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Chapter 8  Weight Estimation

8.1.  Introduction

Statistical weight equations, although capable of producing landing gear group weights

quickly and generally accurately, do not respond to all the variations in landing gear design

parameters. In addition, the equations are largely dependent on the database of existing

aircraft. For future large aircraft, such weight data is virtually non-existent. Thus, it is

desirable that an analytical weight estimation method which is more sensitive than

statistical methods to variations in the design of the landing gear should be adopted. The

objectives are to allow for parametric studies involving key design considerations that drive

landing gear weight, and to establish crucial weight gradients to be used in the optimization

process.

Based on the procedures described in this chapter, algorithms were developed to size

and estimate the weight of the structural members of the landing gear. The weight of non-

structural members were estimated using statistical weight equations. The two were then

combined to arrive at the final group weight.

8.2.  Current Capabilities

The primary shortcoming of statistical methods is that only a limited number of

weight-affecting parameters are considered, e.g., length of the strut, material ultimate

strength, vertical load, and number of tires. As a result, it is extremely difficult to

distinguish landing gears with different geometric arrangements using these parameters

alone. Statistical weight equations are also constrained by what has been designed in the

past, i.e., if an unconventional design or a new class of aircraft such as the proposed ultra-

high-capacity transport is involved, there might not be sufficient data to develop a statistical

base for the type of landing gear required.

The majority of existing equations calculate the landing gear weight purely as a function

of aircraft takeoff gross weight. It is the simplest method for use in sizing analysis, and is

adopted in ACSYNT as well as by Torenbeek [5] and General Dynamics, as given by

Roskam [3]. The Douglas equation used in the blended-spanload concept [41] also falls

into this category. Other weight equations, e.g., Raymer [42] and FLOPS (Flight

Optimization System) [13], include the length of the landing gear in the calculation and
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thus are able to produce estimates which reflect the effect of varying design parameters to

some extent.

Actual and estimated landing gear weight fractions are presented in Fig. 8.1. Figure

8.1a provides comparisions for estimates which only use MTOW. Figure 8.1b provides

comparisions with methods which take into account more details, specifically the gear

length. As shown in Fig. 8.1a, for an MTOW up to around 200,000 lb, the estimated

values from ACSYNT and Torenbeek are nearly equal. However, as the MTOW

increases, completely different trends are observed for the two equations: an increasing and

then a decreasing landing gear weight fraction is predicted by ACSYNT, whereas a

continual increasing weight fraction is predicted by Torenbeek. As for the Douglas

equation, an increasing weight fraction is observed throughout the entire MTOW range.

Upon closer examination of the data presented, it was found that only a small number of

actual landing gear weight cases are available to establish trends for aircraft takeoff weight

above 500,000 pounds. In addition, even within the range where significant previous

experience is available, the data scatter between actual and estimated values is too large to

draw conclusions on the accuracy of existing weight equations. Evidently a systematic

procedure is needed to validate the reliability of the statistical equations, and provide

another level of estimation.

8.3.  Analytical Structural Weight Estimation

Analytical weight estimation methods are capable of handling varying configurations

and geometry, in addition to design parameters used in the statistical methods. As typified

by Kraus [43] and Wille [44], the procedure consists of five basic steps: definition of gear

geometry, calculation of applied loads, resolution of the loads into each structural member,

sizing of required member cross-sectional areas, and calculation of component and total

structural weight. Although these studies provided an excellent guideline toward the

development of an MDO-compatible analysis algorithm, detailed discussions in the area of

load calculations and structural design criteria were not included in the papers. To fill the

gap, simplified loading conditions were determined from Torenbeek and the FAA [20],

and structural analyses were developed as part of this work. Loading conditions are

presented in Section 8.3.2., and the structural analyses are presented in Sections 8.3.3. and

8.3.4. and Appendix B.
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b)  Weight fraction equations with landing gear length

Figure 8.1  Landing gear weights comparison
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8.3.1  Generic Landing Gear Model

A generic model consisting of axles, truck beam, piston, cylinder, drag and side struts,

and trunnion is developed based on existing transport-type landing gears. Since most, if not

all, of the above items can be found in both the nose and main gear, the model can easily be

modified to accommodate both types of assembly without difficulty. Although the torsion

links are presented for completeness, they are ignored in the analysis since their

contributions to the final weight are minor.

