Stability and Control Derivative Estimation and Engine-Out Analysis

by
Joel Grasmeyer
Graduate Research Assistant
January, 1998

VPI-AOE-254

This work is supported under NASA Grant NAG 1-1852

W.H. Mason, Faculty Advisor

Multidisciplinary Analysis and Design Center for Advanced Vehicles
Department of Aerospace and Ocean Engineering
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061

Contents

List of Figures. iii
List of Tables iii
Nomenclature iv
Symbols. iv
Subscripts v

1. Introduction 1
1.1. Control Surface Sign Conventions 1
2. Engine-out Methodology 1
2.1. Required Yawing Moment Coefficient 2
2.2. Maximum Available Yawing Moment Coefficient. 4
2.3. Why can't the vertical tail achieve its maximum lift coefficient? 5
3. Stability and Control Derivative Estimation 6
3.1. Angle of Sideslip Derivatives 6
3.1.1. Sideforce Coefficient. 6
3.1.2. Rolling Moment Coefficient. 8
3.1.3. Yawing Moment Coefficient. 11
3.2. Lateral Control Derivatives 12
3.2.1. Sideforce Coefficient 12
3.2.2. Rolling Moment Coefficient. 12
3.2.3. Yawing Moment Coefficient. 13
3.3. Directional Control Derivatives 13
3.3.1. Sideforce Coefficient 13
3.3.2. Rolling Moment Coefficient. 13
3.3.3. Yawing Moment Coefficient. 13
4. Validation 14
4.1. Boeing 747-100 14
5. Input 15
6. Output. 15
References 17
Appendix: Code Listing for Stability Subroutine (stab.f) 18

List of Figures

1-1 Control surface sign conventions .. 1
2-1 Engine-out geometry .. 2
2-2 Engine windmilling drag validation.. 3

List of Tables

4-1 Comparison of stability and control derivatives for 747-100 14
4-2 Stability and control derivative correction factors...................................... 14

Nomenclature

Symbols

A	aspect ratio
b	wing span
$b_{\text {vtail }}$	vertical tail span
$C_{D_{\text {evm }}}$	drag coefficient due to windmilling of failed engine
C_{L}	lift coefficient
$C_{L_{\alpha_{\text {hail }}}}$	lift curve slope of the horizontal tail
$C_{l_{\alpha_{\text {vail }}}}$	section lift curve slope of vertical tail
$C_{l \alpha_{\alpha_{\text {vail }} \text { eft }}}$	effective lift curve slope of vertical tail
$C_{L_{\alpha_{w b}}}$	lift curve slope of the wing and body
$C_{n_{\text {avail }}}$	available yawing moment coefficient at the engine-out flight condition
$C_{n_{\text {req }}}$	required yawing moment coefficient at the engine-out flight condition
$C_{y \beta}$	variation of sideforce coefficient with yaw angle
$C_{l /}$	variation of rolling moment coefficient with yaw angle
$C_{n \beta}$	variation of yawing moment coefficient with yaw angle
$D_{\text {ewm }}$	drag due to windmilling of failed engine
$d_{\text {fuse }}$	maximum fuselage diameter
$d_{\text {fuse }}^{\text {vail }}$	depth of the fuselage at the vertical tail quarter-chord position
d_{i}	engine inlet diameter
$d_{\text {nacelle }}$	nacelle diameter
l	horizontal distance between CG and vertical surface
l_{e}	buttline of outboard engine
$L_{\text {ext }}$	external rolling moment
$k_{C_{\text {y }}}$	empirical factor for vertical tail sideslip derivative estimation
K^{\prime}	empirical correction factor for large control deflections
K_{b}	flap span factor
K_{H}	factor accounting for the relative size of the horizontal and vertical tails
$K_{M_{\Gamma}}$	compressibility correction to dihedral
K_{N}	empirical factor for body and body + wing effects
$K_{R_{l}}$	Reynold's number factor for the fuselage
$K_{M_{\Lambda}}$	compressibility correction to sweep
$K_{w b}$	factor for fuselage loss in the lift curve slope
$K_{w b i}$	wing-body interference factor
$l_{t v}$	horizontal distance between CG and engine nozzle
$l_{\text {vtail }}$	horizontal distance between CG and aerodynamic center of vertical tail

M	Mach number
$N_{\text {engines }}$	number of engines
$N_{\text {req }}$	required yawing moment
$N_{\text {max }}$	maximum attainable yawing moment
$q_{\text {eo }}$	dynamic pressure at the engine-out flight condition
$S_{\text {htail }}$	horizontal tail area
S_{o}	cross-sectional area of fuselage
$S_{\text {ret }}$	wing reference area
$S_{\text {vtail }}$	vertical tail area
T	maximum available thrust at given mach and altitude
T_{o}	static thrust at sea level
V_{n}	ratio of mean nozzle exit velocity to freestream velocity
$\stackrel{V}{V}$	ratio of mean nozzle exit velocity to freestream velocity
$Y_{\text {ext }}$	external sideforce
$z_{t v}$	vertical distance between CG and engine nozzle
$z_{\text {vtail }}$	vertical distance between CG and aerodynamic center of vertical tail
$\Delta C_{L_{c c}}$	change in vertical tail C_{L} due to circulation control
α	angle of attack (rad)
β	sideslip angle (positive with relative wind from right)
β_{M}	compressibility factor $=\sqrt{1-M^{2}}$
δ_{a}	aileron deflection (positive for right up, left down)
δ_{r}	rudder deflection (positive right)
$\eta_{\text {htail }}$	dynamic pressure ratio at the horizontal tail
ϕ	bank angle (positive right roll)
Γ	dihedral angle (deg)
κ	ratio of actual lift curve slope to 2π
$\Lambda_{c / 2}$	half-chord sweep angle
$\Lambda_{c / 4}$	quarter-chord sweep angle
σ	ratio of density at a given altitude to density at sea level

Subscripts

avail	available
$b s$	body side
$c c$	circulation control
eff	effective
fuse	fuselage
htail	horizontal tail
req	required

tv thrust vectoring
vtail vertical tail
wb wing-body
wing wing
The FORTRAN code variable names and definitions are given in the Appendix.

1. Introduction

This report describes the estimation of stability and control derivatives using the method of Reference [1] (which is essentially DATCOM [2]), and the establishment of the engine-out constraint based on the required yawing moment coefficient. The use of thrust vectoring and circulation control to provide additional yawing moment is also described.

1.1. Control Surface Sign Conventions

The control surface sign conventions are defined such that a positive control deflection generates a positive roll or yaw moment according to the right hand rule with a conventional body axis coordinate system, as shown in Figure 1-1. A positive aileron deflection is defined with the right aileron up and the left aileron down. The aileron deflection is the average deflection of the two surfaces from the neutral position. A positive rudder deflection is defined with the trailing edge to the right, as viewed from above.

Figure 1-1: Control surface sign conventions

2. Engine-out Methodology

The engine-out constraint is established by constraining the maximum available yawing moment coefficient ($C_{n_{\text {avail }}}$) to be greater than the required yawing moment coefficient $\left(C_{n_{\text {req }}}\right)$ for the engine-out flight condition:

$$
\begin{equation*}
C_{n_{\text {avail }}} \geq C_{n_{\text {req }}} \tag{2-1}
\end{equation*}
$$

2.1. Required Yawing Moment Coefficient

The required yawing moment coefficient is the yawing moment coefficient required to maintain steady flight with one failed outboard engine at 1.2 times the stall speed, as specified by FAR 25.149. The remaining outboard engine must be at the maximum available thrust, and the bank angle cannot be larger than 5°.

Figure 2-1 shows the engine-out geometry for a twin-engine configuration. The yawing moment coefficient required to maintain steady flight with an inoperative engine is given by:

$$
\begin{equation*}
C_{n_{\text {req }}}=\frac{\left(T+D_{\text {ewm }}\right) l_{e}}{q S_{\text {ref }} b} \tag{2-2}
\end{equation*}
$$

where T is the maximum available thrust at the given Mach number and altitude, and $D_{\text {ewm }}$ is the drag due to the windmilling of the failed engine.

Figure 2-1: Engine-out geometry
The drag due to the windmilling of the failed engine is calculated using the method described in Appendix G-8 of Torenbeek [3].

$$
\begin{equation*}
D_{\text {ewm }}=q S_{r e f} C_{D_{\text {evm }}} \tag{2-3}
\end{equation*}
$$

$$
\begin{equation*}
C_{D_{\text {evm }}}=\frac{0.0785 d_{i}^{2}+\frac{2}{1+0.16 M^{2}} \frac{\pi}{4} d_{i}^{2} \frac{V_{n}}{V}\left(1-\frac{V_{n}}{V}\right)}{S_{\text {ref }}} \tag{2-4}
\end{equation*}
$$

where:

$$
d_{i} \text { is the engine inlet diameter }
$$

M is the Mach number
V_{n} is the nozzle exit velocity
$\frac{V_{n}}{V} \cong 0.92$ for high bypass ratio engines
$S_{\text {ref }}$ is the wing reference area
Torenbeek's windmilling drag equation was validated against the flight test data of the 747. As shown in Figure 2-2, Torenbeek's equation shows relatively good agreement with the flight test data over a range of Mach numbers.

