The Chengdu Jian-20

Kris Douglas, Sam Kantor, Michael Palles and Grant Parrish

Configuration and Geometry

- Geometry estimated using 3-view drawing and graphics application
- Relatively long, high-volume fuselage compared to existing 5th generation fighters

J-20 AIRFRAME GEOMETRY						
LengthHeightSpanS wetV fuse(ft)(ft)(ft)(ft²)(ft³)						
70.5	14.4	42.6	3025.7	2377.3		

Configuration and Geometry

J-20 PLANFORM GEOMETRY										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Г (°)			
493.2	42.6	829.9	2.19	34.0	4.9	19.5	0.15	49.9	-8.4	-3.9

Wing-Mounted	Area (ft²)	% C _{ave}	% b/2	Centroid Location Relative to Nose (ft)			
Control Surface				х	У	z	
Aileron	20.8	13.0	38.7	55.7	17.2	0.1	
Trailing Edge Flap	30.8	23.2	32.0	56.1	10.3	0.6	
Leading Edge Slat	17.9	9.7	44.6	44.0	14.8	0.3	

Non-Wing-Mounted	Area	Average	Length Dihedra		Cent Relati	roid Locatio ve to Nose (n ft)
Control Surface (TC ²) Chord (TC) (TC) ()	()	Х	у	Z			
Canard	48.0	6.6	7.3	10.7	25.2	8.3	1.8
Tail	53.5	6.6	8.2	59.8	60.2	4.1	3.9
Aft Ventral Fin	16.7	4.9	3.4	-60.3	59.6	7.1	-2.2

Weight Estimation

Aircraft	Multiplier and Reference	Reference	Weights	CG Location Aft of
Component	wultiplier and kelerence	Value	(lb)	Nose Apex (ft)
Main Wing	9.0×Wing Area (ft ²)	493.2	4438.8	48.8
Horizontal Tail	4.0×Horizontal Tail Area (ft ²)	125.3	501.2	40.0
Vertical Tails	5.3×Vertical Tail Area (ft ²)	73.0	386.9	60.7
Fuselage	4.8×Fuselage Wetted Area (ft ²)	1566.7	7520.3	33.0
Landing Gear	0.033× GTOW Guess (lb)	75000	2475.0	37.9
Installed Engine	1.3×Engine Weight (lb)	5000	6500.0	53.2
"All-Else Empty"	0.17×GTOW Guess (lb)	75000	12750.0	33.0

Empty Weight (lb)	34572.2
Fuel and Payload (lb)	40427.8
CG Location (%MAC)	20
CG Estimate based on Gear Placement (%MAC)	18.6

Wing Loading (lb/ft ²)	90.5
Thrust-to-Weight	0.507
Thrust-to-Weight (Afterburners)	0.853

Gear Placement Guidelines

- Tipback angle between
 12 and 15 degrees
- Overturn angle between 54 and 63 degrees
- Results in CG location of approximately 18.6% MAC

Stability Characteristics

AVL 3.27 Model (960 Panels)

- Varied Number of Panels
 - Chordwise
 - Spanwise
- Multiple Runs Varying
 - Mach Number
 - Angle of Attack
 - Sideslip Angle
 - CG Location
- Produced
 - Stability Derivatives
 - Lift Induced Drag
 - Trim Drag
- Wing Airfoil: NACA 64206
- Tail Airfoils: 7% Thick Biconvex

Convergence History

Stability Derivatives

Drag Estimation: Viscous Drag

- Viscous Drag calculated using friction2k6 code on course website, at Mach 0.1 to 2.9 and altitudes of 15, 25, and 35 kft
- Combined skin friction and form drag coefficient did not vary with altitude (identical to four decimal places)

Drag Estimation: Lift-Induced Drag

- Calculated using AVL and FRICTION.exe
 - FRICTION.exe for profile drag
 - AVL for induced drag
- Trim drag included

Drag Estimation: Trim Drag

- Balanced 14% unstable
- Minimum trim drag near 30% unstable
- Suggests other factors drive static margin
- Varies little with Mach number

Drag Estimation: Wave Drag

- Wave drag estimated using AWAVE and awaveFileMake.m updated to include arbitrary fuselage shapes
- Little variation with angle-of-attack for small $\boldsymbol{\alpha}$

Drag Estimation: Wave Drag

 Volumetric wave drag represents a high percentage of the available thrust at high Mach

Drag Estimation: Total Drag

- Note the jump in drag at the sonic speed due to onset of wave drag
- Maximum Mach clearly impacted by engine performance

Performance: Maximum Speed

- M = 2.13 (shock forms on nose cone)
- M = 2.81 (shock forms on probe)
- Enough thrust to achieve $M \approx 2.5$

M = 2.25

M = 1.6+

J-20

M = 2.1-2.5

Performance: Range

- Max range calculated using Breguet Range equation and weight fractions
- V/C assumed constant at each speed for these calculations

Performance: Takeoff Distance & Climb Rate

- Ground roll required: 1398ft (black)
- Distance to achieve MIL 50' clearance requirement: 144ft (red)
- Total take-off distance: 1542ft
- Climb angle for best rate of climb: 19.2°

Conclusions

- Configuration characteristics
 - large internal volume (i.e. munitions capacity)
 - long range
 - supercruise capability
- Optimized for use as a long-range interceptor and air-to-surface attack platform
- Actual performance dependent upon engine development

References

- Lake, J. "Out in the Open, Chengdu's Jian-20." <u>Air International.</u> February 2011.
- Bharat Rakshak: Consortium of Indian Defence Websites. March 9, 2011. <u>http://forums.bharat-rakshak.com/viewtopic.php?f=3&t=3827&start=3800</u>
- Raymer, D. P. (2006). *Aircraft Design: A Conceptual Approach*. Reston, Virginia: American Institute of Aeronautics and Astronautics, Inc.
- Mason, W.H. "AOE 4124: Configuration Aerodynamics." <u>Department of Aerospace and</u> <u>Ocean Engineering at Virginia Tech.</u> March 20, 2011. <u>http://www.dept.aoe.vt.edu/~mason/Mason_f/ConfigAero.html</u>
- "Chengdu J-20: Stealthy Multi-Role Fighter." <u>MilitaryToday.com.</u> March 1, 2011. <u>http://www.military-today.com/aircraft/j20.htm</u>
- Sweetman, B. "J-20 Denial Is Not an Option." <u>Aviation Week.</u> March 12, 2011. <u>http://www.aviationweek.com/aw/blogs/defense</u>

