8. Introduction to
Computational Fluid Dynamics

We have been using the idea of distributions of singularities on surfaces to study the
aerodynamics of airfoils and wings. This approach was very powerful, and provided us with
methods which could be used easily on PCs to solve real problems. Considerable insight into
aerodynamics was obtained using these methods. However, the class of effects that could be
examined was somewhat restricted. In particular, practical methods for computing fundamentally
nonlinear flow effects were excluded. This includes both inviscid transonic and boundary layer
flows.

In this chapter we examine the basic ideas behind the direct numerical solution of differential
equations. This approach leads to methods that can handle nonlinear equations. The simplest
methods to understand are developed using numerical approximations to the derivative terms in
the partial differential equation (PDE) form of the governing equations. Direct numerical
solutions of the partial differential equations of fluid mechanics constitute the field of
computational fluid dynamics (CFD). Although the field is still developing, a number of books

12345,

have been written. ® In particular, the book by Tannehill et al,* which appeared in 1997 as a
revision of the original 1984 text, covers most of the aspects of CFD theory used in current codes
and reviewed here in Chapter 14. Fundamental concepts for solving partial differential equations
in general using numerical methods are presented in a number of basic texts. Smith” and Ames®

are good references.

The basic idea is to model the derivatives by finite differences. When this approach is used
the entire flowfield must be discretized, with the field around the vehicle defined in terms of a
mesh of grid points. We need to find the flowfield values at every mesh (or grid) point by writing
down the discretized form of the governing equation at each mesh point. Discretizing the
equations leads to a system of simultaneous algebraic equations. A large number of mesh points
is usually required to accurately obtain the details of the flowfield, and this leads to a very large
system of equations. Especially in three dimensions, this generates demanding requirements for
computational resources. To obtain the solution over a complete three dimensional aerodynamic
configuration millions of grid points are required!

3/17/98 8-1



8 - 2 Applied Computational Aerodynamics

In contrast to the finite difference idea, approximations to the integral form of the governing
equations result in the finite volume approach. A book has been written recently devoted solely to
this approach,® and we will cover this approach briefly here.

Thus CFD is usualy associated with computers with large memories and high processing
speeds. In addition, massive data storage systems must be available to store computed results,
and ways to transmit and examine the massive amounts of data associated with a computed result
must be available. Before the computation of the solution is started, the mesh of grid points must
be established. Thus the broad area of CFD leads to many different closely related but
neverthel ess specialized technology areas. These include:

* grid generation

* flowfield discretization algorithms

* efficient solution of large systems of equations

» massive data storage and transmission technology methods
» computational flow visualization

Originally, CFD was only associated with the 2"d and 3d items listed above. Then the
problem with establishing a suitable mesh for arbitrary geometry became apparent, and the
specialization of grid generation emerged. Finally, the availability of large computers and remote
processing led to the need for work in the last two items cited. Not generaly included in CFD
per se, a current limiting factor in the further improvement in CFD capability is development of
accurate turbulence models, discussed in Chapter 10.

This chapter provides an introduction to the concepts required for developing discretized
forms of the governing equations and a discussion of the solution of the resulting algebraic
equations. For the most part, we adopt the viewpoint of solving equilibrium (elliptic) problems.
This in contrast to the more frequent emphasis on solving hyperbolic systems. Although the
basic idea of CFD appears straightforward, once again we find that a successful numerical
method depends on considerable analysis to formulate an accurate, robust, and efficient solution
method. We will see that the classification of the mathematical type of the governing equations
(Sec. 2.8) plays an important role in the development of the numerical methods. Although we
adopt finite difference/finite volume methods to solve nonlinear equations, to establish the basic
ideas we consider only linear equations. Application to nonlinear equations is addressed in
Chapters 10, 11 and 12, where additional concepts are introduced and applied to the solution of
nonlinear equations. Chapter 13 describes the most advanced approaches currently in use.

8.1 Approximationsto partial derivatives

There are many ways to obtain finite difference representations of derivatives. Figure 8-1
illustrates the approach intuitively. Suppose that we use the values of f at a point Xy and apoint a
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distance Dx away. Then we can approximate the slope at x; by taking the slope between these
points. The sketch illustrates the difference between this ssmple slope approximation and the
actual slope at the point xy. Clearly, accurate slope estimation dependents on the method used to
estimate the slope and the use of suitably small values of Dx.

A Trueslope ‘

Approximate slope
at XO

Figure 8-1. Example of slope approximation using two values of the function.

Approximations for derivatives can be derived systematically using Taylor series
expansions. The simplest approach is to find an estimate of the derivative from a single series.
Consider the following Taylor series:

2 42 3
f(x +Dx) = f(xg)+ Dxﬂ +(DX) df2 +(DX) d3f3 + (8-1)
dX XO 2 dX XO 6 dX XO
o df
and rewriteit to solve for —
Xlx,
df| _ f(xo+Dx)- f(x) . 1d%
— = -DxX-—| -
dX XO DX 2 dX XO
or:
d _ f{0+Dx)- f(%) o(Dx) (8-2)
Tryggion

where the last term is neglected and called the truncation error. In this case it is O(Dx). The term
“truncation error” means that the error of the approximation vanishes as Dx goes to zero.” The

" This assumes that the numerical results are exactly accurate. Thereis alower limit to the size of the difference step
in Dx due to the use of finite length arithmetic. Below that step size, roundoff error becomes important. In most
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form of the truncation error term is frequently important in developing numerical methods. When
the order of the truncation error is O(Dx), the approximation is described as a “first order
accurate” approximation, and the error is directly proportional to Dx. The other characteristic of
this representation is that it uses only the information on one side of X, and is thus known as a
one-sided difference approximation. Finally, because it uses information ahead of X, it's known
as a forward difference. Thus, EQ.(8-2) is a first order, one sided, forward difference
approximation to the derivative.

We could also write the approximation to the derivative using information prior to the point
of interest. The corresponding first order accurate one sided backward difference approximation

is obtained by expanding the Taylor seriesto a point prior to the point about which the expansion
is carried out. The resulting expansion is:

df (Dx)? d? (Dx)3 d¥
f(xy- DX) = f(xg)- Dx— - (8-3)
(% )= 100) dxlx, 2 . 6 dx
0 X0
Solving for the first derivative in the same manner we used above, we obtain:
d _f00)- fx0-DY, 5y (8-4)
dx Dx

X0
the first order accurate, one sided, backward difference approximation.

Note from Fig. 8-1 above that one sided differences can lead to afairly large truncation error.
In many cases a more accurate finite difference representation would be useful. To obtain a
specified level of accuracy, the step size Dx must be made small. If a formula with a truncation

term of O(Dx)?2 is used,” the required accuracy can be obtained with significantly fewer grid
points. A second order, O(Dx)2, approximation can be obtained by subtracting the Taylor series

expansions, Eq.(8-3) from Eq.(8-1):

f(x +Dx) - f(Xg - DX) :+2Dx%(

(5 B
X

+
3 dd

XO XO
Here the O(Dx) terms cancel in the subtraction. When we divide by 2Dx and solve for the first

derivative, we get an expression with a truncation error of O(DX)2. The resulting expression for
the derivativeis:

cases the stepsize used for practical finite difference calculationsis larger than the limit imposed by roundoff errors.
We can't afford to compute using grids so finely spaced that roundoff becomes a problem.
" With Dxsmall, Dx2 is much smaller than Dx
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o _ f(xo*Dx)- f(x- DY
dxlx, 2Dx

+0(Dx)?. (8-5)

Thisisasecond order accurate central difference formula since information comes from both
sides of X5 Numerous other approximations can be constructed using this approach. It's also
possible to write down second order accurate forward and backward difference approximations.