Figure 2-2: Engine windmilling drag validation

2.2. Maximum Available Yawing Moment Coefficient

The maximum available yawing moment coefficient is obtained at an equilibrium flight condition with a given bank angle (ϕ) and a given maximum rudder deflection $\left(\delta_{r}\right)$. The bank angle is limited to a maximum of 5° by FAR 25.149 , and the aircraft is allowed to have some sideslip (β).

The sideslip angle is found by summing the forces along the y-axis:

Sideforce Equation:

$$
\begin{equation*}
C_{y_{\delta_{a}}} \delta_{a}+C_{y_{\delta_{r}}} \delta_{r}+C_{y_{\beta}} \beta+C_{L} \sin \phi-\frac{T \sin \varepsilon}{q S_{\text {ref }}}-\Delta C_{L_{c c}} \frac{S_{v t a i l}}{S_{\text {ref }}}=-\frac{Y_{e x t}}{q S_{r e f}} \tag{2-5}
\end{equation*}
$$

In a conventional control system, the vertical tail is the dominant controller for generating a yawing moment. However, thrust vectoring and circulation control can be used to generate additional yawing moments. Since the engine-out condition is a critical constraint for a truss-braced wing with tip-mounted engines, the capability to model thrust vectoring and circulation control on the vertical tail was added to the code. The fifth term in the equation above $\left(\frac{T \sin \varepsilon}{q S_{\text {re }}}\right)$ is due to the thrust being vectored at an angle ε to the centerline, and the sixth term ($\left.\Delta L_{L \times} S_{\text {sual }} S_{\text {cet }}\right)$ is due to the change in C_{L} at the vertical tail due to circulation control. Since the external sideforce $\left(Y_{e x t}\right)$ is zero, and $C_{y_{\delta_{a}}}$ is assumed to be zero, this equation can be simplified and solved for the sideslip angle:

$$
\begin{equation*}
\beta=\frac{-C_{y_{\delta_{r}}} \delta_{r}-C_{L} \sin \phi+\frac{T \sin \varepsilon}{q S_{r e f}}+\Delta C_{L_{c c}} \frac{S_{v t a i l}}{S_{r e f}}}{C_{y_{\beta}}} \tag{2-6}
\end{equation*}
$$

The aileron deflection required to maintain equilibrium flight is obtained by summing the rolling moments about the x-axis:

Rolling Moment Equation:

$$
\begin{equation*}
C_{l_{\delta_{a}}} \delta_{a}+C_{l_{\delta_{r}}} \delta_{r}+C_{l_{\beta}} \beta-\frac{T \sin \varepsilon}{q S_{r e f}} \frac{z_{t v}}{b}-\Delta C_{L_{c c}} \frac{S_{v t a i l}}{S_{\text {ref }}} \frac{z_{v t a i l}}{b}=-\frac{L_{e x t}}{q S_{r e f} b} \tag{2-7}
\end{equation*}
$$

By setting the external rolling moment ($L_{e x}$) equal to zero, this equation can be solved for the aileron deflection:

$$
\begin{equation*}
\delta_{a}=\frac{-C_{l_{\delta_{r}}} \delta_{r}-C_{l_{\beta}} \beta+\frac{T \sin \varepsilon}{q S_{r e f}} \frac{z_{t v}}{b}+\Delta C_{L_{c c}} \frac{S_{\text {vtail }}}{S_{\text {ref }}} \frac{z_{\text {vtail }}}{b}}{C_{l_{\delta_{a}}}} \tag{2-8}
\end{equation*}
$$

The rudder deflection is initially set to the given maximum allowable steady-state value, and the sideslip angle and aileron deflection for equilibrium flight are determined by Eqs. (2-6) and (2-8). The maximum allowable steady-state deflection is typically 20° 25°. This allows for an additional 5° of deflection for maneuvering. A warning statement is printed if the calculated deflection exceeds the maximum allowable deflection.

The maximum available yawing moment is found by summing the contributions due to the ailerons, rudder, and sideslip:

Yawing Moment Equation:

$$
\begin{equation*}
C_{n_{\text {vvail }}}=C_{n_{\delta_{a}}} \delta_{a}+C_{n_{\delta_{r}}} \delta_{r}+C_{n \beta} \beta+\frac{T \sin \varepsilon}{q S_{r e f}} \frac{l_{t v}}{b}+\Delta C_{L_{c c}} \frac{S_{\text {vtail }}}{S_{\text {ref }}} \frac{l_{v t a i l}}{b} \tag{2-9}
\end{equation*}
$$

This value of the available yawing moment coefficient is then constrained in the optimization problem to be greater than the required yawing moment coefficient, as shown in Eq. (2-1).

2.3. Why can't the vertical tail achieve its maximum lift coefficient?

The Output section shows the results of the above methodology for a 747 with no thrust vectoring and no circulation control. The maximum available yawing moment is achieved with a bank angle of 5° and a sideslip angle of 3°. This orientation would be used for a failure of the left engine. The pilot or automatic flight control system would roll the aircraft 5° in the direction of the operating engine and yaw slightly away from it. Note that in this flight condition, the vertical tail is only flying at an angle of attack of 3°, which is far below the angle of attack corresponding to the maximum lift coefficient of a typical vertical tail. One might expect that the maximum available yawing moment is obtained when the vertical tail is flying at its maximum lift coefficient, but this is not true because the equilibrium equations above must always be satisfied for steady flight. To illustrate this point, Eq. (2-5) has been solved for the bank angle with no thrust vectoring and no circulation control:

$$
\begin{equation*}
\phi=\sin ^{-1}\left[-\frac{\left(C_{y_{\delta_{r}}} \delta_{r}+C_{y_{\beta}} \beta\right)}{C_{L}}\right] \tag{2-10}
\end{equation*}
$$

According to Reference [5], the angle of attack corresponding to the maximum lift coefficient for a NACA 66(215)-216 airfoil section with 15° of flap deflection is 15°. Therefore if the vertical tail in the 747 example mentioned above were flying at the maximum lift coefficient, the rudder deflection $\left(\delta_{r}\right)$ would be 15°, and the vertical tail angle of attack (β) would be at least 15° (3D effects would require an even larger angle).

If these values are plugged into Eq. (2-10) with a C_{L} of 1.11 and the 747 values for the stability and control derivatives (as given in Nelson [6]), the bank angle required to maintain equilibrium flight is 15.5°. Since this bank angle is much larger than the maximum allowable bank angle of 5° specified in FAR 25.149, the vertical tail cannot fly at the maximum lift coefficient and maintain equilibrium flight.

This brief analysis shows the need for circulation control or thrust vectoring. Since both of these mechanisms can generate a larger side force at the vertical tail without requiring a change in β, they can create a larger yawing moment coefficient at the same flight condition.

3. Stability and Control Derivative Estimation

The stability and control derivatives are estimated using the method of Roskam [1], which was adapted from the USAF Stability and Control DATCOM [2].

MacMillin [7] used a similar approach for the High-Speed Civil Transport. In MacMillin's work, however, the baseline stability and control derivatives were estimated using a vortex-lattice method, and the DATCOM method was only used to augment these baseline values with the effects due to changing the geometry of the vertical tail.

The Fortran source code for the stability subroutine is shown in the Appendix.

3.1. Angle of Sideslip Derivatives

3.1.1. Sideforce Coefficient

The variation of sideforce coefficient with sideslip angle has contributions from the wing, fuselage, and vertical tail. Note that all of the stability and control derivatives have units of rad^{-1}.

$$
\begin{equation*}
C_{y_{\beta}}=C_{y_{\beta_{\text {wing }}}}+C_{y_{\beta_{\text {puse }}}}+C_{y_{\beta_{\text {vuail }}}} \tag{3-1}
\end{equation*}
$$

The wing contribution is a function of the dihedral angle (in deg).

$$
\begin{equation*}
C_{y_{\text {Bwing }}}=-0.0001|\Gamma| \frac{180}{\pi} \tag{3-2}
\end{equation*}
$$

The fuselage and nacelle contributions are estimated by:

$$
\begin{equation*}
C_{y_{\text {Bruse }}}=-2 K_{w b i} \frac{S_{o}}{S_{r e f}} \tag{3-3}
\end{equation*}
$$

where:
$K_{\text {wbi }}$ is the wing-body interference factor, which is determined from a curve fit to Figure 7.1 in Roskam:

$$
\begin{array}{cc}
K_{\text {wbi }}=0.85 \frac{-z_{\text {wing }}}{d_{\text {fuse }} / 2}+1 & \text { for } \frac{z_{\text {wing }}}{d_{\text {fuse }} / 2}<0 \\
K_{\text {wbi }}=0.5 \frac{z_{\text {wing }}}{d_{\text {fuse }} / 2}+1 & \text { for } \frac{z_{\text {wing }}}{d_{\text {fuse }} / 2}>0 \tag{3-5}
\end{array}
$$

and

$$
\begin{equation*}
S_{o} \cong \pi\left(\frac{d_{\text {fuse }}}{2}\right)^{2}+N_{\text {engines }} \pi\left(\frac{d_{\text {nacelle }}}{2}\right)^{2} \tag{3-6}
\end{equation*}
$$

