In the example given here,
the non-dimensionalized values are denoted by an ()*. In this system, once the quantities are de-
fined, the *’ s are dropped, and the nondimensionalization is understood.

Many different values can be used. We give an example here, and use the the freestream ve-
locity and flow properties, together with the reference length as follows:

S S L
T P M * _ €
T*:— * = * = =
To P P H Moo % u2 (2-56)
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Each code will have a set of reference nondimensionalizations similar to these. A specific ex-
ampleis given below in Section 2.4.3. Frequently, the speed of sound is used as the reference ve-
locity. Making sure that you understand the nondimensionalization is an important part of apply-
ing the codes to aerodynamics problems properly.

2.4.2. Use of divergence form

The classical forms of the governing equations normally given in textbooks usually are not
used for computations (as we gave them above). Instead the divergence, or conservation, form'
isused. This form isfound to be required for reliable numerical calculation. If discontinuitiesin
the flowfield exist, this form must be used to account for discontinuities correctly. It is a way to
improve the capability of the differential form of the governing equations. For example, across a
shock wave the denity and velocity both jump in value. However, the product of these quantities,
the mass flow, is a constant. Thus we can easily see why it is better numerically to work with the
product rather than the individua variables. In this section we show how the divergence forms
are obtained from the standard classical form. We use the 2D steady x-momentum equation as
the example:

puU— +pVv—=——, (2-57)

This equation is written using the following identities:

dpuu _ ,9u,,9pu (2-58)
0X 0x 0Xx
or:
o(pu?
oudY = ( )_uap”, (2-59)
dXx 0x ox

and similarly with the second term:

opvu ou odpv
— V_ + u_ _
oy P oy oy (2-60)

or
du_odpw _ dpv
pv oy oy u—ay . (2-61)

* Be careful here, the continuity, momentum and energy equations are all conservation equations. The terminolo-
gy can be confusing. Conservation form refers to the situation where the the variables are inside the derivatives.
That’swhy | prefer the use of divergence form to describe this mathematical arrangement. Conservation formis
the more widely used terminalogy. They are both the same.
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Substituting (2-59) and (2-61) into (2-57):

2
Jdpu _uapu+apvu_u6pv+ﬂ):0 (2-62)
0Xx 0X oy oy 0X

which can be written:

dpu> dpw dpu dpv, Ip
+ -u + +—==0
ox ay ( X ax) 0Xx : (2-63)

=0 from continuity

Finally, the x-momentum equation written in divergence form for 2D steady flow is:

ol +p) afpvy _

2-64
0x oy (269

The equations must be written in divergence form to be valid when shock waves are present.
2.4.3. Sandard Form of the Equations

Even after writing the govering equations in divergence form, the equations that you see in
the literature won't look like the ones we' ve been writing down. A standard form is used in the
literature for numerical solutions of the Navier-Stokes equations. In this section we provide one
representative set. They come from the NASA Langley codes cfl3d and cfl3de. Professors
Walters and Grossman and their students have made contributions to these codes. The Navier-
Stokes equations (and the other equations required in the system) are written in vector diver-

gence form as follows:

0Q ,3(F-F), 3(G-G)  d(H-Hy)

=0 2-65
ot 0x oy 0z (2-63)

where the conserved variables are;

O 0O density C

E B X - momentum E
Q=0OpvO=0 y - momentum C
0 o Z- momentum L

O C

% [total energy per unit volumel

(2-66)
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The flux vectorsin the x-direction are:

Inviscid terms Viscous terms
O pu 0O O 0 C
., .2 U U L
P! P 0 o [
F=0 puw 0O F, =0 Tyy L
0 yyw O 0 . C
O PW o 0 xz '
@EHD)U@ [T xx + VI xy +WTy; —0xE (2-67)

Similar expressions can be written down for the y- and z-direction fluxes, with the y-direction
given as:

Inviscid terms Viscous terms
O pv 0O O 0 C
U [l U L
o PW 4 0 Tyx C
G=0pV*+p0 G, =0 Ty [
H VW D U I L
l t yz L (2-68)
@Et"'p)vl QT + VT yy + WTy7 = qu
and in the z-direction:
Inviscid terms Viscous terms
O pw 0O O 0 L
U U U L
o PWU 0 T C
H=0 pw [ HV = sz L
Oo2 + p0 0 T, C
H [l (l . L (2-69)
@EMD)WE BT 5 + VI gy +WT 7~ Oz
The equation of state (perfect gas) iswritten in this formulation as:
o= -1)[Et —p(u?+V? +w2)/2]_ (2-70)

To complete the flow equations, we need to define the nondimensionalization, and the shear
stress and heat transfer nomenclature.