We also need the finite difference approximation to the second derivative. Adding the Taylor
series expressions for the forward and backward expansions, Eq.(8-1) and EQ.(8-3), resultsin the
following expression, where the odd order terms cancel:

2
f (X + DX) + f(Xg- Dx) :2f(>@)+(Dx)2% +O(D()4
X
X0
Solving for the second derivative yields:
2
d 2f _ f (xo +DX) - 2f(x%) + f(xg - DX)+O(D()2. (8-6)
dx X (Dx)

The formulas given above are the most frequently used approximations to the derivatives
using finite difference representations. Other methods can be used to develop finite difference
approximations. In most cases we want to use no more than two or three function values to
approximate derivatives.

Forward and backward finite difference approximations for the second derivative can aso be
derived. Note that formally these expressions are only first order accurate. They are:
» aforward difference expression:

d2f| _ f(xg)- 2f (xg +Dx) + f(xg +2DX)

+0(Dx (8-7)
dx® X (Dx)2 (D)
* a backward difference expression:
2 - - -
d 2f _ f(%0)- 2f (g sz) + (X - 2Dx) +O(DX). (8-8)
dx X (Dx)

In addition, expressions can be derived for cases where the points are not evenly distributed.
In genera the formal truncation error for unevenly spaced pointsis not as high as for the evenly
spaced point distribution. In practice, for reasonable variations in grid spacing, this may not be a
serious problem. We present the derivation of these expressions here. A better way of handling
non-uniform grid points is presented in the next chapter. The one sided first derivative
expressions Eq.(8-2) and Eq.(8-4) are already suitable for use in unevenly spaced situations. We
need to obtain a central difference formula for the first derivative, and an expression for the
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second derivative. First consider the Taylor expansion as given in Egs. (8-1) and (8-3). However,

the spacing will be different in the two directions. Use Dx" and DX to distinguish between the
two directions. Egs. (8-1) and (8-3) can then be rewritten as:

. + df (DX+)2 o2 (DX+)3 o
fp+Dx")=f(xg)+ X" —| + >+ 3|+ (8-9)
dxly, 2 dx X 6  dx X
2 3
o _ df (DX') d’f (DX') d
f(x- D)= f(x)- Dx &XO+ 2 el (8-10)
X0 X0

Define Dx' = a DX . To obtain the forms suitable for derivation of the desired expressions,

replace Dx" in Eq. (8-9) witha Dx , and multiply Eq. (8-10) by a. The resulting expressions
are:

2 3
aDx aDx
f()@+D(+)=f(xO)+an'£ +( )dzfz +( )d3f3 +... (811)
dXXO 2 dX XO 6 dX XO
2 3
Dx Dx
af (xg- Dx ) =af(x)- aox” & +a(—L£fz -auﬁg +... (812
dXXO 2 dX XO 6 dX XO

To obtain the expression for the first derivative, subtract Eq ( 8-12) from Eq. (8-11).

f(x+Dx")-af(xg- DX ) = f(xg)- af(xg) +2aDxX 3—;

X0
é 2\2 _\20 (8-13)
é(an ) (Dx ) G
+e 2 -a 2 udX2
é g %o
and rearrange to solve for df/dx:
df|  _ f(xo +Dx")+(a - 1)f(xg)- af(xg- Dx") +O(DX ) (8-14)
dXXO ZaD(-
To obtain the expression for the second derivative, add (8-11) and (8-12):
é - -\2u
alaDX DX | g2
f (4 + D<) +af (xo - Dx‘>=f(xO)+af<xO)+§( . .ol 2) iz +000’
8 G

which is then solved for d2f/dx2:
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d_2f2_ _ f(x +Dx") _a(1+a)f (Xo) ;af(xo - DX) LoD ) (8-15)
X1, - (1+a)(Dx')
2

Note that both Egs. (8-14) and (8-15) reduce to the forms given in Eq.(8-5) and EQ.(8-6)
when the grid spacing is uniform.

Finally, note that a slightly more sophisticated analysis (Tannehill, et al,* pages 61-63) will
lead to a second order expression for the first derivative on unevenly spaced points:

of f(x0+Dx+)+(a2-l)f(xo)-azf(xo- DX")
d_xx0 - a(a +1)Dx’

Tannehill, et al,* give additional details and a collection of difference approximations using
more than three points and difference approximations for mixed partial derivatives (Tables 3-1
and 3-2 on their pages 52 and 53). Numerous other methods of obtaining approximations for the
derivatives are possible. The most natural one is the use of a polynomial fit through the points.
Polynomials are frequently used to obtain derivative expressions on non-uniformly spaced grid
points.

+O(Dx" )? (8-16)

These formulas can also be used to represent partial derivatives. To simplify the notation, we
introduce a grid and a notation common in finite difference formulations. Figure 8-2 illustrates
this notation using Dx = Dy = const for these examples.

A Assume:
J(i,j+1
) Dx = Dy = const.
yor " X = iDx
y = jDx
i-1,] I I+1,)
Tij-1
-
xor"i"

Figure 8-2. Nomenclature for usein partia differential equation difference expressions.
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In this notation the following finite difference approximations for the first derivatives are:

g - i
L E N O(x) 1st order forward difference  (8-17)
ix Dx

f. .o f DT
o _fi- Nieaj O(x) 1st order backward difference (8-18)
x Dx
1t _ Mg - fiag

+0(Dx)? 2nd order central difference  (8-19)
x 2Dx

and the second derivativeis:

12f _ fivaj - 265 +figj
(1% (D%°

Similar expressions can be written for they derivatives. To shorten the expressions, various

+0O(Dx)?  2nd order central difference (8- 20)

researchers have introduced different shorthand notations to replace these expressions. The
shorthand notation is then used in further operations on the difference expressions.

8.2 Finite differencerepresentation of Partial Differential Equations (PDE'S)

We can use the approximations to the derivatives obtained above to replace the individual
terms in partial differential equations. The following figure provides a schematic of the steps
required, and some of the key terms used to ensure that the results obtained are in fact the
solution of the origina partial differential equation. We will define each of these new terms
below.

Steps and Requirements To Obtain a Valid Numerical Solution

Governing . System
Partial DiscretizatioNej-

Differential Algebralc
Equatlon Consistency Equations

Stability

Approximate
Solution

Exact

Convergence
Solution 9

asDx,D® 0

Figure 8-3. Overall procedure used to develop a CFD solution procedure.
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Successful numerical methods for partial differential equations demand that the physical
features of the PDE be reflected in the numerical approach. The selection of a particular finite
difference approximation depends on the physics of the problem being studied. In large part the
type of the PDE is crucial, and thus a determination of the type, i.e. eliptic, hyperbolic, or
parabolic is extremely important. The mathematical type of the PDE must be used to construct
the numerical scheme for approximating partial derivatives. Some advanced methods obscure the
relationship, but it must exist. Consider the example given in Fig. 8-4 illustrating how
information in agrid must be used.

subsonic flow . supersonic flow
\
ij+1 /\\ J(i,j+1
\
zone of \
dependence \
\\ ‘ \\ - . .
i-1,j 1 i+1,] i-1,] />I,J i+1,j
/
/
/] N\
-1 S i
/
/
i,j depends on all ’ I,] depends only on the points
ne ghboring points in the zone of dependence
(elliptic system) (hyperbolic system)

Note: velocity direction relative to
the grid becomes important
Figure 8-4. Connection between grid points used in numerical method and equation type.

Any scheme that fails to represents the physics correctly will fail when you attempt to obtain
a solution. Furthermore, remember, in this case we were looking at a uniformly spaced cartesian
grid. In actual “real life” applications we have to consider much more complicated non-uniform
grids in non-Cartesian coordinate systems. In this section we use smple uniform Cartesian grid
systems to illustrate the ideas. The necessary extensions of the methods illustrated in this chapter
are outlined in the next chapter.