The contribution of a vertical tail in the plane of symmetry is found from:

$$
\begin{equation*}
C_{y_{\beta_{v a i l}}}=-k_{C_{y \beta_{v}}} C_{l_{\alpha_{\text {vailef }}}}\left(1+\frac{d \sigma}{d \beta}\right) \eta_{v} \frac{S_{v \text { vail }}}{S_{\text {ref }}} \tag{3-7}
\end{equation*}
$$

where:
$k_{C_{y_{p_{v}}}}$ is determined from a curve fit to Figure 7.3 in Roskam:

$$
\begin{align*}
& k_{C_{y \beta_{v}}}=0.75 \quad \text { for } \frac{b_{\text {vtail }}}{d_{f_{\text {use }}}}<2 \tag{3-8}
\end{align*}
$$

$$
\begin{align*}
& k_{C_{y \beta_{v}}}=1 \quad \text { for } \frac{b_{v \text { tail }}}{d_{\text {fuse }_{\text {vail }}}}>3.5 \tag{3-10}\\
& C_{l_{\alpha_{\text {vaileff }}}}=\frac{2 \pi A}{2+\sqrt{\frac{A^{2} \beta_{M}^{2}}{\kappa^{2}}\left(1+\frac{\tan ^{2} \Lambda_{c / 2}}{\beta_{M}^{2}}\right)+4}} \tag{3-11}\\
& \kappa=\frac{C_{l \alpha_{\text {vail }}}}{2 \pi} \tag{3-12}
\end{align*}
$$

$C_{l_{\alpha_{\text {vail }}}}$ is assumed to have a value of 2π.

$$
\begin{gather*}
\beta_{M}=\sqrt{1-M^{2}} \tag{3-13}\\
\left(1+\frac{d \sigma}{d \beta}\right) \eta_{v}=0.724+3.06 \frac{\left(\frac{S_{v t a i l}}{S_{\text {ref }}}\right)}{1+\cos \Lambda_{c / 4}}+0.4 \frac{z_{w}}{d}+0.009 \mathrm{~A} \tag{3-14}
\end{gather*}
$$

Note that the effective aspect ratio of the vertical tail must be used in place of A in Eqs. (3-11) and (3-14).

$$
\begin{equation*}
A_{v_{\text {tai }}^{\text {eff }}}=\frac{A_{V(B)}}{A_{V}} A_{v t a i}\left[1+K_{H}\left(\frac{A_{V(H B)}}{\left.\left.A_{V(B)}-1\right)\right]}\right.\right. \tag{3-15}
\end{equation*}
$$

where:
$\frac{A_{V(B)}}{A_{V}}$ is the ratio of the aspect ratio of the vertical tail in the presence of the body to that of the isolated panel, which is determined from the following curve fit to Figure 7.5 in Roskam, with the taper ratio assumed to be less than or equal to 0.6 : tail and body to that of the tail in the presence of the body alone. It is assumed to have a value of 1.1, based on Figure 7.6 in Roskam. This is valid for the 747 and 777 tail geometries.
K_{H} is a factor accounting for the relative size of the horizontal and vertical tails, which is determined from the following curve fit to Figure 7.7 in Roskam:

$$
\begin{equation*}
K_{H}=-0.0328\left(\frac{S_{\text {htail }}}{S_{\text {vtail }}}\right)^{4}+0.2885\left(\frac{S_{\text {htail }}}{S_{\text {vtail }}}\right)^{3}-0.9888\left(\left.\frac{S_{\text {htail }}}{S_{\text {vtail }}}\right|^{2}+1.6554\left(\frac{S_{\text {htail }}}{S_{\text {vtail }}}\right)-0.0067\right. \tag{3-17}
\end{equation*}
$$

3.1.2. Rolling Moment Coefficient

The variation of rolling moment coefficient with sideslip angle has contributions from the wing-body, horizontal tail, and vertical tail.

$$
\begin{equation*}
C_{l_{\beta}}=C_{l_{\beta_{w b}}}+C_{y_{\text {Bhaili }}}+C_{y_{\beta_{v \text { vail }}}} \tag{3-18}
\end{equation*}
$$

The contribution from the wing-body is estimated by:

$$
\begin{equation*}
C_{l_{\beta_{w b}}}=\left[C_{L}\left(\left(\frac{C_{l_{\beta}}}{C_{L}}\right)_{\Lambda_{c / 2}} K_{M_{\Lambda}} K_{f}+\left(\frac{C_{l_{\beta}}}{C_{L}}\right)_{A}\right)+\Gamma\left(\frac{C_{l_{\beta}}}{\Gamma} K_{M_{\Gamma}}+\frac{\Delta C_{l_{\beta}}}{\Gamma}\right)+\left(\Delta C_{l_{\beta}}\right)_{Z_{w}}\right] \frac{180}{\pi} \tag{3-19}
\end{equation*}
$$

where:
$\left(\frac{C_{l_{\beta}}}{C_{L}}\right)_{\Lambda_{c / 2}}$ is the wing sweep contribution, obtained from the following curve fit to Figure 7.11 in Roskam for $\lambda=0.5$:

$$
\begin{equation*}
\left(\frac{C_{l_{\beta}}}{C_{L}}\right)_{\Lambda_{c / 2}}=\frac{-0.004 \Lambda_{c / 2}}{45} \frac{180}{\pi} \tag{3-20}
\end{equation*}
$$

$K_{M_{\wedge}}$ is the compressibility correction to sweep, assumed to have a value of 1.0 , based on Figure 7.12 in Roskam. This is valid for the 747 and 777 geometries at low Mach numbers.
K_{f} is the fuselage correction factor, assumed to have a value of 0.85 , based on Figure 7.13 in Roskam. This is valid for the 747 and 777 geometries.
$\left(\frac{C_{l_{\beta}}}{C_{L}}\right)_{A}$ is the aspect ratio contribution, assumed to have a value of 0 , based on Figure 7.14 in Roskam for $\lambda=0.5$ and a high aspect ratio. This is valid for the 747 and 777 geometries.
$\frac{C_{l_{\beta}}}{\Gamma}$ is the wing dihedral effect, obtained from a curve fit to Figure 7.15 in Roskam for $\lambda=0.5$, low sweep, and a high aspect ratio. Note that for extremely high aspect ratios, the curve fit is an extrapolation from the plot in Roskam.
$K_{M_{\Gamma}}$ is the compressibility correction to dihedral, assumed to have a value of 1.0 , based on Figure 7.16 in Roskam. This is valid for the 747 and 777 geometries at low Mach numbers.

$$
\begin{equation*}
\frac{\Delta C_{l_{\beta}}}{\Gamma}=-0.0005 \sqrt{A}\left(\frac{d}{b}\right)^{2} \tag{3-21}
\end{equation*}
$$

$$
\begin{gather*}
d=\sqrt{\frac{\pi\left(\frac{d_{\text {fuse }}}{2}\right)^{2}}{0.7854}} \tag{3-22}\\
\left(\Delta C_{l_{\beta}} Z_{Z_{w}}=\frac{-1.2 \sqrt{A} z_{w} 2 d}{180 / \pi \quad b \quad b}\right. \tag{3-23}
\end{gather*}
$$

The contribution from the horizontal tail is approximately zero, since it has a small lift coefficient, small dihedral, and small area relative to the wing.

$$
\begin{equation*}
C_{l_{\text {phail }}}=0 \tag{3-24}
\end{equation*}
$$

The contribution from the vertical tail is estimated by:

$$
\begin{equation*}
C_{l_{\text {vvail }}}=C_{y_{y_{v u t a i l}}} \frac{\left(z_{v t a i l} \cos \alpha-l_{v \text { vail }} \sin \alpha\right)}{b} \tag{3-25}
\end{equation*}
$$

The fuselage angle of attack is the ratio of the lift coefficient to the lift curve slope minus the effective wing incidence angle. The effective wing incidence angle with 20° of flap deflection is approximately 5°.

$$
\begin{equation*}
\alpha=\frac{C_{L}}{C_{L_{\alpha}}}-5.0 \frac{\pi}{180} \tag{3-26}
\end{equation*}
$$

The aircraft lift curve slope is calculated by:

$$
\begin{equation*}
C_{L_{\alpha}}=C_{L_{\alpha_{w b}}}+C_{L_{\alpha_{h a i l}}} \eta_{\text {htail }} \frac{S_{\text {htail }}}{S_{\text {ref }}} \tag{3-27}
\end{equation*}
$$

where:

$$
\begin{equation*}
C_{L_{\alpha_{w b}}}=K_{w b} C_{L_{\alpha_{w}}} \tag{3-28}
\end{equation*}
$$