Shear stress and heat transfer terms are written inindicial (or index”) notation as:

00 C
Tyx, = M, gl au D+ A aukéij[ (2-71)
I Re g 9% GX,D Xy E

* Index notation is a shorthand notation. X denotes x,y,zfor i =1,2,3.
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and:

. __D M, Eﬁ(az)__ﬂ M, gﬁi
= RePr(y -D0 0% [RePr(y - px

The molecular viscosity is found using Sutherland’s Law:

. OFOP0F, +e0 _,,H1+8/T,) O
W=l/Hp=0=0 F=——s=(T) - O
0,0 OT+¢C T+E/T) g

(2-72)

(2-73)

where Sutherland’s constant is ¢ =198.6°R = 110.4°K. The tilde, ("), superscript denotes a
dimensional quantity and the subscript infinity denotes evaluation at freestream conditions. The

other quantities are defined as: Reynolds number, Re, =p .G.L/[l,, Mach number,

My =Gy, / &, » and Prandtl number, Pr :ﬁ(”:p/ k. Stoke's hypothesis for bulk viscosity is used,

meaning )\ +2u /3 =0, and the freestream velocity magnitude s, G, :[0020 + 2+ W2

The velocity components are given by:

u /&, U, = M, cosa cosf3
v=V/a, Ve, = —M, Sinp
w /3,

W, = M, sina cosf3

and the thermodynamic variables are given by:

P=pP/ P P =1
p=p/pa, Pe=1/y
T:'I:/'I:m:yp/p = a2 T, =
and,
Ey = Et/ Poodl E,, =1y(y -1]+ M5/ 2

]1/2.

(2-74)

(2-75)

(2-76)

This completes the nomenclature for one typical example of the application of the Navier-

Stokes equations in an actual current computer code. Note that these equations are for a Carte-

sian coordinate system. We will discuss the necessary extension to general coordinate systemsin

the Chapter 9, Geometry and Grids: Major Considerations Using Computational Aerodynamics.
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2.5 The Gas Dynamics Equation and the Full Potential Equation

For inviscid flow (and even some viscous flow problems) it is useful to combine the equationsin
a special form known as the gas dynamics equation. In particular, this equation is used to obtain
the complete or “full” nonlinear potential flow equation. Many valuable results can be obtained
in computational aerodynamics (CA) using the potentia flow approximation. When
compressibility effects are important, a specia form of the governing equation can be obtained.
This equation is based on the so-called gas dynamics equation, which we derive here. The gas
dynamics equation is valid for any flow assumed to be inviscid. The starting point for the deriva-
tion isthe Euler equations, the continuity equation and the equation of state.

2.5.1 The Gas Dynamics Equation

We demonstrate the derivation using two-dimensional steady flow. (Thisis not required. Fur-

thermore, the notation % which is known as index notation, denotes x,y,zfor i = 1,2,3). To start,

we make use of athermodynamic definition to rewrite the pressure term in the momentum equa-

tion.
dp _ dpU ap
- U= 2-77
ox 0 pHsaxi (2-77)
and recall the definition of the speed of sound:
2_ 0pU
a =— -
6pHS (2-78)
allowing aplaxi to be written as:
9p_ 29 (2-79)
0 X; 0X;
We next write u times the x and v times they momentum equations:
2
uzﬂj-{-uvﬂj :—Eﬂ):—ui%
0X dy pox p 0X
2 2-80
Vué/-}-vzﬂ/:—\_/ﬂ):—vi@ ( )

0x oy p oy p oy
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and use the continuity equation by expanding it from

dpu 9oV _,, (2-81)
ox 0y
to
op Ju 0p ov
— +p—+v—+p— =0 2-82
uax pax Vay pay ( )
or