In Fig. 8-3 above, we introduced several important terms requiring definition and discussion:

* discretization
* consistency

* stability

* convergence
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Before defining the terms, we provide an example using the heat equation:

Tu__ T2 (8-21)
TR

We discretize the equation using a forward difference in time, and a central difference in
gpace following the notation shown in the following sketch:

>

n-1 n n+1
Figure 8-5. Grid nomenclature for discretization of heat equation.

The heat equation can now be written as:

ﬂu ﬂZU un+1 un
[T or I_( )Z(Uin*l'zqnwrll)+
PDE FDE
€ g2, |" 40" my2 U
a T7u bt T &), oy (8-22)
gNt 2 Ixy 12 H

Truncation Error

where we use the superscript to denote time and the subscript to denote spatial location. In Eq.
(8-18) the partial differential equation (PDE) is converted to the related finite difference equation

(FDE). The truncation error is O(Dt)+O(Dx)? or O[Dt(Dx)Z] . An understanding of the
truncation error for a particular scheme isimportant.

Using the model equation give here, we define the termsin the schematic given above:
discretization

This is the process of replacing derivatives by finite difference approximations. Replace
continuous derivatives with an approximation at a discrete set of points (the mesh). This
introduces an error due to the truncation error arising from the finite difference approximation
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and any errors due to treatment of BC's. A reexamination of the Taylor series representation is
worthwhile in thinking about the possible error arising from the discretization process:

Tt _f(xo+Dx)- f(%- D Dx? 1% | (859

x - 2Dx 6 qx
%f_/
formally valid for Dx® O,

but when Dx = finite, 15 /x>
can be big for rapidly changing
solutions (shock wave cases)

Thus we see that the size of the truncation error will depend locally on the solution. In most
cases we expect the discretization error to be larger than round-off error.

consistency

A finite-difference representation of a PDE is consistent if the difference between the PDE
and its difference representation vanishes as the mesh isrefined, i.e.,
lim (PDE- FDE)= lim (T.E)=0 (8-23)
mesh® 0 mesh® 0
When might this be a problem? Consider a case where the truncation error is O(DV/Dx). In
this case we must let the mesh go to zero just such that:
lim &2L0_ (8-24)
Dt,x® 0 Dx 9@
Some finite difference representations have been tried that weren’t consistent. An example
cited by Tannehill, et al,* is the DuFort-Frankel differencing of the wave equation.

stability

A stable numerical scheme is one for which errors from any source (round-off, truncation)
are not permitted to grow in the sequence of numerical procedures as the calculation proceeds
from one marching step, or iteration, to the next, thus:

errorsgrow ® unstable
errorsdecay ® stable

and
» Stability is normally thought of as being associated with
marching problems.

» Stability requirements often dictate allowable step sizes.

* In many cases a stability analysis can be made to define the
stability requirements.
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convergence

The solution of the FDE's should approach the solution of the PDE as the mesh is refined. In
the case of alinear equation there is a theorem which proves that the numerical solution to the
FDE isin fact the solution of the original partial differential equation.

L ax Equivalence Theorem® (linear, initial value problem): For a properly posed
problem, with a consistent finite difference representation, stability is the necessary
and sufficient condition for convergence.

In practice, numerical experiments must be conducted to determine if the solution appears to
be converged with respect to mesh size.” Machine capability and computing budget (time as well
as money) dictate limits to the mesh size. Many, many results presented in the literature are not
completely converged with respect to the mesh.

So far we have represented the PDE by an FDE at the point i,n. The PDE is now a set of
algebraic equations written at each mesh point. If the grid is (in three dimensions) defined by a
grid with IMAX, JMAX and KMAX mesh points in each direction, then we have a grid with
IMAX"~ JMAX~ KMAX grid points. This can be a very large number. A typical recent case
computed by one of my students was for the flow over a ssimple aircraft forebody. The
calculation required 198,000 grid points. Thus the ability to carry out aerodynamic analysis using
finite difference methods depends on the ability to solve large systems of algebraic equations
efficiently.

We need to obtain the solution for the values at each grid point. We now consider how thisis
actually accomplished. Since the computer requirements and approach are influenced by the
mathematical type of the equation being solved, we illustrate the basic types of approaches to the
solution with two examples.

1st example - typical parabolic/hyperbolic PDEs

Explicit Scheme: Consider the finite difference representation of the heat equation given
above in Eq. (8-18). Using the notation shown in the Fig. 8-6 below, we write the finite
difference representation as:

n+l _

Ui n

Uy _ a
Dt (Dx)*

and the solution at time step n is known. At time n+1 there is only one unknown.

(Uﬁn+1 - 20+ 1) (8-25)

" Thisis convergence with respect to grid. Another convergence requirement is associated with the satisfaction of the
solution of a system of equations by iterative methods on afixed grid.
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>

n-l n n+l t
Figure 8-6. Grid points used in typical explicit calculation.

We solve for the value of u at i and the n+1 time step:
& o]
it =ul+ aQ_th juinﬂ - 24"+ 1) (8-26)
e(Dx)

and thus at each i on n+1 we can solve for ui”+l algebraically, without solving a system of

equations. This means that we can solve for each new value explicitly in terms of known values
from the previous time step. This type of algorithm is known as an explicit scheme. It is a very
straight forward procedure. To summarize:
» Thealgebraissimple.
» The bad news for non-vector computers: stability requirements require very
small steps sizes.

» The good news: this schemeis easily vectorized” and a natural for massively
paralel computation.

Implicit Scheme: Now consider an alternate finite difference representation of the heat
equation given above in Eq. (8-18). Use the notation shown in the Fig. 8-7 below to define the
location of grid points used to define the finite difference representation.

X A

| >
t
Nl n nt+l

Figure 8-7. Grid points used in typical implicit calculation.

" see Chapter 3 for a brief discussion of vectorization.
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Now we write the finite difference representation as:

n+l _

Ui n

Ui a n+l n+1 n+1 _
= - 2u™ + ] (8-27)
Dt (DX)2 (Uﬁ +1 i i 1)

where we use the spatial derivative at time n+1. By doing this we obtain a system where at each i

on n+l, u{”l depends on all the values at n+1. Thus we need to find the values along n+1

simultaneously. Thisleadsto a system of algebraic equations that must be solved. For our model
problem this system is linear. We can see this more clearly by rearranging Eq. (8-27). Defining
Dt
| =a+—=> (8-28)
(Dx)

we can re-write EQ.(8-27) after some minor algebra as.

durte@+2)™ gt = fori=1.N. (8-29)

This can be put into a matrix form to show that it has a particularly simple form:

§1+2|) - 0 0 0 0 0 ggu{”lg gu{‘ﬂ

g -l @) -l 0 0 0 sy eud g

e E - - ‘ RV < VI Y

a N W gl @ L0 g
< a2y - : - g@™Ma=ed g €30
é ' - - - . @ u ey

é . G€ g0 €. 0

5 O 0 . 0 @2y - gaktin @teag

€ 0 0 0 0 0 -1 (1+21)8ul™ e Eul 8

Equation (8-30) is a specia type of matrix form known as a tridiagonal form. A particularly
easy solution technique is available to solve this form. Known as the Thomas algorithm, the
details are described in Section 8.5 and a routine caled tridag is described in Appendix H-1.
Many numerical methods are tailored to be able to produce this form.

The approach that leads to the formulation of a problem requiring the simultaneous solution
of a system of equations is known as an implicit scheme. To summarize:

* The solution of a system of equationsis required at each step.
» The good news: stability requirements allow alarge step size.
* The not so good news: this scheme is harder to vectorize/parall€elize.