The model shown in Fig. 8.2 represents a dual-twin-tandem configuration. The model

can be modified to represent a triple-dual-tandem or a dual-twin configuration with relative

ease, i.e., by including a center axle on the truck beam, or replacing the bogie with a single

axle, respectively. The model assumes that all structural components are of circular tube

construction except in the case of the drag and side struts, where an I-section can be used

depending on the configuration. When used as a model for the nose gear, an additional side

strut arranged symmetrically about the plane of symmetry is included.

Figure 8.2  Generic landing gear model
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For added flexibility in terms of modeling different structural arrangements, the landing

gear geometry is represented by three-dimensional position vectors relative to the aircraft

reference frame. Throughout the analysis, the xz-plane is chosen as the plane of symmetry

with the x-axis directed aft and the z-axis upward. The locations of structural components

are established by means of known length and/or point locations, and each point-to-point

component is then defined as a space vector in the x, y, and z directions. Based on this

approach, a mathematical representation of the landing gear model is created and is shown

in Fig. 8.3.
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Figure 8.3  Mathematical representation of the landing gear model

8.3.2.  Applied Loads

External loads applied to the gear assemblies can be divided into dynamic and static

loads: the former occurs under landing conditions while the latter occurs during ground

operations. As listed in Table 8.1, seven basic loading conditions have been selected for

analysis with the applied loads calculated as specified in FAR Part 25 [20]. These

conditions are also illustrated in Fig. 8.4.
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Table 8.1  Basic landing gear loading conditions [20]

Dynamic Static
Three-point level landing Turning

One-wheel landing Pivoting
Tail-down landing
Lateral drift landing

Braked roll

The corresponding aircraft attitudes are shown in Fig. 8.4, where symbols D, S and V

are the drag, side and vertical forces, respectively, n is the aircraft load factor, W is aircraft

maximum takeoff or landing weight, T is the forward component of inertia force, and I is

the inertial moment in pitch and roll conditions necessary for equilibrium. The subscripts m

and n denote the main and nose gear, respectively.

Fm
0.8Fm

nW I

T

Fn
0.8Fn

a) Three-point level landing

Fm

nW I

b) One-wheel landing

Figure 8.4 Aircraft attitudes under dynamic and static loading conditions [20]
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Figure 8.4 Aircraft attitudes under dynamic and static loading conditions [20] (continued)
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Figure 8.4  Aircraft attitudes under dynamic and static loading conditions [20] (concluded)

For the dynamic landing conditions listed in Table 8.1, the total vertical ground reaction

(F) at the main assembly is obtained from the expression [43]

F
cW

S

V

g
Ss= +









η α

α
cos

cos
2

(8.1)

where c is the aircraft weight distribution factor, η is the gear efficiency factor, S is the total

stroke length, α is the angle of attack at touchdown, Vs is the sink speed, and g is the

gravitational acceleration. Although the vertical force generated in the gear is a direct

function of the internal mechanics of the oleo, in the absence of more detailed information

Eq. (8.1) provides a sufficiently accurate approximation.

The maximum vertical ground reaction at the nose gear, which occurs during low-

speed constant deceleration, is calculated using the expression [5, p. 359]

F
l a g h

l l
Wn

m x cg

m n
=

+
+
/

(8.2)

For a description of variables and the corresponding values involved in Eq. (8.2), refer to

Chapter Four, Section Two.