$C_{L_{\alpha_{k}}}$ and $C_{L_{\alpha_{\text {hail }}}}$ are found using the following equation with the appropriate values ofaspect ratio and sweep.

$$
\begin{gather*}
C_{L_{\alpha}}=\frac{2 \pi A}{2+\sqrt{\frac{A^{2} \beta_{M}^{2}}{\kappa^{2}}\left(1+\frac{\tan ^{2} \Lambda_{\mathrm{c} / 2}}{\beta_{M}^{2}}\right)+4}} \tag{3-29}\\
\beta_{M}=\sqrt{1-M^{2}} \tag{3-30}
\end{gather*}
$$

The dynamic pressure ratio at the horizontal tail is assumed to be 0.95 .

$$
\begin{equation*}
\eta_{\text {htail }}=0.95 \tag{3-31}
\end{equation*}
$$

3.1.3. Yawing Moment Coefficient

The variation of yawing moment coefficient with sideslip angle has contributions from the wing, fuselage, and vertical tail.

$$
\begin{equation*}
C_{n_{\beta}}=C_{n_{\text {Buing }}}+C_{n_{\text {Pruse }}}+C_{n_{\text {Buail }}} \tag{3-32}
\end{equation*}
$$

The wing contribution to the yawing moment coefficient is negligible for small angles of attack.

$$
\begin{equation*}
C_{n_{\beta_{\text {wing }}}} \cong 0 \tag{3-33}
\end{equation*}
$$

The fuselage contribution to the yawing moment coefficient is determined by:

$$
\begin{equation*}
C_{n_{\text {Bfuse }}}=-K_{N} K_{R_{l}} \frac{S_{b s}}{S_{\text {ref }}} \frac{l_{\text {fuse }}}{b} \frac{180}{\pi} \tag{3-34}
\end{equation*}
$$

where:
K_{N} is an empirical factor for body and body + wing effects, assumed to have a value of 0.0011 , based on Figure 7.19 in Roskam. This is valid for the 747 and 777 geometries.
$K_{R_{l}}$ is a Reynolds number factor for the fuselage, obtained from a curve fit to Figure 7.20 in Roskam, based on the calculated fuselage Reynolds number.

The fuselage side area is approximated as 83% of the fuselage length times diameter. This is a good approximation for the 747 and 777 geometries.

$$
\begin{equation*}
S_{b s}=0.83 l_{\text {fuse }} d_{\text {fuse }} \tag{3-35}
\end{equation*}
$$

The contribution from the vertical tail is estimated by the following equation, where α is defined in Eq. (3-26).

$$
\begin{equation*}
C_{n_{\beta_{v a i l}}}=-C_{y_{\beta_{\text {vail }}}} \frac{\left(l_{\text {vtail }} \cos \alpha+z_{\text {vtail }} \sin \alpha\right)}{b} \tag{3-36}
\end{equation*}
$$

3.2. Lateral Control Derivatives

3.2.1. Sideforce Coefficient

The variation of sideforce coefficient with aileron deflection is assumed to be zero.

$$
\begin{equation*}
C_{y_{\delta_{a}}}=0 \tag{3-37}
\end{equation*}
$$

3.2.2. Rolling Moment Coefficient

The first step in the estimation of the rolling moment coefficient is to estimate the rolling moment effectiveness parameter $\left(\beta C_{l_{\delta}}^{\prime} / \kappa\right)$ from Figure 11.1 in Roskam. For 747 and 777like configurations with $\lambda=0.5$ and $M=0.25$, it is approximately 0.18 .

The rolling effectiveness of two full-chord controls is estimated by:

$$
\begin{equation*}
C_{l_{\delta}}^{\prime}=\frac{\kappa}{\beta_{M}}\left(\frac{\beta C_{l_{\delta}}^{\prime}}{\kappa}\right) \tag{3-38}
\end{equation*}
$$

where the section lift curve slope is assumed to be $2 \pi / \beta_{M}$, and κ is the ratio of the actual section lift curve slope to $2 \pi / \beta_{M}$.

The aileron lift effectiveness is estimated from Roskam's Figures 10.5 and 10.6 with $c_{f} / c=0.20$ and $t / c=0.08$. These assumptions result in a value of 3.5 from Figure 10.5, and a value of 1.0 from Figure 10.6 The aileron effectiveness is given by:

$$
\begin{gather*}
C_{l_{\delta}}=\left(\frac{C_{l_{\delta}}}{C_{l_{\text {万heory }}}}\right) C_{l_{\delta \text { Theory }}} \tag{3-39}\\
\alpha_{\delta}=\frac{C_{l_{\delta}}}{C_{l_{\alpha}}} \tag{3-40}
\end{gather*}
$$

The rolling effectiveness of the partial-chord controls is estimated by:

$$
\begin{equation*}
C_{l_{\delta}}=\alpha_{\delta} C_{l_{\delta}}^{\prime} \tag{3-41}
\end{equation*}
$$

The δ in the equation above refers to the sum of the left and right aileron deflections. Since we define the aileron deflection $\left(\delta_{a}\right)$ as one half of the sum of the deflections, the variation of rolling moment coefficient with aileron deflection is given by:

$$
\begin{equation*}
C_{l_{\delta_{\alpha}}}=\frac{C_{l_{\delta}}}{2} \tag{3-42}
\end{equation*}
$$

3.2.3. Yawing Moment Coefficient

The variation of yawing moment coefficient with aileron deflection is given by:

$$
\begin{equation*}
C_{n \delta_{a}}=K C_{L} C_{l_{\delta_{a}}} \tag{3-43}
\end{equation*}
$$

where K is estimated from Figure 11.3 in Roskam with $\lambda=0.5, \mathrm{~A}=8$, and $\eta_{\mathrm{i}}=0.74$.

3.3. Directional Control Derivatives

3.3.1. Sideforce Coefficient

The variation of sideforce coefficient with rudder deflection is given by:

$$
\begin{equation*}
C_{y_{\delta_{r}}}=C_{l_{\alpha_{\text {vaileff }}}} \frac{\left.\left(\alpha_{\delta}\right)_{C_{L}}\right)_{C_{l}}}{} K^{\prime} K_{b} \frac{S_{\text {vtail }}}{S_{\text {ref }}} \tag{3-44}
\end{equation*}
$$

where:
$\frac{\left(\alpha_{\delta}\right)_{C_{L}}}{\left(\alpha_{\delta}\right)_{C_{l}}}$ is the ratio of the 3D flap-effectiveness parameter to the 2D flapeffectiveness parameter. It is estimated with a piecewise curve fit to Figure 10.2 in Roskam with an assumed value of $c_{f} / c=0.33$.
K_{b} is the flap span factor, which is estimated to be 0.95 from Figure 10.3 in Roskam with $\Delta \eta=0.85$.
K^{\prime} is an empirical correction factor for large control deflections. It is estimated with a curve fit to Figure 10.7 in Roskam with $c_{f} / c=0.3$.

3.3.2. Rolling Moment Coefficient

The variation of rolling moment coefficient with rudder deflection is given by:

$$
\begin{equation*}
C_{l_{\delta_{r}}}=C_{y_{\delta_{1}}}\left(\frac{z_{\text {vtail }} \cos \alpha-l_{\text {vtail }} \sin \alpha}{b}\right) \tag{3-45}
\end{equation*}
$$

3.3.3. Yawing Moment Coefficient

The variation of yawing moment coefficient with rudder deflection is given by:

$$
\begin{equation*}
C_{n_{\delta_{r}}}=-C_{y_{\delta_{r}}}\left(l_{v \text { tail }} \cos \alpha+z_{v t a i l} \sin \alpha\right) \tag{3-46}
\end{equation*}
$$

4. Validation

4.1. Boeing 747-100

The stability and control derivatives were validated with the 747-100. Table 4-1 shows a comparison of the predicted stability and control derivatives with the flight test derivatives presented in Nelson [6]. Note that the sign differences in the last three values are due to a different sign convention for the rudder deflection.

Table 4-1: Comparison of stability and control derivatives for 747-100

Derivative	Flight Test	Prediction	Error
$C_{y_{\beta}}$	-0.96	-0.6824	0.2776
$C_{l \beta}$	-0.221	-0.2988	0.0778
$C_{n \beta}$	0.150	0.0562	0.0938
$C_{l_{\delta_{a}}}$	0.0461	0.0501	0.0040
$C_{n \delta_{a}}$	0.0064	0.0070	0.0006
$C_{y_{\delta_{\text {}}}}$	0.175	-0.2854	0.1104
$C_{l \delta_{\text {, }}}$	0.007	-0.0185	0.0115
$C_{n_{\delta}}$	-0.109	0.1496	0.0406

A correction factor was applied to each of the derivatives to increase their accuracy. Each correction factor shown in Table 4-2 is the ratio of the actual value to the predicted value for the $747-100$ for the $\mathrm{M}=0.25$ flight condition given in NASA CR-2144 [8]. These correction factors may have to be recalibrated if the configuration is significantly different from the 747.