A common feature for both explicit and implicit methods for parabolic and hyperbolic

eguations:
* A large number of mesh points can be treated, you only need the values a a
small number of marching stations at any particular stage in the solution.
This means you can obtain the solution with a large number of grid points
using a relatively small amount of memory. Curiously, some recent codes
don’'t take advantage of thislast fact.
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2nd Example - éliptic PDE
We use Laplace' s equation as the model problem for elliptic PDE’s:

fyx +fyy =0 (8-31)

and consider the grid shown below in Figure 8-8.

YA
j+1
J *
j-1
>
i-1 i i+1 X

Figure 8-8. Grid points used in atypical representation of an elliptic equation.

Use the second order accurate central difference formulasat i,j:

fivgj- 25 +fi g 2
foy = ' +0O(Dx (8-32)
and:
Fijw- 2 +ij-a 2
f — ') ) ) +O([)y) 1 (8‘33)

and substitute these expressions into the governing equation:

P~ 2ij*fiong P 2 +Higa (8-34)
2 2 B
(D) (Dy)

Solve this equation for fij:

(D)

Fij = (Ez)y)2 2 (f i+1, ] +fi-lj)+ 2 (fi'i+1+fi'i-1) (839
(0% + (OyY’] 2](0%7 + (Oy)’|
where if Dx = Dy
fi zzll(fiﬂ,j +fioqj +f i,j+1+fi,j-1) (8-36)
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This expression illustrates the essentia physics of flows governed by elliptic PDE’s:

« fijj dependson all the values around it

» all vauesof f must be found simultaneously
e computer storage requirements are much greater than those required for
parabolic/hyperbolic PDE’s

Because of the large number of mesh points required to resolve the flowfield details, it is
generally not practical to solve the system of equations arising from applying the above equation
at each mesh point directly. Instead, an iterative procedure is usually employed. In this procedure
an initial guess for the solution is made and then each mesh point in the flowfield is updated
repeatedly until the values satisfy the governing equation. This iterative procedure can be
thought of as having a time-like quality, which has been exploited in many solution schemes to
find the steady flowfield.

A Note on Conservation Form

Care must be taken if the flowfield has discontinuities (shocks). In that case the correct
solution of the partial differential equation will only be obtained if the conservative forms of the
governing equations are used.

8.3 Other approaches, including the finite volume technique

Finite difference methods are the most well known methods in CFD. However other methods
have also proven successful, and one method in particular, the finite volume technique, actually
forms the basis for most current successful codes. The other methods in use are categorized as
finite element and spectral. Each method eventually leads to a large set of algebraic equations,
just as with the finite difference methods. See References 1 and 3 for more details of the latter
two methods. In US aircraft aerodynamics work they don’'t currently have an impact.

The finite volume method is important. Instead of discretizing the PDE, select the integral
form of the equations. Recall that each conservation law had both differential and integral
statements. The integral form is more fundamental, not depending on continuous partial
derivatives.

Example of Finite Volume Approach (Fletcher,® val. I, pg.105-116, Tannehill, et al,* pg 71-76)

Consider the general conservation equation (in two dimensions for our example analysis):

Ja [T, TC o (8-37)
Tt Ix Ty

Pick the particular form to be conservation of mass:
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q=r
F=ru, (8-38)
G=rv
and recall that this conservation law could also come from the integral statement:
% &y OV = - gy Vnds. (8-39)

Introducing the notation defined above and assuming two dimensiona flow, the conservation
law can be rewritten as:

%(‘mdv +gHndS=0 (8-40)
where
H=(F.G)=rV (8-41)
and
Hy =F=ru (8-42)
Hy=G=rv’
A D= C
Y,
n

>
X, i

Figure 8-9. Basic nomenclature for finite volume analysis.
Using the definition of n in Cartesian coordinates, and considering for illustration the

Cartesian system given in Fig. 8-9, we can write:

HndS= (H,d +Hyj)ndS

(8-43)
=(Fi+G)=ndS
along AB, n=-j, dS= dx, and:
H>ndS=- Gdx (8-44)
aong BC, n=i,dS=dy, and:
H xndS=F dy (8-45)
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or in genera:
H >ndS= Fdy - Gdx. (8-46)

Using the general grid shown in the Fig. 8-10, our integral statement, Eq. (8-40) can be
written as:

DA
1 (Agj) +a (FDy- GDx) = 0. (8-47)
Tt AB

Here Aisthe area of the quadrilateral ABCD, and g i isthe average value of q over ABCD.

cell centered
atj,k

k-1

Figure 8-10. Circuit in agenera grid system.

Now define the quantities over each face. For illustration consider AB:

Dyag = YB- YA
DXAB =XB - XA

1
=_(F; ; -4
FAB Z(Fj’k-1+ Fj.k) ) (8 8)

Gpg = % (Gj k1 + G ,k)

and so on over the other cell faces.
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Assuming A is not a function of time, and combining:

flgjk 1 1
A 0t +§(Fj,k-1+ Fj,k)DYAB‘ ‘Z(Gj,k-l"'Gj,k DXag

+‘;(Fj,k + Fj,k+1) Dycp -

)
+_]2-(Fj,k +Fj+lk)DYBC - é(GJ K +Gj +lk)DXBC
%(Gj K +Gj,k+1)DXCD' (8'49)
(

+‘;(Fj-1,k + Fj,k)DYDA - % Gj.1k+ Gj,k)DXDA
=0
Supposing the grid isregular cartesian as shown in Fig. 8-11. Then A = DxDy, and along:
AB: Dy=0, Dxpg=Dx
BC.  Dx=0, Dygc=Dy

. (8-50)
CD: Dy=0, Dxcp=-Dx
DA Dx =0, DyDA =- Dy
YA
k+1
DL —.C
| ]
|
' ]
k A-—T—"g
k-1
>
: , X
j-1 J J+1
Figure 8-11. General finite volume grid applied in Cartesian coordinates.
Thus, in Eq. (8-49) we are left with:
Tojk 1 1
_'-—G'k_l+G'kDX+— F'k+F' kDy

1 1
+—(Gj K +Gj,|(+1)DX_ _(Fj-l,k + Fj,k)Dy_ 0
Collecting terms:
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fq L Fi+1k - Fj- 1k +Gj,k+1' Gjk-1 —o (8-52)
Tt 2Dx 2Dy

for thisreversion to Cartesian
coordinates the equation just reduces
to simple central differences of the original
partial differential equation

or:

Jo [T, TC o (8-53)
Tt Ix Ty

Thus, and at first glance remarkably, the results of the finite volume approach can lead to the
exact same equations to solve as the finite difference method on a simple Cartesian mesh.
However, the interpretation is different:”

* Finite difference: approximates the governing equation at a point

* Finite volume: over avolume

» Finite volumeisthe most physical in fluid mechanics codes, and is actually used in
most codes.

» Finite difference methods were developed earlier, the analysis of methods is easier
and further devel oped.

Both the finite difference and finite volume methods are very similar. However, there are
differences. They are subtle but important. We cite three points in favor of the finite volume
method compared to the finite difference method:

» Good conservation of mass, momentum, and energy using integrals when mesh is
finite size

» Easier to treat complicated domains (integral discretization [averaging] easier to
figure out, implement, and interpret)

» Averageintegral concept much better approach when the solution has shock waves
(i.e. the partial differential equations assume continuous partial derivatives).

Finally, special considerations are needed to implement some of the boundary conditionsin
this method. The references, in particular Fletcher,® should be consulted for more details.

8.4 Boundary conditions

So far we have obtained expressions for interior points on the mesh. However, the actual
geometry of the flowfield we wish to analyze is introduced through the boundary conditions. We
use an eliptic PDE problem to illustrate the options available for handling boundary conditions.