The ground loads are initially applied to the axle-wheel centerline intersection except for

the side force. As illustrated in Fig. 8.5, the side force is placed at the tire-ground contact

point and replaced by a statically equivalent lateral force in the y direction and a couple

whose magnitude is the side force times the tire rolling radius.
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Figure 8.5 Location of the applied ground loads

To determine the forces and moments at the selected structural nodes listed in Table

8.2, the resisting force vector (Fres) is set equal and opposite to the applied force vector

(Fapp)

F Fres app= −  (8.3)

whereas the resisting moment vector (Mres) is set equal and opposite to the sum of the

applied moment vector (Mapp) and the cross product of the space vector (r) with Fapp

( )M M r Fres app app= − + × (8.4)

Table 8.2  Selected structural nodes description

Node Description Location (Figure 8.3)
1 Axle-beam centerline intersection G/J
2 Beam-piston centerline intersection F
3 Drag/side/shock strut connection E
4 Cylinder-trunnion centerline intersection B

8.3.3.  Forces and Moment Resolution

Three-dimensional equilibrium equations are used to calculate member end reactions.

Internal forces and moments are then determined from equilibrium by taking various

cross-sectional cuts normal to the longitudinal axis of the member. To ensure that the

information is presented in a concise manner, the methods used in the analysis are

discussed only in general terms, while detailed derivations are compiled and presented in

Appendix B.
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8.3.3.1.  Coordinate Transformation

Given that the mathematical landing gear model and the external loads are represented

in the aircraft reference frame, transformation of nodal force and moment vectors from the

aircraft to body reference frames are required prior to the determination of member internal

reactions and stresses. The body reference frames are defined such that the x3-axis is

aligned with the component’s axial centerline, and xz-plane is a plane of symmetry if there

is one. The transformation is accomplished by multiplying the force and moment vectors

represented in the aircraft reference frame by the transformation matrix LBA [45, p. 117]

F L FB BA A=  (8.5)

M L MB BA A=  (8.6)

where subscripts A and B denote the aircraft and landing gear body reference frames,

respectively. By inspection of the angles in Fig. 8.7, where subscripts 1, 2, and 3 denote the

rotation sequence from the aircraft (x, y, and z) to the body (x3, y3, and z3) reference frame,

the three localized transformation matrices are [45, p. 117]

L1 1 1 1

1 1

1 0 0

0

0

( ) cos sin

sin cos

ϕ ϕ ϕ
ϕ ϕ

=
−

















 (8.7a)

L2 2

2 2

2 2

0

0 1 0

0

( )

cos sin

sin cos

ϕ
ϕ ϕ

ϕ ϕ
=

−















 (8.7b)

L3 3

3 3

3 3

0

0

0 0 1

( )

cos sin

sin cosϕ
ϕ ϕ
ϕ ϕ= −

















 (8.7c)

Thus, the matrix LBA is given as [45, p. 117]

( ) ( ) ( )L L L LBA = 3 3 2 2 1 1ϕ ϕ ϕ  (8.8)

 or
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 (8.9)
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Figure 8.6 Orientation of the axes and the corresponding rotation angles

8.3.3.2.  The Main Assembly
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The main assembly drag strut and side strut structure is modeled as a space truss

consisting of ball-and-socket joints and two-force members. As shown in Fig. 8.7 the

loads applied to the cylinder consist of the side strut forces (Fside), drag strut force (Fdrag),

an applied force with components Fx, Fy, and Fz, and an applied couple with moment

components Cx, Cy, and Cz. Internal axial actions are obtained using the method of sections.

Equilibrium equations are then used to determine the magnitude of the internal axial forces

in the isolated portion of the truss.