Table 4-2: Stability and control derivative correction factors

		Derivative
$C_{y_{\beta}}$		1.4068
$C_{l_{\beta}}$		0.7396
$C_{n_{\beta}}$		2.6690
$C_{l_{\delta_{a}}}$		0.9202
$C_{n_{\delta_{a}}}$		0.9143
$C_{y_{\delta_{r}}}$		0.6132
$C_{l_{\delta_{\delta}}}$		0.3784
$C_{n_{\delta_{r}}}$		0.7286

5. Input

The following listing is a sample input file for the Boeing 747-100. The input variables are given in the Appendix. This set of inputs was used to create the correction factors shown in the Validation section.

```
input file for stab
boeing747
1
7.0 dihedral_wing (deg)
6.2 z_wing (ft)
23.0 dia_fuse (ft)
5500. sref (ft^2)
33.5 hspan_vtail (ft)
14.4 depth_fuse_vtail (ft)
36.4 c_vtail_root (ft)
11.5 c_vtail_tip (ft)
0.25 mach_eo
45. sweep_vtail_1_4 (deg)
33.5 sweep_wing_1_2 (deg)
97.8 hspan_wing (ft)
36.4 hspan_htail (ft)
31.16 sweep_htail_1_2 (deg)
1.11 cl
26. z_vtail (ft)
100. l_vtail (ft)
225.2 length_fuse (ft)
4 new
0 nef
8.4 dia_nacelle (ft)
1467. sh (ft^2)
2.3769e-3 rho_eo (slug/ft^3)
1116.4 a_eo (ft/s)
3.7372e-7 mu_eo (slug/(ft-s))
15. dr_max (deg)
25. da_max (deg)
0. thrust_tv (lb)
0. angle_tv (deg)
122. l_tv (ft)
7. z_tv (ft)
0.0 cl_circ_ctrl
```


6. Output

The following listing is the output file for the Boeing 747-100. The definitions of the variables are given in the Appendix. Note that the stability and control derivatives in this file represent the corrected values for the calibration case shown above.
stab output file
boeing747
Input

$$
\begin{aligned}
1 & =\text { write_flag } \\
7.0000 & =\text { dihedral_wing (deg) } \\
6.2000 & =\text { z_wing (ft) } \\
23.0000 & =\text { dia_fuse (ft) } \\
5500.0000 & =\text { sref (ft^2) } \\
33.5000 & =\text { hspan_vtail (ft) } \\
14.4000 & =\text { depth_fuse_vtail (ft) } \\
36.4000 & =\text { c_vtail_root (ft) } \\
11.5000 & =\text { c_vtail_tip (ft) } \\
0.2500 & =\text { mach_eo } \\
45.0000 & =\text { sweep_vtail_1_4 (deg) } \\
33.5000 & =\text { sweep_wing_1_2 (deg) } \\
97.8000 & =\text { hspan_wing (ft) } \\
36.4000 & =\text { hspan_htail (ft) } \\
31.1600 & =\text { sweep_htail_1_2 (deg) } \\
1.1100 & =\text { cl } \\
26.0000 & =\text { z_vtail (ft) } \\
100.0000 & =\text { l_vtail (ft) } \\
225.2000 & =\text { length_fuse (ft) } \\
4 & =\text { new } \\
0 & =\text { nef } \\
8.4000 & =\text { dia_nacelle (ft) } \\
1467.0000 & =\text { sh (ft^2) } \\
0.0024 & =\text { rho_eo (slug/ft^3) } \\
1116.4000 & =\text { a_eo (ft/s) } \\
0.3737 \mathrm{E}-06 & =\text { mu_eo (slug/ (ft-s)) } \\
15.0000 & =\text { dr_max (deg) } \\
25.0000 & =\text { da_max (deg) } \\
0.0000 & =\text { thrust_tv (lb) } \\
0.0000 & =\text { angle_tv (deg) } \\
122.0000 & =\text { l_tv (ft) } \\
7.0000 & =\text { z_tv (ft) } \\
0.0000 & =\text { cl_circ_ctrl }
\end{aligned}
$$

Output

$$
\begin{aligned}
-0.9601 & =\text { cy_beta }(\text { rad-1) } \\
-0.2210 & =\text { cl_beta (rad-1) } \\
0.1500 & =\text { cn_beta (rad-1) } \\
0.0000 & =\text { cy_da (rad-1) } \\
0.0461 & =\text { cl_da (rad-1) } \\
0.0064 & =\text { cn_da (rad-1) } \\
-0.1750 & =\text { cy_dr (rad-1) } \\
-0.0070 & =\text { cl_dr (rad-1) } \\
0.1090 & =\text { cn_dr (rad-1) } \\
3.0396 & =\text { beta (deg) } \\
5.0000 & =\text { phi (deg) } \\
16.8350 & =\text { da (deg) } \\
15.0000 & =\text { dr (deg) } \\
2.3776 & =\text { ar_vtail_eff } \\
0.0384 & =\text { cn_avail }
\end{aligned}
$$

References

[1] Roskam, J., Methods for Estimating Stability and Control Derivatives of Conventional Subsonic Airplanes, Roskam Aviation and Engineering Corporation, Lawrence, Kansas, 1971.
[2] Hoak, D.E. et al., USAF Stability and Control DATCOM, Flight Control Division, Air Force Flight Dynamics Laboratory, WPAFB, Ohio, 1978.
[3] Torenbeek, E., Synthesis of Subsonic Airplane Design, Delft Univ. Press, Delft, The Netherlands, 1982.
[4] Hanke, C.R., "The Simulation of a Large Jet Transport Aircraft, Vol. I: Mathematical Model," NASA CR-1756, March 1971.
[5] Abbott, I.H., and von Doenhoff, A.E., Theory of Wing Sections, Dover, New York, 1959.
[6] Nelson, R. C., Flight Stability and Automatic Control, McGraw-Hill Co., New York, 1989.
[7] MacMillin, P.E., Golovidov, O.B., Mason, W.H., Grossman, B., and Haftka, R.T., Trim, Control, and Performance Effects in Variable-Complexity High-Speed Civil Transport Design, MAD 96-07-01, July, 1996.
[8] Heffley, R.K., and Jewell, W.F., Aircraft Handling Qualities Data, NASA CR2144, December, 1972.

Appendix: Code Listing for Stability Subroutine (stab.f)

```
c/////////////////////////////////////////////////////////////////////
c
subroutine stab
    This subroutine calculates the maximum available yawing moment
coefficient of a given aircraft configuration at a given flight
condition. Note that right rudder deflection is defined as
positive, and right aileron up, left aileron down is defined as
positive. Both of these control deflections generate positive
moments about their respective axes. This is the convention used
by Roskam. The thrust vectoring angle (angle_tv) is also defined
as positive for a right deflection.
Inputs
outfile output filename
title
write_flag
dihedral_wing
z_wing
dia_fuse
sref
hspan_vtail
depth_fuse_vtail
c_vtail_root
c_vtail_tip
mach_eo
sweep_vtail_1_4_deg
sweep_wing_1_2_deg
hspan_wing
hspan_htail
sweep_htail_1_2_deg
cl
z_vtail
l_vtail
length_fuse
new
nef
dia_nacelle
rho_eo
a_eo
mu_eo
dr_max
da_max
thrust_tv
angle_tv
l_tv
title of aircraft configuration
write flag (0 = no output file, 1 = output file written)
wing dihedral angle (deg)
    distance from body centerline to quarter-chord point of
    exposed wing root chord, positive for the quarter-chord
    point below the body centerline (ft)
    fuselage diameter (ft)
    wing reference area (ft^2)
    vertical tail span (ft)
    fuselage depth at the fuselage station of the
    quarter-chord of the vertical tail (ft)
    root chord of vertical tail
    tip chord of vertical tail
    mach number
    vertical tail quarter-chord sweep angle (deg)
    average wing half-chord sweep angle (deg)
    wing half-span (ft)
    horizontal tail half-span (ft)
    horizontal tail half-chord sweep angle (deg)
    lift coefficient
    vertical distance from CG to AC of vertical tail (ft)
    horizontal distance from CG to AC of vertical tail (ft)
    fuselage length (ft)
    number of engines on the wing
    number of engines on the fuselage
    nacelle diameter (ft)
    density at engine-out flight condition (slug/ft^3)
    speed of sound at engine-out flight condition (ft/s)
    viscosity at engine-out flight condition (slug/(ft-s))
    maximum allowable steady-state rudder deflection (deg)
    maximum allowable steady-state aileron deflection (deg)
    maximum available thrust of the aft engine (lb)
    horizontal angle between the fuselage centerline and the
    effective thrust vector (deg, positive to the right)
    horizontal distance between CG and thrust vectoring
    nozzle (ft)
```

```
```