Jop  0p Ju dv

U—+V—=—pPp—-p—. 2-83
ox 0y ox P ay ( )
Now add the modified x- and y- momentum equations given above:
2 2
294w Y 20V &0 A 0p
0x oy 0Xx oy p 0X pay
2
acUdop opL
=——[U— +v—_[. 2-84
p H’Jax Y ayE (284
Substitute into this equation the rewritten continuity equation from above:
>du  du ov  ,0v_ a?0 du avC
U—+uW—+W— +V'—=—-— Fp— —p—E
ox y X ay p ox oy
= a2@+a2ﬂ/. (2-85)
ox ay
Finally, collecting terms we obtain in two dimensions:
(u?-a’) ou +uv(ﬂj + a—V) + (V2 —az)ﬁ/ =0
0Xx oy 0x ay (2-86)
or in three dimensions:
-+ w2 - (12 - 2) LY e @Y+ DYy @+ 2 @Y Yy 2
0Xx 0z oy dy 0Xx 0z 0y o0x 0z
(2-87)

This equation is known as the gas dynamics equation.
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2.5.2 Derivation of the Classical Gas Dynamics-Related Energy Equation
The special form of the energy equation that is used to close the system is given by (in 2D):

a®=ag- (y—;l (%! (2-88)

and we need to show exactly how thisrelation is obtained. Start with the form of the energy
eguation for inviscid, adiabatic flow:

DH _
ot (2-89)
which yields H = constant, where H is (in two dimensions) the total enthalpy, defined by:
I YA R
H_h+§01+v)_ (2-90)

Thus we have a purely agebraic statement of the energy equation instead of a partial differential
eguation. Thisisan important reduction in complexity.

For athermally and calorically perfect gas, h = cpT, and cp = constant. Substituting for the
enthalpy, we get

Cplg =Cpl +-{u + V2 N
0 J ) (2-91)
Recalling that a2 =yRTandR= cp -Cy withy = cp/cv, we write
a*=-L(c,-c,|T =0—[c,T 2-92
(p CV) 8¢ oO° (2-92)
or:
O
Cpl = B—Di 2-03
0% ~Cv O ﬁ 1] (&%)

and substitute into the total energy equation ( H = constant), Egn. (2-91),

a2

y—l

(u? +v?) (2-94)

a5
y -1

I\)II—‘

or:

ag -a%+ @%@uz +v2) (2-95)
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and finally, solving for a (and including the third dimension):
2_2 -1, 2 2
a? =& - () +v2 + W) (2-96)
which is the equation we have been working to find.

2.5.3 Full Potential Equation

The gas dynamics equation is converted to the classical nonlinear potential equation when we
make the irrotational flow assumption. The potentia flow assumption requires that the flow be
irrotational. Thisisvalid for inviscid flow when the onset flow is uniform and there are no shock
waves. However, we often continue to assume the flow can be represented approximately by a
potential when the Mach number normal to any shock wave is close to one (M < 1.25, say). Re-
call that the irrotational flow assumption is stated mathematically as curl V=0. When thisis true,
V can be defined as the gradient of a scalar quantity, V=[®. Using the common subscript nota-
tion to represent partial derivatives, the velocity components are u = q)x , V= CDy and w = <DZ.
Using the gas dynamics equation, the non-linear or “full” potential equation is then:

(D = &) Py +(Df —a)Dyy +(DF = @)D, +20, O D, + 2D, D,Dy, + 20,0, D, =0.

(2-97)

Thisisthe classic form of the equation. It has been used for many yearsto obtain physical in-
sight into a wide variety of flows. Thisis asingle partial differential equation. However, it isa
nonlinear equation, and as written above, it is not in divergence (or conservation) form.

2.5.4 Equivalent Divergence Form and Energy Equation

The equivalent equation written in conservation form makes use of the continuity equation.
Thisisthe form that is used in most computational fluid dynamics codes. Written here in two di-
mensionsit is:

0 0

— (pP,) +— (pP,) = 0. 2-98

aX(p x) ay(p y) (2-98)
The relation between p and the potential is given by:

1
p=[1-(L)(@% + %)™ (2-99)

which is a statement of the energy equation. Note that the full potential equation is still nonlinear
when the density varies and p must be considered a dependent variable.
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2.5.5 Derivation of another form of the Related Energy Equation

It isinformative to demonstrate the derivation of the energy equation given above. To get this
standard form, understand the specific non-dimensionalization employed with this form:

~

P _ U Y
p—p—o, Pz PyE (2-100)
where a* denotes the sonic value. Start with the previous energy equation and work with dimen-

sional variables for the moment:

a?=a2- (V_;l)( 2 +v2) (2-101)
or
2 2
a y =1 u® +V2
= =1-(—=—)( ). (2-102)
a 2 7 &
Now, get arelation for a, in terms of the eventual nondimensionalizing velocity a*:
2_.2 -10 2 2
8 =a ’ﬁ/—z u? +v?) (2-103)

:a2

when the velocity is equal to the speed of sound a = a*. Combining terms:

aozza*2 +%1%*2 :§+VT_1%*2 (2-104)
a2= @%1%*2. (2-105)

Replace ao2 in the energy relation with a* 2in the veloci ty term (denominator of Eq. 2-102). And

or.

in the first term use:

%EE? =T (2-106)
o To,
recalling a“ = y RT, to get:
l_l_y—l u? +v2
To 2 V_2+1a*2 (2-107)
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or
%zl—@ﬁ%@%g+%ﬁé (2-108)

Recall for isentropic flow (a consistent assumption if the use of ® isvalid):

s= const (2-109)
and

p _ _ Po
— =const = —>
pY pd

(2-110)

Now, we introduce ( ) to denote dimensional quantities and convert to the desired nondimen-

siona form:
OO0 OO OF DyL
FPo=520 =p-0 (2-111)
Opod [Pol ol
or
¥ 00t
— =00 (2-112)
To PO

Using Eg. (2-112) we write the energy equation, Eg. (2-108), as:

0p ™ Oy -10ha ﬁz v @2[
=1- -
oo g T 1%‘; +§.; E (2-113)

Using the nondimensionalizing definition given above, we finally obtain:
1
_l _
p=[1-E) @5+ o) (2-114)

Thisis an energy equation in p to use with the divergence form of the full potential equation.

It is also an example of how to get an energy equation in atypical nondimensional form used in
the literature.
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2.6 Special Cases

In this section we present a number of special, simplified forms of the equations described
above. These simplified equations are entirely adequate for many of the problems of computa-
tional aerodynamics, and until recently were used nearly exclusively. The ability to obtain sim-
pler relations, which provide explicit physical insight into the flowfield process, has played an
important role in the development of aerodynamic concepts. One key idea is the notion of small
disturbance equations. The assumption is that the flowfield is only slightly disturbed by the body.
We expect this assumption to be valid for inviscid flows over streamlined shapes. These ideas
are expressed mathematically by small perturbation or asymptotic expansion methods, and are
elegantly described in the book by Van Dyke.® The figure at the end of this section summarizes
the theoretical path required to obtain these equations.

2.6.1 Small Disturbance Form of the Energy Equation

The expansion of the simple algebraic statement of the energy equation provides an example
of asmall disturbance analysis. In this case the square of the speed of sound (or equivalently the
temperature) is linearly related to the velocity field. Start with the energy equation:

-1
a? =8~ (L=)f +v) (2-115)
and
2 2 10 2 ov_ 2  ¥Y-1 2 2.116
a5 =congt = a +§/T@u +v )-am+—2 us- ( )

Letingu=U_+Uu,v=V:
a’=al+ y—z_lUi - @V—z_lﬁus, +2U U +ul+ v’2] (2-117)
and combining terms:
-1
a?=a2- ﬁ/_z ouu+u?+ vy, (2-118)

At this point the relation is still exact, but now it is written so that it can easily be ssmplified.
The basic ideawill be to take advantage of the assumption:

U<U. v <U, (2-119)
and thus,
U, Y J 0 2.120
—_—< |:| -~ -
0. -H ( )
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where the above equation becomes:

2_ .2 -1 2., .,2
a :aoo—@/—@ZUmu’+ u“+ve ]
2 neglect assmall (2-121)
henceforth

Thisis alinear relation between the disturbance velocity and the speed of sound. It is a heuristic
example of the procedures used in a more formal approach known as perturbation theory.