The shock strut cylinder, in addition to supporting the vertical load, also resists a

moment due to asymmetric ground loads about the z-axis. This moment is transmitted

from the truck beam assembly to the cylinder though the torsion links. Note that in the

tandem configurations, the moment about the y-axis at the piston-beam centerline is

ignored because of the pin-connection between the two. However, this moment must be

considered in the dual-twin configuration, where the moment is resisted by the integrated

axle/piston structure.

x

z

y

Cylinder

Fside

Fdrag

FyFx

Cx Cy
Fz

Cz

Trunnion connection

Figure 8.7 Idealized main assembly cylinder/drag/side struts arrangement
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8.3.3.3.  The Nose Assembly

As mentioned in the geometric definition section, an additional side strut, arranged

symmetrically about the xz-plane, is modeled for the nose assembly. The addition of the

second side strut results in a structure that is statically indeterminate to the first degree as

shown in Fig. 8.8. The reactions at the supports of the truss, and consequently the internal

reactions, can be determined by Castigliano’s theorem [46, p. 611]

u
U

P

Fl

A E

F

Pj
j

i i

ii

n
i

j
= = ∑

=

∂
∂

∂
∂1

 (8.10)

where uj is the deflection at the point of application of the load P j, E is the modulus of

elasticity, and l, F, and A are the length, internal force, and cross-sectional area of each

member, respectively. The theorem gives the generalized displacement corresponding to

the redundant, P j, which is set equal to a value compatible with the support condition. This

permits the solution of the redundant, and consequently all remaining internal actions, via

equilibrium. As detailed in Appendix B, Section Two, the procedure is to first designate

one of the reactions as redundant, and then determine a statically admissible set of internal

actions in terms of the applied loads and the redundant load. By assuming a rigid support

which allows no deflection, Eq. (8.10) is set to zero and solved for P j.
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Figure 8.8 Idealized nose gear cylinder/drag/side struts arrangement
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8.3.3.4.  The Trunnion

When the gear is in the down-and-locked position, the trunnion is modeled as a

prismatic bar of length L with clamped ends. As shown in Fig. 8.9, the trunnion is

subjected to a force with components Fx, Fy, and Fz, and a couple with components Cy and

Cz, at axial position x = l1, where 0 < l1 < L and 0 ≤ x ≤ L. Clamped end-conditions at x = 0

and x = L yield ten homogeneous conditions, five at each end. At the load point x = l1, there

are five continuity conditions, i.e., u, v, w, v’, and w’, and five jump conditions

corresponding to point-wise equilibrium of the internal actions and the external loads.

The linear elastic response of the trunnion is statically indeterminate, but can be readily

solved by the superposition of an extension problem for the x-direction displacement

component u(x), a bending problem in the xy-plane for the y-direction displacement v(x),

and a bending problem in the xz-plane for the z-direction displacement w(x).  Using

classical bar theory, the governing ordinary differential equation (ODE) for u(x) is second

order, while the governing ODEs for v(x) and w(x) are each fourth order. The governing

equations are solved in the open intervals 0 < x < l1 and l1 < x < L, where the 20 constants

of integration (ci) resulting from integration of the ODEs with respect to x are determined

using the boundary and transition conditions as given above. Details of the solution are

given in Appendix B, Section Three.
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Figure 8.9 Trunnion modeled as a clamped-clamped bar
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8.3.4.  Member Cross-sectional Area Sizing

With the resolution of various ground loads, each structural member is subjected to a

number of sets of internal actions that are due to combinations of extension, general

bending, and torsion of the member. To ensure that the landing gear will not fail under the

design condition, each structural member is sized such that the maximum stresses at limit

loads will not exceed the allowables of the material and that no permanent deformation is

permitted.

A description of selected cuts near major component joints and supports is given in

Table 8.3. Normal and shear stresses acting on the cross section due to the internal actions

were calculated at these locations and used in the sizing of the required member cross-

sectional area.
Table 8.3  Sections description

Section Description Location (Figure 8.3)
1 Axle-beam centerline intersection G/J
2 Beam-piston centerline intersection F
3 Piston E
4 Cylinder/struts connection E
5 Cylinder/trunnion centerline intersection B
6 Forward trunnion mounting A
7 Aft trunnion mounting C
8 Drag strut A
9 Side strut D

8.3.4.1.  Normal and Shear Stresses In a Thin-walled Tube

The normal stresses induced on the structural members are determined by combining

the effects of axial load and combined bending, while the shear stresses are determined by

combining the effects of torsion and shear forces due to bending [47].