Consider the flow over asymmetric airfoil a zero angle of attack, as shown in Fig. 8-12.

" Summarized from Professor B. Grossman’s unpublished CFD notes.
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7 e _:
I

I I
I A I
| Y I
I I
I I
' |
L _
R, x> Y

Figure 8-12. Example of boundary condition surface requiring consideration.

Here, because there is no lift, symmetry allows usto solve only the top half of the region. If
isaperturbation potential [see Chap. 2, Eq. (2-123)],
U= U¥ +f X

8-54
ety (8-54)
then far away from the surface,
u=v=20 (8- 59
or
f®0 as x°+y°® ¥. (8- 56)

For alifting airfoil, the farfield potential must take the form of a potential vortex singularity
with acirculation equal to the circulation around the airfoil.

The boundary condition on the surface of primary interest is the flow tangency condition,
where the velocity normal to the surface is specified. In most cases the velocity normal to the
surfaceis zero.

Consider ways to handle the farfield BC
There are severa possibilities:

A. “goout” far enough (?) and set f =0 for f ® O, as the distance from the body goes to
infinity (or v =0, u =0 where these are the perturbation velocities, or u = Uy if itisthe
total velocity).

How good is this? This method is frequently used, although clearly it requires
numerical experimentation to ensure that the boundary is “far enough” from the body.
In lifting cases this can be on the order of 50 chord lengths in two-dimensions. In
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3/17/98

addition, this approach leads to excessive use of grid points in regions where we
normally aren’t interested in the details of the solution.

Transform the equation to another coordinate system, and satisfy the boundary
condition explicitly at infinity (details of this approach are given in Chap. 9).

Figure 8-13 demonstrates what we mean. In the x system the physical distance from O
to infinity is transformed to the range from O to 1. Although this approach may lead to
efficient use of grid points, the use of the resulting highly stretched grid in the physical
plane may result in numerical methods that lose accuracy, and even worse, do not
converge during an iterative solution.

points evenly spaced in x plane
1.20 - X=¥isx=1

1.00 /

0.80 —
0.60 —

0.40

points spaced progressively

0.20 further apart in physical plane

/ . .

1 1 J
0.00 5.00 10.00 15.00 20.00 25.00
X

0.00

Figure 8-13. One example of away to handle the farfield boundary condition.

Blocks of Grids are sometimes used, a dense “inner” grid and a “coarse” outer grid. In
this approach the grid points are used efficiently in the region of interest. It isa simple
version of the adaptive grid concept, where the the grid will adjust automatically to
concentrate pointsin regions of large flow gradients.

Match the numerical solution to an analytic approximation for the farfield boundary
condition.

This is emerging as the standard way to handle the farfield boundary conditions. It
alows the outer boundary to be placed at a reasonable distance from the body, and
properly done, it ensures that the boundary numerical solution reflects the correct
physics at the boundary. This has been found to be particularly important in the solution
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of the Euler equations. Effort is still underway to determine the best way to implement
this approach.

To summarize this discussion on farfield boundary conditions:
» BC'son the FF boundary are important, and can be especially important for Euler
codes which march in time to a steady state final solution.

* How to best enforce the FF BC is still under study - research papers are still being
written describing new approaches.

Consider ways to handle the nearfield BC

There are are also several ways to approach the satisfaction of boundary conditions on the
surface. Here we discuss three.

A. Use a standard grid and allow the surface to intersect grid lines in an irregular manner.
Then, solve the equations with BC's enforced between node points. Figure 8-14
illustrates this approach. In the early days of CFD methodology development this
approach was not found to work well, and the approach discussed next was developed.
However, using the finite volume method, an approach to treat boundary conditions
imposed in this manner was successfully developed (primarily by NASA Langley and its
contractors and grantees). It has not become a popular approach, and is considered to lead
to an inefficient use of grid points. Many grid points end up inside the body.

I I I I I
| Airfoil placed in simpl
—r rectangular grick_

LN

L [~

2

——

~ Irregular Intersection of.
airfoil surface and grid

Figure 8-14. Surface passing through a general grid.

B. The most popular approach to enforcing surface boundary conditions is to use a
coordinate system constructed such that the surface of the body is a coordinate surface.
An example of this approach is shown in Figure 8-15. This is currently the method of
choice and by far the most popular approach employed in CFD. It works well. However,
it complicates the problem formulation. To use this approach, grid generation became an
area of study by itself. Grid generation is discussed in Chapter 9.
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a. Entire geometry b. Closeup of the trailing edge
Figure 8-15. Body conforming grid for easy application of BCs on curved surfaces.™

C. Another approach is to use thin airfoil theory boundary conditions, as described in detail
in Chapter 6. This eliminates many of the problems associated with the first two
approaches. It is expedient, but at some lossin accuracy (but very likely not that much, as
shown in Chap. 6, Fig. 6-14).

.| Apply boundary conditions
approximately on agrid line”

Figure 8-16. Approximate approach to boundary condition specification.

Finite difference representation of the BC's

After defining a coordinate system, the finite difference representation of the boundary
condition must be written down. Using Laplace’ s Equation as an example, consider that there are
normally two types of boundary conditions associated with the boundary: 1) the Dirichlet
problem, where f is specified on the boundary, and 2) the Neumann problem, where If /fin is
specified. If the Dirichlet problem is being solved, the value on the boundary is simply specified
and no special difference formulas are required.
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When the solution requires that the gradient normal to the surface be specified, a so-called
“dummy row” isthe easiest way to implement the boundary condition. As an example, following
Moran,* consider a case where the normal velocity, v, is set to zero at the outer boundary. The
boundary is at grid linej = NY. Assume that another row isadded at | = NY + 1, asindicated in
Fig. 8-17.

J=NY+1 —————— 4 —
I

] = NY i
I

j=NY-1 ——————— ——— — —-

Figure 8-17. Boundary condition at farfield.
The required boundary condition at j = NY is:

f. -f.
E -0= LNY+1 ™ "i,NY-1 +O(DY)2 (8-57)
fin YNY+1 - YNY-1

and to ensure that the boundary condition is satisfied, ssmply define:

finy+1°finy-1- (8-58)

The eguations are then solved up to Y|y, and whenever you need f at NY+1, ssimply use the
vaue at NY-1.
Now, we present an example demonstrating the application of thin airfoil theory boundary

conditions at the surface. Recall that the boundary condition is:

af df
Ty T i

where yfoj| = f(X). Assuming that in the computer code v has been nondimensionalized by Uy,

the boundary condition is:

%:% (8-60)
Yy X

and the grid near the surface is defined following Fig. 8-18.

3/17/98



8 - 26 Applied Computational Aerodynamics

Figure 8-18. Boundary condition at surface.

Writing the derivative in terms of central differencesat j =2,

fig-fig _df (8-61)
Y3 - Y_I_ dx
we solve for fj 1:
df
fia=fiz- (%- Y])E(' (8-62)

Note that sincej = 1 is adummy row, you can select the grid spacing such that the spacing is
egual on both sides of | = 2, resulting in second order accuracy. Thus, asin the previous example,
anytime we need f 1 we use the value given by Eq. (8-62). Using these boundary condition

relations, the boundary conditions are identically satisfied. Note also that this approach is the
reason that in many codes the body surface corresponds to the second grid line, j = 2.

Imposition of boundary conditions is sometimes more difficult than the analysis given here
suggests. Specifically, both the surface and farfield boundary conditions for the pressure in the
Navier-Stokes and Euler equations can be tricky.