2.6.2 Small Disturbance Expansion of the Full Potential Equation

We now use a similar approach to show how to obtain a small disturbance version of the full
potential equation. Again consider the situation where we assume that the disturbance to the
freestream is small. Now we examine the full potential equation. First, we rewrite the full poten-

tial equation given above (in 2D for simplicity):

(@7 - @)Dy + 20D D, + (D] - ), =0- (2-122)

Now write the velocity as a difference from the freestream velocity. Introduce a disturbance
potential ¢, defined by:

O =UX+q@XYy)
Py =u=Uy + ¢ (2-123)
by =v=g,

where we have introduced a directional bias. The x- direction is the direction of the freestream

velocity. We will assume that 0, and (py are small compared toU _ . Using the idea of asmall dis-

turbance to the freestream, ssimplified (and even linear) forms of a small disturbance potential
equation and an energy equation can be derived.
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As an example of the expansion process, consider the first term. Use the definition of the dis-
turbance potential and the simplified energy equation as:

(CD a)DU +(px %w @V—lﬁzu u]ﬁ

(U2 +2U.0, +9f -8 + 1220, (2-124)
=@x

Regroup and drop the square of the disturbance velocity as small:

(®% - a?) OUZ -

ao% +2Uoo(px +(y _1)Uoo(pX
Ou2 -a2

+[2+ (v —1)]Ustpy
v TR

(2-125)
2
Dividing by a
2 .20 ;42
E-l.g‘}—a—ZDD%—1+(y+l)%9K
8o G0 [ Qs B Ao
2 Uoo(px
UMg =1+ + YM(——
b+ M= >
—_—
Yoo O
3w Ug
U, L
2 2 =%
U{Mp —1)+(y +1)My L. 2-126
(M2 -1)+ b +OmETEE (2-126)

Rewrite the potential equation, Eq. (2-122) dividing by af, . Then replace the coefficient of the
first term using Eq. (2-126):

X & o, Py 32/ a’
(= -—) Py + 22—y +(— ——)Py =
22 T G o
(2-127)
2 U@ OU . -
M2 1)y +)M5,
% )(vl) .
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Now, by definition

Pox =P Pyy = By, Pyy = Py (2-128)
while:

P [ U )

—IMQOD,‘F&D _y:Moo& (2-129)

Ao O Us O & Uso

and using the same approach demonstrated above we can write:

LpZ 520 o0y C
Qa:{ —£%D—1+ (v—l)MooHJ—E. (2-130)

Putting these relations all into the potential equation we obtain:

E\/I -1+(y +)M Z&EFXX-I-ZM Ell+ HJ—(pr+H-1+y -1)M H)yy

(2-131)

where the cp)z(, cpi terms are neglected in the coefficients. This equation is still nonlinear, but isin

aform ready for the further simplifications described below.

2.6.3 Transonic Small Disturbance Equation

Transonic flows contain regions with both subsonic and supersonic velocities. Any equation
describing this flow must simulate the correct physics in the two different flow regimes. As we
will show below, this makes the problem difficult to solve numerically. Indeed, the numerical so-
lution of transonic flows was one of the primary thrusts of research in CFD over the decades of
the ' 70s and '80s. A small disturbance equation can be derived that captures the essential nonlin-
earity of transonic flow, which is the rapid streamwise variation of flow disturbances in the x-di-
rection, including normal shock waves. Therefore, in transonic flows:

9.9 (2-132)

ox ady
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The transonic small disturbance equation retains the key term in the convective derivative,
u(u/ax) , which alows the shock to occur in the solution. Retaining this key nonlinear term the
small disturbance equation given above becomes:

@1—M )= y+])M2&EPXX+<pW:o. (2-133)

Note that using the definition of the potentia from Eq.(2-123) we can identify the nonlinear
term, u(@u/a0x) , which appears as the product of the second term in the bracket, u =g, , and the

(Pyx term, whichis ou/ox .

This is one version of the transonic small disturbance equation. It is still nonlinear, and can
change mathematical type (to be discussed in section 2.8). This means that the sign of the coeffi-
cient of @ can change in the flowfield, depending on the value of the nonlinear term. It is valid

for transonic flow, and, as written, it is not in a divergence form. Transonic flows occur for Mach
numbers from .6 to 1.2, depending on the degree of flow disturbance. They also occur under
other circumstances. At high-lift conditions, the flow around the leading edge may become local-
ly supersonic at freestream Mach numbers as low as .20 or .25. Transonic flow occurs on rotor
blades and propellers. At hypersonic speeds the flow between the bow shock and the body will
frequently be locally subsonic. These are aso transonic flows. The transonic small disturbance
equation can be solved on your personal computer.