The normal stress (txx) due to combined axial force and bending moments is given as

τ xx
y

yy

z

zz

N

A

M

I
z

M

I
y= + −  (8.11)

where N is the maximum axial force, A is the cross-sectional area of the member, My and

Mz are the internal moment components, and Iyy and Izz are the second area moments about

the y- and z-axis, respectively. As shown in Appendix B, Section Four, the extremum

values of the normal stress on a circular-tube cross section under combined axial and

bending actions are
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τ
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xx y z
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A r t
M M
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min

= ± +
1
2

2 2 (8.12)

where r is the mean radius of the tube and t is the wall thickness. In the case of drag and

side struts, the last two terms in Eq. (8.11) are zero since both members are modeled as

pin-ended two-force members, thus,

τ xx
N

A
=  (8.13)

The shear stress(τxs) due to combined transverse shear forces and torque is given as

( ) ( )τ τxs xs torque
q s

t
= +  (8.14)

where q is the shear flow due to bending of a thin-walled tube, see Fig. 8.10. Given that

tan maxθ = −
V

V
z

y
(8.15)

where θmax is the polar angle where the bending shear flow attains an extremum value and

Vy and Vz are the shear forces components, Eq. (8.14) then becomes

τ
πxs y z

or
rt

T

r
V V

max

min

= ± +





1

2
2 2  (8.16)

where T is the applied torque. Details of the solution are given in Appendix B, Section

Four.
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Figure 8.10 Shear flow around a tube



88

8.3.4.2.  Design Criteria

Although aircraft structural design calls for multiple load paths to be provided to give

fail-safe capability, the concept cannot be applied in the design of the landing gear

structures. Accordingly, the gear must be designed such that the fatigue life of the gear

parts can be safely predicted or that the growth of cracks is slow enough to permit detection

at normal inspection intervals [4].

Von Mises yield criterion for ductile materials combined with a factor of safety is used

to determine the stress limit state. The Mises equivalent stress is given as [46, p. 368]

σ τ τMises xx xs= +2 23  (8.17)

and the factor of safety is defined as the ratio of the yield stress of the material to the Mises

equivalent stress, that is,

F S
yield

Mises
. .=

σ
σ

(8.18)

If this value is less than the specified factor of safety, the cross-sectional area of the

component is increased until the desired value is attained.

In addition to material limit state, the critical loads for column buckling of the drag and

side struts are considered because of the large slenderness ratio associated with these

members. The slenderness ratio is defined as the length of the member (L) divided by the

minimum radius of gyration (ρmin). Assuming a perfectly aligned axial load, the critical

buckling load for a pin-ended two-force member can be calculated using Euler’s formula

[46, p. 635]

N
EI

L
cr =

π 2

2 (8.19)

where E is the modulus of elasticity. In the case of a member with circular cross section,

the moment of inertia I of the cross section is the same about any centroidal axis, and the

member is as likely to buckle in one plane as another. For other shapes of the cross section,

the critical load is computed by replacing I in Eq. (8.19) with Imin, the minimum second

moment of the cross section (bending about the weak axis). Note that the Euler’s formula

only accounts for buckling in the long column mode and is valid for large slenderness

ratio, e.g., L/ρmin > 80 for 6061-T6 Aluminum alloy. For slenderness ratio below this

range, intermediate column buckling should be considered [48].
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8.3.4.3.  Sizing of the Cross-sectional Area

For thin-walled circular tubes, the cross-sectional area of the member is given as

A Dt= π  (8.20)

where the mean diameter (D) and design thickness (t) are both design variables. Instead of

using these two variables in the analysis directly, the machinability factor (k), which is

defined as the mean diameter divided by the wall thickness, is introduced to account for

tooling constraints [49]. The factor is defined as

k
D

t
=  (8.21)

and has an upper limit of 40. For the thin-wall approximation to be valid in the structural

analysis k > 20. Thus, the machinability factor is limited to

20 40≤ ≤k (8.22)