z_tv

```
```

z_tv
Outputs
Outputs
ar_vtail_eff
ar_vtail_eff
cn_avail
cn_avail
Internal Variables
Internal Variables
alpha
alpha
alpha_d
alpha_d
alpha_d_cl
alpha_d_cl
ar
ar
ar_vtail
ar_vtail
ar_htail
ar_htail
avb_av
avb_av
avhb_avb
avhb_avb
bcld_kappa
bcld_kappa
beta
beta
beta_m
beta_m
cf_c
cf_c
cf_factor
cf_factor
cl_alpha
cl_alpha
cl_alpha_2d
cl_alpha_2d
cl_alpha_h
cl_alpha_h
cl_alpha_vtail
cl_alpha_vtail
cl_alpha_vtail
cl_alpha_vtail
cl_alpha_w
cl_alpha_w
cl_alpha_wb
cl_alpha_wb
cl_beta
cl_beta
cl_beta_cor
cl_beta_cor
cl__beta_htail
cl__beta_htail
cl__beta_vtail
cl__beta_vtail
cl__beta_vtail
cl__beta_vtail
cl_d
cl_d
cl_da
cl_da
cl_da_cor
cl_da_cor
cl_dr
cl_dr
cl_dr_cor
cl_dr_cor
clb_cl_a
clb_cl_a
clb_cl_lambda
clb_cl_lambda
clb_gamma
clb_gamma
cld_prime
cld_prime
cld_ratio
cld_ratio
cld_theory

```
cld_theory
```

vertical distance between CG and thrust vectoring nozzle (ft)

```
cl_circ_ctrl
```

```
cl_circ_ctrl
```

```
cl_circ_ctrl
```

```
    change in lift coefficient due to circulation control
```

 change in lift coefficient due to circulation control
 (nondimensionalized by q and the vertical tail area)
 (nondimensionalized by q and the vertical tail area)
 effective aspect ratio of vertical tail
 effective aspect ratio of vertical tail
 maximum available yawing moment coefficient
    ```
    maximum available yawing moment coefficient
```


C
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

```
cn_beta
cn_beta_cor
cn_beta_fuse
cn_beta_vtail
cn_beta_wing
cn_da
cn_da_cor
cn_dr
cn_dr_cor
cy_beta
cy_beta_cor
cy_beta_fuse
cy_beta_vtail
cy_beta_wing
cy_da
cy_dr
cy_dr_cor
d
da
dclb_gamma
dclb_zw
debug_flag
dr
eff_vtail
eta_h
f_cy_beta
f_cl_beta
f_cn_beta
f_cl_da
f_cn_da
f_cy_dr
f_cl_dr
f_cn_dr
flap_eff_ratio
i
k
k_b
k_cy_beta_v
k_f
k_h
k_m_lambda
k_m_gamma
k_n
k_prime
k_r_l
variation of yawing moment coefficient with sideslip angle
corrected value of cn_beta
fuselage contribution to cn_beta
vertical tail contribution to cn_beta
wing contribution to cn_beta
variation of yawing moment coefficient with aileron deflection
corrected value of cn_da
variation of yawing moment coefficient with rudder deflection
corrected value of cn_dr
variation of side force coefficient with sideslip angle
corrected value of cy_beta
fuselage contribution to cy_beta
vertical tail contribution to cy_beta
wing contribution to cy_beta
variation of side force coefficient with aileron deflection
variation of side force coefficient with rudder deflection
corrected value of cy_dr
d in Equation 7.10 (estimated from Equation 7.11)
aileron deflection, positive for right aileron up, left aileron down (rad)
body-induced effect on wing height (from Equation 7.10)
another body-induced effect on wing height (from Equation 7.12)
printing flag for debugging output ( \(0=\) no debugging
info printed, 1 = debugging info printed)
rudder deflection, positive for right deflection (rad)
vertical tail effectiveness factor estimated by
Equation 7.5
dynamic pressure ratio at the horizontal tail
correction factor for cy_beta
correction factor for cl_beta
correction factor for cn_beta
correction factor for cl_da
correction factor for cn_da
correction factor for cy_dr
correction factor for cl_dr
correction factor for cn_dr
flap effectiveness ratio (from Figure 10.2)
index
empirical factor for estimating the variation of yawing moment coefficient with aileron deflection
span factor for plain flap (from Figure 10.3)
empirical factor from Figure 7.3
fuselage correction factor (from Figure 7.13)
factor accounting for relative size of horizontal and vertical tails (from Figure 7.7)
compressibility correction to wing sweep (from Figure 7.12)
compressibility correction to dihedral effect (from Figure 7.16)
factor for body and body + wing effects (from Figure 7.19)
empirical correction for lift effectiveness of plain flaps at high flap deflections (from Figure 10.7)
Reynold's number factor for the fuselage (from Figure 7.20)
```


sweep_htail_1_2 = sweep_htail_1_2_deg*pi/180.
sweep_vtail_1_4 = sweep_vtail_1_4_deg*pi/180.
C Append extension to idrag output filename

```
        i = 1
        do while (outfile(i:i) .ne. '.')
        i = i + 1
        end do
        outfile(i+1:i+5) = 'stab'
        outfile(i+6:) = ''
```

c Write input data to output file for confirmation
if (write_flag .eq. 1) then
unit_out = 171
open (unit_out, file=outfile)
write(unit_out,"('stab output file')")
write (unit_out," (a72)") title
write (unit_out,*)
write (unit_out,"(a5)") 'Input'
write (unit_out, *)
write(unit_out,101) write_flag, '= write_flag'
write (unit_out, 100) dihedral_wing, '= dihedral_wing (deg)'
write (unit_out, 100) z_wing, '= z_wing (ft)'
write (unit_out, 100) dia_fuse, '= dia_fuse (ft)'
write (unit_out,100) sref, '= sref (ft^2)'
write (unit_out, 100) hspan_vtail, '=hspan_vtail (ft)'
write (unit_out, 100) depth_fuse_vtail, '= depth_fuse_vtail (ft)'
write (unit_out, 100) c_vtail_root, '= c_vtail_root (ft)'
write (unit_out, 100) c_vtail_tip, '= c_vtail_tip (ft)'
write (unit_out, 100) mach_eo, '= mach_eo'
write (unit_out,100) sweep_vtail_1_4*180./pi,
\& '= sweep_vtail_1_4 (deg)'
write (unit_out,100) sweep_wing_1_2*180./pi,
\& '= sweep_wing_1_2 (deg)'
write (unit_out, 100) hspan_wing, '= hspan_wing (ft)'
write (unit_out, 100) hspan_htail, '= hspan_htail (ft)'
write (unit_out,100) sweep_htail_1_2*180./pi,
\& '= sweep_htail_1_2 (deg)'
write (unit_out, 100) cl, '= cl'
write (unit_out, 100) z_vtail, '= z_vtail (ft)'
write (unit_out, 100) l_vtail, '= l_vtail (ft)'
write (unit_out, 100) length_fuse, '= length_fuse (ft)'
write (unit_out, 101) new, '= new'
write (unit_out, 101) nef, '= nef'
write (unit_out, 100) dia_nacelle, '= dia_nacelle (ft)'
write (unit_out, 100) sh, '= sh (ft^2)'
write (unit_out, 100) rho_eo, '= rho_eo (slug/ft^3)'
write (unit_out,100) a_eo, '= a_eo (ft/s)'
write (unit_out, 103) mu_eo, '= mu_eo (slug/(ft-s))'
write (unit_out, 100) dr_max, '= dr_max (deg)'
write (unit_out, 100) da_max, '= da_max (deg)'
write (unit_out, 100) thrust_tv, '= thrust_tv (lb)'
write (unit_out, 100) angle_tv, '= angle_tv (deg)'
write (unit_out, 100) l_tv, '= l_tv (ft)'
write (unit_out, 100) z_tv, '= z_tv (ft)'
write(unit_out,100) cl_circ_ctrl, '= cl_circ_ctrl'
end if
c Calculate stability and control derivatives via Roskam's methods
c Sideslip angle derivatives