8.5 Solution of Algebraic Equations

We now know how to write down a representation of the PDE at each grid point. The next
step is to solve the resulting system of equations. Recall that we have one algebraic equation for
each grid point. The system of algebraic equations may, or may not, be linear. If they are
nonlinear, the usual approach isto form an approximate linear system, and then solve the system
iteratively to obtain the solution of the original nonlinear system. The accuracy requirement
dictates the number of the grid points required to obtain the solution. Previously, we assumed
that linear equation solution subroutines were available, as discussed in Chapter 3. However, the
development of CFD methods requires a knowledge of the types of algebraic systems of
equations.
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Recall that linear algebraic equations can be written in the standard form:
Ax=b. (8-63)

For an inviscid two-dimensional solution, a grid of 100 X 30 is typical. Thisis 3000 grid points,

and results in a matrix 3000 X 3000. In three dimensions, 250,000 ~ 300,000 grid points are
common, 500,000 points are not uncommon, and a million or more grid points are often
required. Clearly, you can't expect to use classical direct linear equation solvers for systems of
thissize.

Standard classification of algebraic equations depends on the characteristics of the elements
inthe matrix A. If A:

1. containsfew or no zero coefficients, it is called dense,
2. contains many zero coefficients, it is called sparse,

3. contains many zero coefficients, and the non-zero coefficients are close to
the main diagonal: the A matrix is called sparse and banded.

Dense Matrix

For a dense matrix direct methods are appropriate. Gauss elimination is an example of the
standard approach to these systems. LU decomposition*! is used in program PANEL, and is an
example of a standard method for solution of a dense matrix. These methods are not good for
large matrices (> 200-400 equations). The run time becomes huge, and the results may be
susceptible to round-off error.

Sparse and Banded

Special forms of Gauss elimination are available in many cases. The most famous banded
matrix solution applies to so-called tridiagonal systems:

é b o] U x u éd u
é ue ua é U
! b C 0 a Xo o 2Oy C
e 27 (e "2 u &2
é S 6 : u é
e , _ w8 u_éy U 8-64
: RN AR N
€ ' ' @ : 0 é: ¢
é : a é G
& 0 an-1 bn-1 CN-1E%<N- 14 N1
e ap by Bxy @ €dy @

The algorithm used to solve Eg. (8-64) is known as the Thomas algorithm. This algorithm is very
good and widely used. The Thomas agorithm is given in detail in the sidebar, and a sample
subroutine, tridag, isdescribed in App H-1.
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Solution of tridiagonal systems of equations

The Thomas Algorithm is a specia form of Gauss elimination that can be used to solve
tridiagona systems of equations. When the matrix is tridiagonal, the solution can be

obtained in O(n) operations, instead of O(n3/3). The form of the equation is:
aXi-1thX +Gx=d  i=1...,n

where a; and ¢, are zero. The solution agorithm® startswith k = 2,....,n:

e
b-1
b =hb¢ - Mo q.
d¢ =dy - mdi_q
Then:
d
X :b—”
n
and finaly, fork=n-1,...1:
o = i - GcX+1
k_ h( -

In CFD methods this algorithm is usually coded directly into the solution procedure,
unless machine optimized subroutines are employed on a specific computer.

General Sparse

These matrices are best treated with iterative methods. In this approach an initial estimate of
the solution is specified (often simply 0), and the solution is then obtained by repeatedly
updating the values of the solution vector until the equations are solved. This is also a natural
method for solving nonlinear algebraic equations, where the equations are written in the linear
equation form, and the coefficients of the A matrix are changed as the solution develops during
the iteration. Many methods are available.

There is one basic requirement for iterative solutions to converge. The elements on the
diagonal of the matrix should be large relative to the values off the diagonal. The condition can

be give mathematically as:
n

lail* alaj (8-65)

5t

=l

and for at least one row:
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n
lail> & [a] (8-66)
=
A matrix that satisfies this condition is diagonally dominant, and, for an iterative method to
converge, the matrix must be diagonally dominant. One example from aerodynamics of a matrix
that arises which is not diagonally dominant is the matrix obtained in the monoplane equation
formulation for the solution of the lifting line theory problem.

One class of iterative solution methods widely used in CFD is “relaxation.” As an example,
consider Laplace's Equation. Start with the discretized form, Eq.(8-31). The iteration proceeds
by solving the equation at each grid pointi,j a an iteration n+1 using values found at iteration n.

Thus the solution at iteration n+1 is found from:

1_1 !
fy =l fj iy + e+ -] (8-67)

The values of f are computed repeatedly until they are no longer changing. The “relaxation” of
the values of f to final converged values is roughly analogous to determining the solution for an
unsteady flow approaching a final steady state value, where the iteration cycle is identified as a
time-like step. Thisis an important analogy. Finaly, the idea of “iterating until the values stop
changing” as an indication of convergence is not good enough. Instead, we must check to see if
the finite difference representation of the partial differential equation using the current values of
f actually satisfies the partial differential equation. In this case, the value of the equation should
be zero, and the actual value of the finite difference representation is know as the residual. When
theresidual is zero, the solution has converged. Thisis the value that should be monitored during
the iterative process. Generally, as done in THINFOIL, the maximum residual and its location
in the grid, and the average residua are computed and saved during the iterative process to
examine the convergence history.

Note that this method uses all old values of f to get the new value of f. This approach is
known as point Jacoby iteration. Y ou need to save all the old values of the array as well as the

new values. This procedure converges only very slowly to the final converged solution.

A more natural approach to obtaining the solution is to use new estimates of the solution as
soon as they are available. Figure 8-19 shows how this is done using a simply programmed
systematic sweep of the grid. With a conventional sweep of the grid this becomes:

1
f ir,]j+1 = Z f ir']Fl,j + fln--'fj + f|r,]] 1 1f i':]j-’-_ll . (8-68)
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This scheme s called the point Gauss-Seidel iteration. It also elliminates the need to store all
the old iteration values as well as al the new iteration results, which was required with the point
Jacoby method.

P old values available

\ \ availabl ,A/,¢
\\

\ \ T Svaueto be found here

" sweep up each line, and
then move to the next,
starting at the bottom

Figure 8-19. Grid sweep approach to implement the Gauss-Seidel solution iteration scheme.

The point Gauss-Seidel iteration procedure also converges slowly. One method of speeding
up the convergence is to make the change to the value larger than the change indicated by the
normal Gauss-Seidel iteration. Since the methods that have been described are known as
relaxation methods, the idea of increasing the change is known as successive over-relaxation, or
SOR. Thisisimplemented by defining an intermediate value:

f n+1 [f i+1,j flmil] +f| J+l +f Inj+11] (8-69)

and then obtaining the new value as:
n+1 n+1 n _
L=t w6 0). (8-70)

The parameter w is a relaxation parameter. If it is unity, the basic Gauss-Seidel method is
recovered. How large can we make it? For most model problems, a stability analysis (presented
in the next section) indicates that w < 2 is required to obtain a converging iteration. The best
value of w depends on the grid and the actual equation. For most cases of practical interest the
best values of w must be determined through numerical experimentation. Figure 8-20 presents an
example of the manner in which the solution evolves with iterations. The value of f after 2000
iterations is approached very gradually. The figure also illustrates the time-like nature of the
iteration.
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002 . ! ! ' value at 2000 iterations
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Figure 8-20. Typical variation of f during solution iteration.

Another way to speed up the iteration is to sweep the flowfield a“line” at atime rather than a
point at a time. Applying over-relaxation to this process, the so-caled successive line over-
relaxtion, or SLOR, process is obtained. In this method a system of equations must be solved at
each line. Figure 8-21 illustrates this approach. The method is formulated so that the system of
equations is tridiagonal, and the solution is obtained very efficiently. This approach provides a
means of spreading the information from new values more quickly than the point by point sweep
of the flowfield. However, all of these approaches result in a very slow approach to the final
value during the iterations.