By replacing t in Eq. (8.20) with Eq. (8.21) and using D as a limiting design variable, the

desired cross-sectional area can then be determined by iterating on k. Note that the lower

limit of k given in Eq. (8.21) may be violated in some instances. For structural members

such as the axles, the truck beam, and piston, which typically feature k values in the mid-

teens, St. Venant’s theory for torsion and flexure of thick-walled bars [50] should be used

to calculate shear stresses. Essentially, the problem is broken down into torsion and

bending problems and the shear stresses are calculated separately based on the linear theory

of elasticity.

In general, the diameter of each cylindrical component is a function of either the piston

or wheel dimension. In the case of shock strut, it is assumed that the internal pressure is

evenly distributed across the entire cross-sectional area of the piston. That is, the piston area

is a function of the internal oleo pressure (P2) and the maximum axial force, that is,

A
N

P

Dp= =
2

2

4

π
 (8.23)

where Dp is the outer diameter of the piston. Rearrangement of Eq. (8.23) gives

D
N

Pp =
4

2π
 (8.24)
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Assuming a perfect fit between the piston lining and the inner cylinder wall, the minimum

allowable mean diameter of the cylinder is obtained by adding the wall thickness of the

cylinder to the piston outer diameter. To reduce the level of complexity, the minimum

allowable mean diameter of the trunnion is assumed to be identical to that of the cylinder.

Similar assumptions are made concerning the axle and truck beam, except that the outer

diameter of the above members is treated as a function of the diameter of the wheel hub. In

the case of the axle, the maximum allowable mean diameter is obtained by subtracting the

axle wall thickness from the hub diameter.

For the thin-walled I-section bar shown in Fig. 8.11, the cross-sectional area and

principal centroidal second area moments are

( )A t b h= +2 (8.25)

I t
h

b
h

yy = + 

















3 2

12
2

2
(8.26)

and

I
b t

zz =
3

6
(8.27)

where h is the web height and b is the width of the two flanges. Assume that Iyy > Izz,

algebraic manipulations then result in
h

b
> 2 (8.28)

and the z-axis is the weak axis in bending. The cross-sectional area is related to the second

area moment by the minimum radius of gyration, that is,

A
Izz=

ρmin
2 (8.29)

or for the I-section

ρmin /
=

+
b

h b12 6
(8.30)
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Figure 8.5  I-section truss bar

Since only the cross-sectional area is used in the weight computation, it is not necessary

to determine the actual dimensions of the sectional height and width. Instead, one of the

dimensions, usually the height, is treated as a function of the piston diameter and the other

is then calculated with a predetermined h/b ratio.

8.3.5.  Structural Weight Calculation

The final step of the analytical procedure is to calculate the weight of each member

based on its cross-sectional area, length, and the material density. Recall that seven different

loading conditions were examined in the analysis, which results in seven sets of cross-

sectional areas for each member. To ensure that the component will not fail under any of

the seven loading conditions, the maximum cross-sectional area from the sets is selected as

the final design value. Component weights are then calculated by multiplying each of the

cross-sectional areas by the corresponding length and material density. The summation of

these calculations then becomes the structural weight of the idealized analytical model.