```
    cy_beta_wing = -0.0001*abs(dihedral_wing)*180./pi
c Estimate k_wbi from Figure 7.1 (curve fit)
    if (z_wing/(dia_fuse/2.) .le. 0.) then
        k_wbi = 0.85*(-z_wing/(dia_fuse/2.)) + 1.
        elseif (z_wing/(dia_fuse/2.) .gt. 0.) then
            k_wbi = 0.5*z_wing/(dia_fuse/2.) + 1.
        end if
c Estimate the side force coefficient due to the fuselage and nacelles
    cy_beta_fuse = -2.*k_wbi*( pi*(dia_fuse/2.)**2 +
    & (new + nef)*pi*(dia_nacelle/2.)**2 )/sref
c Estimate k_cy_beta_v from Figure 7.3 (curve fit)
    x = hspan_vtail/depth_fuse_vtail
    if (x .le. 2.) then
        k_cy_beta_v = 0.75
    elseif (x .gt. 2. .and. x .lt. 3.5) then
            k_cy_beta_v = x/6. + 5./12.
        elseif (x .ge. 3.5) then
            k_cy_beta_v = 1.
    end if
c Estimate avb_av from Figure 7.5 (curve fit for taper ratio <= 0.6)
    x = hspan_vtail/depth_fuse_vtail
    avb_av = 0.002*x**5 - 0.0464*x**4 + 0.404*x**3 - 1.6217*x**2 +
    & 2.7519*x + 0.0408
c Factor from Figure 7.6 is for zh/bv = 0.
    avhb_avb = 1.1
c Estimate k_h from Figure 7.7 (curve fit)
    sv = hspan_vtail*(c_vtail_root + c_vtail_tip)/2.
    x = sh/sv
    k_h = -0.0328*x**4 + 0.2885*x**3 - 0.9888*x**2 + 1.6554*x -
    & 0.0067
c Estimate the effective aspect ratio for the vertical tail
    ar_vtail = hspan_vtail**2/sv
    ar_vtail_eff = avb_av*ar_vtail*(1. + k_h*(avhb_avb - 1.))
c Assume the section lift-curve slope is 2.*pi
    cl_alpha_vtail = 2.*pi
c Estimate the effective lift-curve slope for the vertical tail
    kappa = cl_alpha_vtail/(2.*pi)
    beta_m = sqrt( 1. - mach_eo**2 )
    sweep_vtail_1_2 = atan( (c_vtail_root/4. + hspan_vtail*
    & tan(sweep_vtail_1_4) + c_vtail_tip/4. -
    & c_vtail_root/2.)/hspan_vtail )
    cl_alpha_vtail_eff = 2.*pi*ar_vtail_eff/( 2. +
    & sqrt( ar_vtail_eff**2*beta_m**2/kappa**2*
    & ( 1. + tan(sweep_vtail_1_2)**2/
    & beta_m**2 ) + 4. ) )
C Estimate the third term in eqn. 7.4 from eqn. 7.5
eff_vtail \(=0.724+3.06^{*}\) sv/sref \(/(1 .+\)
\& cos (sweep_vtail_1_4)) + 0.4*z_wing/dia_fuse + \& 0.009*ar_vtail_eff
cy_beta_vtail = -k_cy_beta_v*cl_alpha_vtail_eff*eff_vtail*sv/sref
```

c Calculate total variation of side force coefficient with sideslip angle cy_beta $=$ cy_beta_wing + cy_beta_fuse + cy_beta_vtail

C Factor from Figure 7.11 is approximated by a curve fit for lambda $=0.5$ clb_cl_lambda $=-0.004 / 45^{*}$ sweep_wing_1_2*180./pi
c Factor from Figure 7.12 is approximated for 747 and 777 configurations
c at low Mach numbers k_m_lambda $=1.0$
c Factor from Figure 7.13 is approximated for 747 and 777 configurations $\mathrm{k} _f=0.85$
c Factor from Figure 7.14 is approximated for lambda $=0.5$ and high $A R$ clb_cl_a $=0.000$
c Factor from Figure 7.15 is approximated by a linear curve fit for
c lambda equal to 0.5, low sweep, and high AR

$$
\text { ar }=(2 . * \text { hspan_wing }) * * 2 / \text { sref }
$$

clb_gamma $=-0.00012-0.00013 / 10 *$ ar
c Factor from Figure 7.16 is approximated for 747 and 777 configurations
c at low Mach numbers k_m_gamma $=1.0$
c Estimate body-induced effect on wing height from eqns. 7.10, 7.11, and 7.12
$\mathrm{d}=\operatorname{sqrt}\left(\mathrm{pi} *\left(d i a _f u s e / 2.\right) * * 2 / 0.7854\right)$
dclb_gamma $=-0.0005^{*}$ sqrt (ar)*(d/(2.*hspan_wing)) **2
dclb_zw $=-1.2^{*} \operatorname{sqrt}(\mathrm{ar}) /(180 . / \mathrm{pi})^{*}$ z_wing/(2.*hspan_wing)${ }^{*}$
\& $\quad 2 . * d /\left(2 . * h s p a n _w i n g\right)$
c Wing-body contribution to cl_beta (wing twist effect is neglected) cl_beta_wingbody $=\left(\mathrm{cl*}\left(c l b _c l _l a m b d a * k _m _l a m b d a * k _f ~+~\right.\right.$
\& clb_cl_a) + dihedral_wing*(clb_gamma*k_m_gamma + dclb_gamma) +
\& dclb_zw)*180./pi
c Since the horizontal tail has a small lift coefficient, small dihedral,
c and small area relative to the wing, it is negligible.
cl_beta_htail $=0$.
c Calculate the lift curve loss factor due to the fuselage $\mathrm{x}=$ dia_fuse/(2.*hspan_wing)
$\mathrm{k} _w b=1-0.25{ }^{*} \mathrm{x}^{* *} 2+0.025$ * $_{\mathrm{x}}$
c Assume the 2D lift-curve slope is $2 *$ pi/beta_m
cl_alpha_2d = 2*pi/beta_m
kappa $=$ cl_alpha_2d/(2.*pi/beta_m)
c Calculate the lift curve slope of the wing alone and wing-body combination cl_alpha_w $=2 . * p i * a r /\left(2 .+\operatorname{sqrt}\left(\operatorname{ar**2*beta_ m**2/kappa**2*~}\right.\right.$
\& (1. + tan (sweep_wing_1_2)**2/beta_m**2) + 4.))
cl_alpha_wb $=$ k_wb*cl_alpha_w
c Calculate the lift curve slope of the horizontal tail
ar_htail $=\left(2 . * h s p a n _h t a i l\right) * * 2 / s h$
cl_alpha_h $=2 . * p i * a r _h t a i l /\left(2 .+\operatorname{sqrt}\left(\operatorname{ar_ htail**2*beta_ m**2/~}\right.\right.$
\& kappa**2* (1. + tan (sweep_htail_1_2)**2/beta_m**2)
$\& \quad+4$.$))$
c Assume the dynamic pressure ratio at the horizontal tail is 0.95

$$
\text { eta_h }=0.95
$$