The effect of the value of the over relaxation parameter is shown in Figure 8-22. Here, the
convergence level is compared for various values of w. Notice that as convergence requirements
are increased, the choice of w becomes much more important. Unfortunately, the choice of w

may not only be dependent on the particular numerica method, but also on the particular
problem being solved.

Mathematically, the convergence rate of an iterative process depends on the value of the so-
called spectral radius of the matrix relating the value of the unknowns at one iteration to the
values of the unknowns at the previous iteration. The spectral radius is the absolute value of the
largest eigenvalue of the matrix. The spectral radius must be less than one for the iterative
process to converge. The smaller the value of the spectral radius, the faster the convergence.
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Figure 8-21. Solution approach for SLOR.
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Figure 8-22. Effect of the value of w on the number of iterations required to achieve
various levels of convergence.™

Another way to spread the information rapidly is to aternately sweep in both the x and y
direction. This provides a means of obtaining the final answers even more quickly, and is known
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as an aternating direction implicit or ADI method. Figure 8-23 illustrates the modification to the
SLOR method that is used to implement an ADI scheme. Several different methods of carrying
out the details of this iteration are available. The traditional approach for linear equations is
known as the Peaceman-Rachford method, and is described in standard textbooks, e.g., Ames
and Isaacson and Keller.™ This approach is also known as an approximate factorization or “AF’
scheme. It is known as AF1 because of the particular approach to the factorization of the
operator. A discussion of ADI including a computer program is given in the first edition of the
Numerical Recipes book.™

Another approach has been found to be more robust for nonlinear partial differentia
equations, including the case of mixed sub- and supersonic flow. In this case the time-like nature
of the approach to a final value is used explicitly to develop a robust and rapidly converging
iteration scheme. This scheme is known as AF2. This method was first proposed for steady flows
by Ballhaus, et al,'® and Catherall'” provided a theoretical foundation and results from numerical
experiments. A key aspect of ADI or any AF scheme is the use of a sequence of relaxation
paramters rathers a single value, as employed in the SOR and SLOR methods. Typicaly, the
sequence repeats each eight to eleven iterations.

Holst™ has given an excellent review and comparison of these methods. Figure 8-24, from
Holst,' shows how the different methods use progressively “better” information at a point to find
the solution with the fewest possible iterations. The advantage is shown graphically in Figure 8-
25, and is tabulated in Table 8-1 (also from Holst™®). Program THINFOIL, described in Section
8.7, uses these methods and App. G-1 contains a description of the theoretical implementation of
these methods. Further details are given in Chapter 11, Transonic Aerodynamics.

| ] | |
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Figure 8-23. ADI Scheme solution approach.
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Figure 8-24. Stencil of information (Holst™)

In addition to these methods, solutions can be obtained more rapidly by using so-called
multigrid methods. These methods accelerate the convergence iterative procedures by using a
sequence of grids of different densities and have become one of the most important techniques
used to solve field problems of all types. The overall levels of the solution are established by the
solution on a crude grid, while the details of the solution are established on a series of finer grids.
Typicaly, one iteration is made on each successively finer grid, until the finest grid is reached.
Then, one iteration is made on each successively courser grid. This process is repeated until the
solution converges. This procedure can reduce the number of fine grid iterations from possibly
thousands, as shown above, to from 10 to 30 iterations.

This approach to the solution of partial differential equations was highly developed by
Jameson®® for the solution of computational aerodynamics problems. He used the multigrid
approach together with an aternating direction method in an extremely efficient algorithm for
the two-dimensional transonic flow over an airfoil.

The details of the multigrid method are, as they say, beyond the scope of this chapter, and the
reader should consult the standard literature for more details. This includes the origina treatise
on the subject by Brandt™® (which includes an example FORTRAN program), another tutorial
which includes a FORTRAN code,® and more recent presentations by Briggs™ and Wesseling.”
The most recent Numerical Recipes™ book aso includes a brief description and sample program.
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Figure 8-25. Comparison of convergence rates of various relaxation schemes (Holst™). Thisis

the number of iterations estimated to be required to reduce the residual by one order of
magnitude

Table8-1
Convergence rate estimates for various relaxation schems (Holst™)

Number of iterations required
for a one order-of-magnitude

Algorithm reduction in error
Point - Jacobi 2/5
Point - Gauss- Seidel 1/ 5
SOR 1/(2Dp)
Line- Jacobi i)
Line- Gauss- Seidel 1/ 20F)
SLOR 1/2\2p
ADI - logp/2)/155
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To carry out the solution to large systems of equations, the standard numerical procedures
require that the approach be generalized dslightly from the one given above. Specificaly, we
define an operator, such that the partial differential equation is written (continuing to use
Laplace's equation as an example):

Lf =0 (8-71)
where
12 92
L= —s+—sy. (8-72)
e 1y

To solve this equation, we re-write the iteration scheme expressions given above in Equation.
(8-70) as:

N Cj +w Lf =0. (8-63)
&vy—‘ HL’
ntM iteration nt iteration
correction residual, = 0

when converged
solution is achieved

Thisform is known as the standard or deltaform. C is given by

n _¢n+l n _
G =1 - 1. (8-64)

The actual form of the N operator depends on the specific scheme chosen to solve the problem.
8.6 Stability Analysis

The analysis presented above makes this approach to solving the governing equations for
flowfields appear deceptively simple. In many cases it proved impossible to obtain solutions.
Frequently the reason was the choice of an inherently unstable numerical algorithm. In this
section we present one of the classical approaches to the determination of stability criteriafor use
in CFD. These types of analysis provide insight into grid and stepsize requirements (the term
stepsize tends to denote time steps, whereas a grid size is thought of as a spatial size). In

addition, this analysis is directly applicable to a linear equation. Applications in nonlinear
problems are not as fully developed.
Fourier or Von Neumann Stability Analysis
Consider the heat equation used previoudly,
2
Ju_, Tu (8-17)
It X
and examine the stability of the explicit representation of this equation given by Eg. (8-21).
Assume at t = O, that an error, possibly due to finite length arithmetic, is introduced in the form:
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u(x,t) =y () erX | (8-75)
m?r ks actigly Cﬁglt%rtr)ﬁ as'ess

where:
b - areal constant

j=v-1
Here we restate the explicit finite difference representation,

u(x,t + Dt) - u(xt) . u(x +Dxt) - 2u(x,t) +u(x - Dx,t) (8-21)
Dt - (Dx)? '

Substitute Eg. (8-75) into this equation, and solve for y (t + Df). Start with

y (t+ Dt)ejbx- y (t)ejbx y ® {ejb(X+DX) Zej bx +ejb(X Dx)} (8-76)
Dt (Dx)

and collecting terms:

y (t+D0el®X=y el +a %zy (t)ejbx{eijx_ 2+e-ijx} (8-77)
- 24 IPDX 4o~ jbDx
2cosbDx
Note that the e/™ term cancel s, and Eq. (8-77) can be rewritten:
Dt u
y(t+Dt)=y (t)el+a —2( 2+ 2 cosbDx)y
(Bx) G
¢ ae o
é =
e L (©78)
=y (1)€1- 2a —G1- cosbbx U
& T D¢ el
& ouble angIeformuIa L0
8 é =1- 28in® b= BH

which reduces to:

y (t+Dt) = y(t)el+2a—z§ 1+ 2sin? b @Ld

b (8-79)
Dt . o, DxU
= tél 4 b —
y() a(m)zsm 20

Now look at theratio of y (t + Dt) toy (t), which is defined as an amplification factor G,
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=Yt _5. 4a—thsin2b2(H. (8-80)
y@® e (Dx) 2 ¢
For stability the requirement is clearly:
|5 <1, (8-81)
which means that the error introduced decays. For arbitrary b, what does this condition mean?
Observe that the maximum value of the sine term is one. Thus, the condition for stability will be:

Dt
1- da ——| <1 (8-82)
(Dx)
|
and the limit will be:
[1- 4l |=1. (8-83)
Thelargest | that can satisfy thisrequirement is:
1- 4 =-1
or
-4 =-2, (8-84)
and
=1
2
Thus, thelargest | for |G| < 1 means
Dt 1
| =a——> <= (8-85)
(Dx) 2
or:
Dt 1
a—><=. (8-86)
(Dx)° 2

This sets the condition on Dt and Dx for stability of the model equation. This is a rea
restriction. It can be applied locally for nonlinear equations by assuming constant coefficients.
An analysis of the implicit formulation, Eq. (8-23), demonstrates that the implicit formulation is
unconditionally stable.