2.6.4 Prandtl-Glauert Equation

When the flowfield is entirely subsonic or supersonic, all terms involving products of small
guantities can be neglected in the small disturbance equation. When this is done we obtain the
Prandtl-Glauert Equation:

(1-M2)@+ @y =0 (2-134)

Thisisalinear equation valid for small disturbance flows that are either entirely supersonic
or subsonic. For subsonic flows this equation can be transformed to Laplace's Equation, while at
supersonic speeds this equation takes the form of a wave equation. The difference is important,
as described below in the section on the mathematical type of partia differential equations
(PDES). This equation requires that the onset flow be in the x-direction, an example of the impor-
tance that coordinate systems assume when simplifying assumptions are made. Thus, use of sim-
plifying assumptions introduced a directional bias into the resulting approximate equation.
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The extension to three dimensionsiis:

(1-M2) @ + @y + @ = 0. (2-135)

2.6.5. Incompressibleirrotational flow: Laplace's Equation

Assuming that the flow isincompressible, p is aconstant and can be removed from the modi-
fied continuity equation, Eq.(2-97), given above. Alternately, divide the full potential equation
by the speed of sound, a, squared, and take the limit as a goes to infinity. Either way, the follow-
ing equation is obtained:

P+ By =0 (2-136)

This is Laplace's Equation. Frequently people call this equation the potential equation. For
that reason the complete potential equation given above is known as the full potential equation.
Do not confuse the true potentia flow equation with Laplace’ s equation, which requires the as-
sumption of incompressible flow. When the flow is incompressible, this equation is exact when
using the inviscid irrotational flow model, and does not require the assumption of small distur-
bances.

2.6.6 The Boundary Layer Equations

The last specia case retains a viscous term, while assuming that the pressure is a known
function and independent of the y-coordinate value. These are the Prandtl boundary layer equa-
tions that describe the flow immediately adjacent to the body surface. For 2D, steady flow they
are:

opu dpv
—+—=0 -
ax oy (2-137)
uau+ Vau__6p+6 [0 oul 51383
PUox P dy  0x ayBIGyE (2-138)
ap
0:——_ _
oy (2-139)

The related energy equation must also be included if compressibility effects are important.
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All the equations presented in this section provide physical models of classes of flows that,
under the right circumstances, are completely adequate to obtain an accurate representation of
the flow. Many, many other approximate flow models have been proposed. Those presented in
this section represent by far the majority of methods currently used. In recent times, numerous
versions of the Navier-Stokes equations (taken here to include the time-averaged Reynolds equa-
tions to be discussed in Chap. 10) have also been used. These equations will be discussed as ap-
propriate in subsequent chapters. Figure 2-10 given below summarizes the connection between
the various flowfield models.

General Governing Equations
Navier-Stokes Equations
Newtonian fluid, compressible, viscous, unsteady, heat-conducting

| |
inviscid flow treat turbulence via
assumption Reynolds averaging and
' turbulence model
Euler Equations I
I Reynolds Equations

note: aeros 1. drop body force terms (sometimes called N-S)
| 2. use divergence form

« onset flow uniform . . | f#
« shocks are weak (Mn<1.25) restrict viscous effects

| to gradients
Irrotational Elow normal to bodies, directional bias

v=0b '
L Thin Layer N-S Egns.

Potential or FULL Potential Eqn. I
(Gas Dynamics Equation)

introduce Prandtl BL assumption

| | * pressure is const. across layer
incompressible flow small disturbance approx « leading viscous term only

I I |
Laplace's Egn. sub/super & trans, incl.
apiaces man P-G grj TSDE Eqns. Boundary Layer Egns.

(includes integral egn.
representation)

Figure 2-10. Connection between various approximations to the governing equations.
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2.7 Examplesof Zones of Application

The appropriate version of the governing equation depends on the type of flowfield being in-
vestigated. For high Reynolds number attached flow, the pressure can be obtained very accurate-
ly without considering viscosity. Recall that the use of a Kutta condition provides a smple way
of enforcing key physics associated with viscosity by specifying this feature as a boundary con-
dition on an otherwise inviscid solution. If the onset flow is uniform, and any shocks are weak,
M, <1250r 13, then the potential flow approximation is valid. If a slight flow separation ex-
ists, a specia approach using the boundary layer equations can be used interactively with the in-
viscid solution to obtain a solution. As speed increases, shocks begin to get strong and are
curved. Under these circumstances the solution of the complete Euler equationsis required.