```
c Calculate the lift curve slope of the total aircraft
    cl_alpha = cl_alpha_wb + cl_alpha_h*eta_h*sh/sref
c Calculate the angle of attack of the fuselage centerline. The wing
c incidence angle is assumed to be 5 deg.
    alpha = cl/cl_alpha - 5.*pi/180.
c Estimate the vertical tail contribution to cl_beta
        cl_beta_vtail = cy_beta_vtail*( z_vtail*cos(alpha) - l_vtail*
        & sin(alpha) )/(2.*hspan_wing)
c Calculate total variation of rolling moment coefficient with sideslip angle
    cl_beta = cl_beta_wingbody + cl_beta_htail + cl_beta_vtail
c Wing contribution to cn_beta is negligible for small angles of attack.
    cn_beta_wing = 0.
c Estimate empirical factor for body and body + wing effects from Figure 7.19
c Constant value assumed for }747\mathrm{ and 777-like configurations
    k_n = 0.0011
c Calculate fuselage Reynolds number at the engine-out flight condition
    re_fuse = rho_eo*mach_eo*a_eo*length_fuse/mu_eo
c Estimate fuselage Reynolds number effect on wing-body from Figure 7.20
    k_r_l = 1. + 1.2/log(350.)*log(re_fuse/1000000.)
c Estimate fuselage contribution to cn_beta
    sbs = 0.83*dia_fuse*length_fuse
    cn_beta_fuse = -180./pi*k_n*k_r_l*sbs/sref*
    & length_fuse/ (2.*hspan_wing)
c Estimate vertical tail contribution to cn_beta
    cn_beta_vtail = -cy_beta_vtail*( l_vtail*cos(alpha) +
        & z_vtail*sin(alpha) )/(2.*hspan_wing)
c Calculate total variation of yawing moment coefficient with sideslip angle
    cn_beta = cn_beta_wing + cn_beta_fuse + cn_beta_vtail
c Assume variation of sideforce coefficient with aileron deflection is zero
    cy_da = 0.
c Estimate the rolling moment effectiveness parameter from Figure 11.1
c for lambda = 0.5, and for 747 and 777-like ailerons at mach 0.25
    bcld_kappa = 0.18
c Estimate the rolling effectiveness of two full-chord controls by Eqn. 11.2
    cld_prime = kappa/beta_m*bcld_kappa
c Estimate aileron effectiveness by assuming cf/c = 0.20 and t/c = 0.08
    cld_theory = 3.5
    cld_ratio = 1.0
    cl_d = cld_ratio*cld_theory
    alpha_d = cl_d/cl_alpha_2d
c Determine the rolling effectiveness of the partial-chord controls by
c Eqn. 11.3. Note that this is the change in cl with respect to a change
c in the sum of the left and right aileron deflections (d). cl_d = alpha_d*cld_prime
```

c Estimate variation of rolling moment coefficient with aileron deflection c by neglecting differential control effects. Since the aileron deflection c (da) is defined as half of the sum of the left and right deflections, cl_d c from the equation above must be divided by 2 .
cl_da $=c l _d / 2$.
c The method in Roskam for estimating cn_da does not account for the c effect of differential ailerons and the use of spoilers for roll control c on the yaw moment. Therefore, the factor k is estimated c based on the ratio of cn_da to cl_da from the 747 flight test data c presented in Nelson. Note that the effect of cl is absorbed into c the factor k.
$\mathrm{k}=0.0064 / 0.0461$
c Estimate variation of yawing moment coefficient with aileron deflection cn_da $=\mathrm{k}^{\star} \mathrm{cl}$ _da
c Estimate the flap chord factor from Figure 10.2 for $c f / c=0.33$
c The flap effectiveness ratio is estimated with a piecewise curve fit $c f _c=0.33$
alpha_d_cl $=-\operatorname{sqrt}\left(1 .-\left(1 .-c f _c\right) * * 2\right)$
if (alpha_d_cl .ge. -0.5) then
flap_eff_ratio $=1.42+1.8 * a l p h a _d _c l$
elseif (alpha_d_cl .ge. -0.6) then
flap_eff_ratio $=1.32+1.6 * a l p h a _d _c l$
elseif (alpha_d_cl .ge. -0.7) then
flap_eff_ratio $=1.08+1.2 * a l p h a _d _c l$
else
flap_eff_ratio $=0.94+$ alpha_d_cl
end if
flap_eff_ratio $=1 .+$ flap_eff_ratio/(ar_vtail_eff -
\& $0.5 *\left(-a l p h a _d _c l-2.1\right)$)
cf_factor $=$ flap_eff_ratio*alpha_d_cl
c Estimate empirical correction for lift effectiveness of plan flaps at
c from Figure 10.7 for $c f / c=0.33$.
$x=d r _m a x$
if (x.lt. 15.) then
k_prime $=1$.
else
k_prime $=4 e-7 * x * * 4-7 e-5 * x * * 3+0.0047 * x * * 2-0.1453 * x+$
\& 2.3167
end if
c Estimate span factor for plain flap from Figure 10.3 for delta eta $=0.85$ $\mathrm{k} _\mathrm{b}=0.95$

C Estimate variation of sideforce coefficient with rudder deflection cy_dr = cl_alpha_vtail_eff*cf_factor*k_prime*k_b*sv/sref

C Estimate variation of rolling moment coefficient with rudder deflection cl_dr = cy_dr*(z_vtail*cos(alpha) - l_vtail*sin(alpha)) /
\& (2.*hspan_wing)
c Estimate variation of yawing moment coefficient with rudder deflection cn_dr = -cy_dr*(l_vtail*cos(alpha) + z_vtail*sin(alpha))/
\& (2.*hspan_wing)
c Multiply empirical estimates by their respective correction factors
c The correction factors are the ratio of the actual 747 derivatives to
c the 747 derivatives predicted by the method above at the $\mathrm{M}=0.25$ flight
c condition defined in NASA CR-2144 and Nelson. The rudder deflection
c was 15 deg for this calibration.
cy_beta_cor $=1.4068^{*}$ cy_beta
cl_beta_cor $=0.7396 *$ cl_beta
cn_beta_cor $=2.6690 *$ cn_beta
cl_da_cor $=0.9202{ }^{*}$ cl_da
cn_da_cor $=0.9143 *$ cn_da
cy_dr_cor $=0.6132 *$ cy_dr
cl_dr_cor $=0.3784^{*}$ cl_dr
cn_dr_cor $=0.7286^{*} \mathrm{cn}$ _dr
c Calculate the dynamic pressure
$q=0.5^{*} r h o _e o *\left(m a c h _e o * a _e o\right) * * 2$
c Set the rudder deflection to 20 deg, and the bank angle to 5 deg
$d r=d r _m a x * p i / 180$.
phi $=5 . \star \mathrm{pi} / 180$.
c Solve for the sideslip angle and aileron deflection
beta $=\left(-c y _d r _c o r^{*} d r-c l * s i n(p h i)+\right.$
\& $\quad \operatorname{sign}\left(t h r u s t _t v^{*} \sin \left(a n g l e _t v^{*} p i / 180.\right) /\left(q^{*} s r e f\right)\right.$,
\& angle_tv) + cl_circ_ctrl*sv/sref)/cy_beta_cor

\& $\quad \sin \left(a n g l e _t v^{\star} p i / 180 .\right)^{\star} z _t v /\left(q^{*} s r e f * 2 . * h s p a n _w i n g\right)$,
\& angle_tv) + cl_circ_ctrl*z_vtail/(2.*hspan_wing)*
\& sv/sref)/cl_da_cor
c Check if the aileron deflection is greater than the max allowable value if (da .gt. da_max) then
print*,'Warning from stab.f: Required aileron deflection is ', \&
'greater than the maximum allowable value.'
end if
c Calculate the maximum available yawing moment coefficient
cn_avail $=$ cn_da_cor*da + cn_dr_cor*dr + cn_beta_cor*beta +
\& $\operatorname{sign}\left(t h r u s t _t v^{*} \sin \left(a n g l e _t v^{*} p i / 180.\right) * l _t v /\right.$
\& (${ }^{\star}$ sref*2.*hspan_wing), angle_tv) +
\& cl_circ_ctrl*l_vtail/(2.*hspan_wing)*sv/sref
c Write output data

```
    if (write_flag .eq. 1) then
        write(unit_out,*)
        write(unit_out,"(a6)") 'Output'
        write(unit_out,*)
```

c This section is normally commented out. It can be used to print the c uncorrected values of the derivatives for debugging purposes. if (debug_flag .eq. 1) then write (unit_out,100) cy_beta_wing, '= cy_beta_wing (rad-1)' write (unit_out,100) cy_beta_fuse, '= cy_beta_fuse (rad-1)' write (unit_out, 100) cy_beta_vtail, '= cy_beta_vtail (rad-1)' write (unit_out,100) cy_beta, '= cy_beta (rad-1)' write (unit_out,*) write (unit_out, 100) cl_beta_wingbody,
\& ' = cl_beta_wingbody (rad-1)'
write (unit_out,100) cl_beta_htail, '= cl_beta_htail (rad-1)' write (unit_out, 100) cl_beta_vtail, '= cl_beta_vtail (rad-1)' write (unit_out,100) cl_beta, '= cl_beta (rad-1)' write (unit_out,*)
write (unit_out,100) cn_beta_wing, '= cn_beta_wing (rad-1)' write (unit_out,100) cn_beta_fuse, '= cn_beta_fuse (rad-1)'

```
        write(unit_out,100) cn_beta_vtail, '= cn_beta_vtail (rad-1)'
        write(unit_out,100) cn_beta, '= cn_beta (rad-1)'
        write(unit_out,*)
        write(unit_out,100) cy_da, '= cy_da (rad-1)'
        write(unit_out,100) cl_da, '= cl_da (rad-1)'
        write(unit_out,100) cn_da, '= cn_da (rad-1)'
        write(unit_out,*)
        write(unit_out,100) cy_dr, '= cy_dr (rad-1)'
        write(unit_out,100) cl_dr, '= cl_dr (rad-1)'
        write(unit_out,100) cn_dr, '= cn_dr (rad-1)'
        write(unit_out,*)
    end if
c This section prints the corrected values of the derivatives
        write(unit_out,100) cy_beta_cor, '= cy_beta (rad-1)'
        write(unit_out,100) cl_beta_cor, '= cl_beta (rad-1)'
        write(unit_out,100) cn_beta_cor, '= cn_beta (rad-1)'
        write(unit_out,*)
        write(unit_out,100) cy_da, '= cy_da (rad-1)'
        write(unit_out,100) cl_da_cor, '= cl_da (rad-1)'
        write(unit_out,100) cn_da_cor, '= cn_da (rad-1)'
        write(unit_out,*)
        write(unit_out,100) cy_dr_cor, '= cy_dr (rad-1)'
        write(unit_out,100) cl_dr_cor, '= cl_dr (rad-1)'
        write(unit_out,100) cn_dr_cor, '= cn_dr (rad-1)'
        write (unit_out,*)
        write(unit_out,100) beta*180./pi, '= beta (deg)'
        write(unit_out,100) phi*180./pi, '= phi (deg)'
        write(unit_out,100) da*180./pi, '= da (deg)'
        write(unit_out,100) dr*180./pi, '= dr (deg)'
        write(unit_out,100) ar_vtail_eff, '= ar_vtail_eff'
        write(unit_out,100) cn_avail, '= cn_avail'
        write (unit_out,*)
        close(unit_out)
    endif
100 format (f11.4, 1x, a)
101 format(7x, i4, 1x, a)
102 format (f11.0, 1x, a)
103 format (g11.4, 1x, a)
return
end
```