8.3.6.  Validation of the Analysis

For analysis validation purposes, the landing gears for the Boeing Models 707, 727,

737 and 747 were modeled and analyzed. The estimated structural weight, which includes

the axle/truck, piston, cylinder, drag and side struts, and trunnion, accounts for roughly 75

percent of the total structural weight that can be represented in the model [43]. The

remaining 25 percent of the gear structural weight is made up of the torsion links, fittings,

miscellaneous hardware, and the internal oleo mechanism, e.g., the metering tube, seals,

oil, pins, and bearings. Note that actual and estimated structural weights presented in Tables

8.4 and 8.5 only account for the components that were modeled in the analysis.
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Table 8.4  Main assembly structural weight comparison

Aircraft Estimated, lb Actual, lb Est/Act
B737 784 768 1.02
B727 1396 1656 0.84
B707 2322 2538 0.91
B747 9788 11323 0.86

Table 8.5  Nose assembly structural weight comparison

Aircraft Estimated, lb Actual, lb Est/Act
B737 107 145 0.74
B727 171 327 0.52
B707 159 222 0.72
B747 1010 1439 0.70

Differences between the actual and estimated structural weights can be attributed to

several factors. First, the models analyzed are extremely simple, i.e., structural members

were represented with simple geometric shapes and no considerations have been given to

fillet radii, local structural reinforcement, bearing surfaces, etc. As for the analysis itself,

simplistic equations were used to calculate the applied static and dynamic loads, and

idealized structural arrangements were used to determine the member internal reactions.

However, it should be noted that the results are consistent with Kraus’ original analysis;

where an average of 13 percent deviation was cited [43].

8.4.  Landing Gear Group Weight Estimation

Although proven to be far more responsive to variations in design parameters, it is

unlikely that an analytical tool will replace statistical methods. In fact, both methods should

be used as complements to one another. This is particularly true in the calculation of the

landing gear group weight, where the analytical and statistical methods can be used to

determine the structural and non-structural component weights, respectively.

For large transports, landing gear structural weight accounts for roughly 57 percent of

the landing gear group weight. The remaining weight is made up by the rolling stock and

controls; the former accounts for roughly 34 percent of the total weight, while the latter

accounts for the last nine percent. Note that the weights of the tires, wheels and brakes that

make up the rolling stock have already been determined in previous chapters and no

additional calculations are required. As for the controls, i.e., actuation and steering

mechanisms, the items can be estimated statistically with sufficient accuracy and thus
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eliminates the need to resort to an analytical method [App. A]. A detailed weight

breakdown is provided in Table 8.6; the values are presented in terms of percent total

landing gear weight.

Table 8.6  Landing gear weight breakdown [2]

Component Main assembly Nose assembly
Rolling stock 32.0 2.0

Wheels 6.0 1.0
Tires 10.0 1.0

Brakes 16.0 0.0
Miscellaneous 0.0 0.0

Structure 50.0 7.0
Shock strut 32.0 4.0

Braces 12.0 1.0
Fittings 5.0 1.0

Miscellaneous 1.0 1.0
Controls 7.0 2.0
Total 89.0 11.0

Using the combined analytical and statistical approach presented here, the landing gear

group weight for the Boeing Models 707, 727, 737, and 747 were calculated and compared

with actual values. As presented in Table 8.7a, the analysis tends to underestimate the

group weight as the aircraft takeoff weight increases. Linear regression analysis was used

to calibrate the estimated group weights (West) so they agree with the actual values.

Correction factors were calculated using the expression

f Wc = −0 005 525. (8.31)

where W is the aircraft weight. The correction factor is then combined with West to arrive at

the calibrated landing gear group weight (Wcal), that is,

W W fcal est c= + (8.32)

The objective of this effort is to ensure that the discrepancy between the actual and

estimated values will remain within a tolerable range. This is important when the analysis

is used to examine the weight of landing gear for aircraft that are outside the existing

pavement thickness database. The calibrated results are shown in Table 8.7b.
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Table 8.7  Landing gear group weight comparison

a)  Estimated group weight

Aircraft Estimated, lb Actual, lb Est/Act
B737 4479 4382 1.02
B727 5976 6133 0.97
B707 9510 11216 0.85
B747 27973 31108 0.90

b)  Calibrated group weight

Aircraft Calibrated, lb Actual, lb Cal/Act
B737 4499 4382 1.03
B727 6301 6133 1.03
B707 10545 11216 0.94
B747 31138 31108 1.00