When significant separation occurs, or you cannot figure out the preferred direction to apply
a boundary layer approach, the Navier-Stokes equations are used. Note that many different
“levels’ of the N-S Equations arein use.

To avoid having many different codes, some people would like to have just one code that
does everything. While thisis agoal, most applications are better treated using a variety of meth-
ods. A step in the right direction is the use of a system that employs a common geometry and
grid processing system, and a common output/graphics systems.

2.8 Mathematical Classification or the" Type" of Partial Differential Equations (PDES)

A key property of any system of PDEs is the “type’ of the equations. In mathematics, an
equation “type”’ has a very precise meaning. Essentialy, thetype of the equation determines the
domain on which boundary or initial conditions must be specified. The mathematical theory has
been developed over a number of years for PDES, and is given in books on PDES. Two examples
include Sneddon'® (pages 105-109), and Chester!! (chapter 6). Discussions from the computa-
tional fluid dynamics viewpoint are available in Anderson, Tannehill, and Pletcher'? (chapter 2),
Fletcher'3 (chapter 2), and Hoffman'* (chapter 1).

To successfully obtain the numerical solution of a PDE you must satisfy the “ spirit” of the theory
for the type of a PDE. Usually the theory has been developed for model problems, frequently lin-
ear. For PDEs describing physical systems, the type will be related to the following categoriza-
tion:
1. Equilibrium problems. Examples include steady state temperature distributions and
steady incompressible flow. These are similar to boundary value problems for ordi-
nary differential equations.
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2. Marching or Propagation Problems. These are transient or transient-like problems.
Examples include transient heat conduction and steady supersonic flow. These are
similar to initial value problems for ODEs.

The types are dliptic, parabolic, and hyperbolic. A linear equation will have a constant type. The
nonlinear equations of fluid flow can change type locally depending on the local values of the
equation. This “mixed-type” feature had a profound influence on the development of methods
for computational aerodynamics. A mismatch between the type of the PDE and the prescribed
boundary conditions dooms any attempt at numerical solution to failure.

The standard mathematical illustration of type uses a second order PDE:

AQy +B@y + Coyy + D@ +E@y + Fp+G =0. (2-140)

where A, B, C, D, E, F, and G can be constants or functions of x, y, and ¢. Depending on the val-
ues of A, B, and C, the PDE will be of different type. The specific type of the PDE depends on
the characteristics of the PDE. One of the important properties of characteristics is that the sec-
ond derivative of the dependent variables are allowed, although there can be no discontinuity of
thefirst derivative. The slopes of the characteristics can be found from A, B, and C. From mathe-
matical theory the characteristics are found depending on the sign of determinant:

Characteristics Type
(82 - 4AC) >0 real hyperbolic
=0 real, equal parabolic (2-141)
<0 imaginary elliptic

Hyperbolic: The basic property is alimited domain of dependence. Initial data are required
on a curve C, which does not coincide with a characteristic curve. Figure 2-11 illustrates this re-
quirement.

characterisitics

Figure 2-11. Connection between characteristics and initial condition data planes.
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Classical linearized supersonic aerodynamic theory is an example of a hyperbolic system.

Parabolic: This is associated with a diffusion process. Data must be specified at an initia
plane, and march forward in a time or time-like direction. There is no limited zone of influence
equivalent to the hyperbolic case. Data are required on the entire time-like surface. Figure 2-12
illustrates the requirement.

initial
dat

AN

A

>
t

Figure 2-12. Initial data plane for parabolic equation.

In aerodynamics, boundary layers have a parabolic type.

Elliptic: These are equilibrium problems. They require boundary conditions everywhere, as

shown in Figure 2-13. Incompressible potential flow is an example of a governing equation of el-

| boundary conditions required I
/ completely around the flowfield |
I
I I
O i
/I — boundary |

(0.0)
I I
I
I

liptic type.

conditions
required on
solid surface

Figure 2-13. Boundary conditions required for elliptic PDEs.
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Consider the following examples. For the Prandtl-Glauert equation:

(1= M2 )@y + @y =0 (2-142)
and:
M <1 eliptic

>1  hyperbolic (2-143)

For the transonic small disturbance equation:

[
Eﬂ—Mi)—(y +1)MO%L(JP—XH¢)O(+%: 0

sign depends on the solution

- locally subsonic: eliptic . (2-144)
- locally supersonic: hyperbolic

Thisisan equation of mixed type. It is required to treat the physics of transonic flows.