Is this restriction on Dt and Dx real? Rightmyer and Mortor?® provided a dramatic example
demonstrating this criteria. Numerical experiments can quickly demonstrate how important this
condition is. Figure 8-26 repeats the analysis of Rightmyer and Morton,” demonstrating the
validity of the analysis. Theinitial and boundary conditions used are:
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u(x,0=j (x)(given) forOExXEp
u0,t)=0, u(p,t)=0 fort>0

Figure 8-26a presents the development of the solution and shows the particular choice of
initial value shape, y, using a value of | < 1/2: 5/11. Figure 8-26b-d provide the results for a
valueof | > 1/2: 5/9. Theoreticaly, this stepsize will lead to an unstable numerical method, and
the figure demonstrates that thisis, in fact, the case.

Our model problem was parabolic. Another famous example considers a hyperbolic equation.
Thisisthe wave equation, where c is the wave speed:

2 2
% - c% =0. (8-87)

This equation represents one-dimensional acoustic disturbances. The two-dimensional small
disturbance equation for the potential flow can also be written in this form for supersonic flow.
Recall,

(1- ME N + 4y =0 (8-88)

or when the flow is supersonic:

LI (8-89)

f oy - =0
*mg -1 Y

and we see here that xis the timelike variable for supersonic flow.

Performing an analysis similar to the one above, the stability requirement for Eq. (8-87) is
found to result in a specific parameter for stability:

n=ct (8-90)
Dx
which is known as the Courant number. For many explicit schemes for hyperbolic equations, the
stability requirement is found to be
nl£ 1. (8-91)

This requirement is known as the CFL condition, after its discoverers. Courant, Friedrichs,
and Levy. It has a physical interpretation. The analytic domain of influence must lie within the
numerical domain of influence.

Recalling that the evolution of the solution for an elliptic system had a definite time-like
quality, a stability analysis for éliptic problems can aso be carried out. For the SOR method,
that analysis leads to the requirement that the over-relaxation factor, w, be less than two.
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u(x,t)

u(x,t)
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Figure 8-26. Demonstration of the step size stability criteriaon numerical solutions.
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Figure 8-26. Demonstration of the step size stability criteria on numerical solutions (concluded).
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8.7 Program THINFOIL

An example of the solution of Laplace’ s Equation by finite differences is demonstrated in the
program THINFOIL. This program offers the users options of SOR, SLOR, AF1 and AF2 to
solve the system of agebraic equations for the flow over a biconvex airfoil at zero angle of
attack. An unevenly spaced grid is used to concentrate grid points near the airfoil. The program
and the theory are described in Appendix G-1. It can be used to study the effects of grid
boundary location, number of grid points, and relaxation factor, w.

Figure 8-27 provides the convergence history for the case for which the comparison with the
exact solution is given below. Using SOR, this shows that hundreds of iterations are required to
reduce the maximum change between iteration approximately three orders of magnitude. Thisis
about the minimum level of convergence required for useful results. A check against results
converged further should be made. The reader should compare this with the other iteration
options.

10° T T T T T
* 5% Thick Biconvex Airfail
102 * 74 x 24 grid
* SORw=1.80 3
* AF 2 factor: 1.333 ]
10t E
Maximum SOR 3
Residual _ i
10 3 E
10" F 3
10° £ E
103 E
10 | | | | |
0 100 200 300 400 500 600

Iteration

Figure 8-27. Convergence history during relaxation solution.

The convergence history presented above is actualy the maximum residual of f at each
iteration. The solution is assumed to have converged when the residual goes to zero. Typical
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engineering practice is to consider the solution converged when the residual is reduced by 3 or 4
orders of magnitude. However, a check of the solution obtained at a conventional convergence
level with a solution obtained at much smaller residual (and higher cost) level should be made
before conducting an extensive analysis for a particular study.

The solution for a 5% thick biconvex airfoil obtained with THINFOIL is presented in
Figure 8-28, together with the exact solution. For this case the agreement with the exact solution
is excellent. The exact solution for a biconvex airfoil is given by Milton Van Dyke,* who cites
Milne-Thompson® for the derivation.

-0.30 i T T T T
[ 5% Thick Biconvex Airfail
8 (THINFOIL usesthin airfoil theory BC's)
-0.20 [ -
010 |
Cp I
0.00 [
0.10
o Cp(THINFOIL)
020  —— SPEa
I 74 x 24 grid
0.30 [ 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
X/C

Figure 8-28. Comparison of numerical solution with analytic solution for a biconvex airfoil.

The material covered in this chapter provides a very brief introduction to an area which has been
the subject of an incredible amount of research in the last thirty years. Extensions to include
ways to treat flows governed by nonlinear partial differential equations are described after some
basic problemsin establishing geometry and grids are covered in the next chapter.
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8.8 Exercises

1

How accurate are finite difference approximations? Over one cycle of asine wave,
compare first and second order accurate finite difference approximations of the 1st
derivative and the second order accurate 2nd derivative of the shape with the exact values.
How small does the step size have to be for the numerical results to accurate to 2
significant figure? 4 figures? 6? What conclusions about step size can you make?

Get some experience with the solution of Laplace’ s Equation using finite differences.

i) Download acopy of THINFOIL from the web page
i) Makeit run on your PC.
iii) Study the program to understand the procedure.

Pick as abasdline case: Xmin=-2.2, Xmax=3.2, Y max=2.4, and NUP=14, NDOWN=14,
NON=30, NABOVE=18

iv) Run SOR with w = 1.6 and see how many iterations to “convergence’
v) Runwithw=10, 1.50, 1.75, 1.90, 1.99 (400 iterations max)

vi) Plot the convergence history as afunction of iteration for each w. Notethat it is
standard procedure to plot the log of the residual. See examplesin the text.

vii) For onew, increase the number of grid points and compare (watch dimensions)

- convergence rate with the same w case above
- the surface pressure distribution results for the two grids
viii) Draw conclusions about SOR as a numerical method for solving PDE's.
iX) Repeat the studies using SLOR, AF1 and AF2. What do you conclude about the
relative convergence times and solution accuracy?

Examine the effect of the number of grid points on the solution obtained using program
THINFOIL. How many grid points are required for a grid converged solution?

Examine the effect of the location of the farfield boundary condition on the solution
obtained using program THINFOI L. What do you conclude?

Change the farfield boundary condition to set f =0, instead of f /n = 0. How does this
affect the solution? the convergence rate?

Modify program THINFOIL to obtain the solution to the flow over an NACA 4-Digit
airfoil thickness shape. Address the following issues:
i) storethe boundary condition values before the calculation beginsinstead of
recomputing each time the BC needs the value

i) recognizing that the slope at the leading edge isinfinite, assesstwo methods of
avoiding numerical problems

» place the leading edge between grid points
* use Riegels' factor to modify the slope boundary condition, replacing df/dx by
df /dx

1+( df/d x)?
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