Type plays akey role in computational approaches. The type can be used to advantage. In the
case of the Euler equations, the steady state Euler equations are hard to solve. It is standard pro-
cedure to consider the unsteady case, which is hyperbolic, and obtain the steady state solution by
marching in time until the solution is constant in time.

Alternate approaches are available for systems of first order PDEs. Classification is some-
times difficult to determine. The type of an equation is determined with respect to a particular
variable. The type of equations with respect to time may be completely different than their type
with respect to space. The type of the equation often helps to define the appropriate solution
coordinate system. The different types of the equations given above are responsible for the dis-
tinct numerical approaches that are adopted to solve different problems.

2.8.1 Elaboration on Characteristics
This section provides additional details that provide some insight into the reason that the de-
terminant of the coefficients of the second derivative terms define the type of the equation.

Considering:
APy +B@y + Coyy + D@y +EQy+ Fp+G =0 (2-145)

» Assume @is asolution describing a curve in space
* These curves “patch” various solutions, known as characteristic curves

* Discontinuity of the second derivative of the dependent variable is alowed, but no dis-
continuity of the first derivative

Thursday, January 16, 1997



2-42 Applied Computational Aerodynamics

The differentials of @, and (pywhich represent changes from x,y to x + dx, y + dy along char-

acteristics are:
gy = G2+ 2T% dy = b gy (2-146)
ox
doy = 99y 4+ 2% <py dy Pyx0X + Gy dly - (2-147)
Y™ ox
Express (2-145) as
AQyx +B@yy + Coyy =H (2-148)
with:
H=-(Dgy +Epy+ Fo +G) (2-149)

Assume (2-148) is linear. Solve (2-148) with (2-146) and (2-147) for second derivatives of ¢

AQy +B@y +Coyy =H
Xy +dy@yy = doy

dXpyy + dypyy = d@y (2-150)
or
O 0OytCL
o oEen g,
dx dy%% BdCPyE (2-151)

and solve for Qe (pXy q)yy Since second derivatives can be discontinuous on the characteristics,

the derivatives are indeterminate and the coefficient matrix would be singular:

A B CO
W dy 0.=0. (2-152)
0o dx dyO
Expanding:
A(dy)® - Balxdy +C(dx)* =0 (2-153)

and the slopes of the characteristics curves are found by dividing by (dx)2:
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A&%’g— B%/E+C=O. (2-154)

Solve for dy/dx:

_ B+yJB?-4AC
G,B 2A

dy
dx

(2-155)

and hence the requirement on VB? —4AC to define the type of the PDE as related to the charac-
teristics of the equation. See the references cited above for more details.

2.9 Requirementsfor a Complete Problem For mulation

When formulating a mathematical representation of a fluid flow problem, you have to con-
sider carefully both the flowfield model equations and the boundary conditions. An evaluation of
the mathematical type of the PDEs that are being solved plays akey role in this. Boundary condi-
tions must be properly specified. Either over- or under-specifying boundary conditions will
doom your calculation before you start. A proper formulation requires:

* governing equations

* boundary conditions
» coordinate system specification.

All before computing the first number! If thisis done, then the mathematical problem being
solved is considered to be well posed.
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2.10 Exercises

1. Convert the unsteady 3D Euler equations from classical non-conservative form to divergence
form.

2. Egn. (2-70) is an unusua form of the equation of state. It is from viewgraphs defining the
equations used in cfl3d. Turn in your derivation of this equation. Is there atypo?

3. Show how Eqgn. (2-76) can be obtained.
4. Why is Egn. (2-97) not in divergence form?

5. Show that point source and point vortex singularities are solutions of Laplace's equation in
two dimensions.

Recall that a point source can be expressed as:

cp(xy):fln(xzwz)
Tt

and apoint vortex is:

o(xYy)= %Ttan_lﬁ)%ﬁ

6. Consider the point source of problem 2. What is the behavior of the velocity as the distance
from the source becomes large? What is the potential function for a point source? How doesiit
behave as the the distance from the source becomes large. Comment from the standpoint of
having to satisfy the “infinity” boundary condition in a program for a potential flow solution.

7. Find the classification type of the following equations:

Laplace: UXX+ Uyy =0.

Heat Eqn. : Uy: o Uxx’ o red

WaveEqn.: U= c2U creal
XX vy’ '
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