

PROTECTION AGAINST MODELING AND SIMULATION UNCERTAINTIES IN DESIGN OPTIMIZATION

NSF GRANT DMI-9979711

Bernard Grossman, William H. Mason, Layne T. Watson, Serhat Hosder, and Hongman Kim

Virginia Polytechnic Institute and State University Blacksburg, VA

Raphael T. Haftka

University of Florida Gainesville, FL

Life-Cycle Engineering Program Meeting and Review 24-25 September 2002 Albuquerque, NM

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

Research Performed Under the Project

- Detection and Repair of Poorly Converged Optimization Runs
- Statistical Modeling of Structural Optimization Errors due to Incomplete Convergence
- Computational Fluid Dynamics (CFD) Simulation Uncertainties

Statistical Modeling of Optimization Errors

Objective

- Estimate error level of the optimization procedure
 - Identify probabilistic distribution model of the optimization error
 - Estimate mean and standard deviation of errors without expensive, accurate runs

Virginia III Tech

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

Structural Optimization and Modeling of Error

- Structural optimization performed a priori for many aircraft configurations to obtain optimum Wing Structural Weight (W_s)
- Multiple optimization results to construct response surface
- With multiple optimization results available, statistical techniques can be used to model the convergence error:

• Weibull Distribution

Previous Results

- Weibull Distribution models the convergence error of the optimization runs successfully
- Difference fit used to estimate the mean and standard deviation of errors without expensive, high fidelity runs

Change of the Initial Design Point

- For Case 2, the initial design points perturbed from that of Case 1, by random factors between 0.1 ~ 1.9
- High fidelity runs used in error calculations
- In average, Case 2 has the same level of error as Case 1

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

 $x \equiv s - t$

s, t

Virginia

Estimated distribution parameters

Cases		Case 1	Case 2	
Average of Abs(W ₁ -W ₂)		5941		
Estimate of mean, <i>lb</i> .	From data	4458	4321	
	Error fit	4207	3952	
	(discrepancy)	(-5.63%)	(-8.54%)	
	Difference fit	3804	3481	
	(discrepancy)	(-14.7%)	(-19.4%)	
Estimate of STD, <i>Ib</i> .	From data	8383	9799	
	Error fit	7157	7505	
	(discrepancy)	(-14.6%)	(-23.4%)	
	Difference fit	9393	9868	
	(discrepancy)	(12.0%)	(0.704%)	
p-value of χ^2 test		0.5494		

Conclusions for Statistical Modeling of Optimization Errors

- Multiple simulation results enable statistical techniques to estimate the uncertainty level of the simulation error
- "Weibull distribution" successfully used to model the convergence error of the optimization runs
- Multiple starting points used to construct two sets of low fidelity optimizations
- "Difference fit" allowed the estimation of average errors without performing high fidelity optimizations

CFD Uncertainties Motivation

Objective

- Finding the magnitude of CFD simulation uncertainties that a well informed user may encounter and analyzing their sources
- We study 2-D, turbulent, transonic flow in a converging-diverging channel
 - complex fluid dynamics problem
 - affordable for making multiple runs
 - known as "Sajben Transonic Diffuser" in CFD validation studies

²⁰⁰² NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

Virginia III Tech

Uncertainty Sources (following Oberkampf and Blottner)

- Physical Modeling Uncertainty
 - PDEs describing the flow
 - Euler, Thin-Layer N-S, Full N-S, etc.
 - boundary conditions and initial conditions
 - geometry representation
 - auxiliary physical models
 - turbulence models, thermodynamic models, etc.
- Discretization Error
- Iterative Convergence Error
- Programming Errors

We show that uncertainties from different sources interact

Virginia III Tech

Computational Modeling

- General Aerodynamic Simulation Program (GASP)
 - A commercial, Reynolds-averaged, 3-D, finite volume Navier-Stokes (N-S) code
 - Has different solution and modeling options. An informed CFD user still "uncertain" about which one to choose
- For inviscid fluxes (commonly used options in CFD)
 - Upwind-biased 3rd order accurate Roe-Flux scheme
 - Flux-limiters: Min-Mod and Van Albada
- Turbulence models (typical for turbulent flows)
 - Spalart-Allmaras (Sp-Al)
 - k-ω (Wilcox, 1998 version) with Sarkar's compressibility correction

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

grid level used in

CFD applications

Virginia

²⁰⁰² NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

Virginia

²⁰⁰² NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

grid level◄

Discretization Error by Richardson's Extrapolation

error coefficient

 $f_k = f_{exact} + ah^p + O(h^{p+1})$ • order of the method

➤ a measure of grid spacing

Turbulence model	Pe/P0i	estimate of p (observed order of accuracy)	estimate of (n _{eff}) _{exact}	Grid Ievel	Discretization error (%)
Sp-Al	0.72 (strong shock)	1.32	0.720	1	14.30
				2	6.79
				3	2.72
				4	1.09
Sp-Al	0.82 (weak shock)	1.58	0.811	1	8.00
				2	3.54
				3	1.12
				4	0.40
k- ω	0.82 (weak shock)	1.66	0.829	1	4.43
				2	1.45
				3	0.46
				4	0.15

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

Virginia

Uncertainty Comparison in Nozzle Efficiency						
Maximum value of	Strong Shock	Weak Shock				
the total variation in nozzle efficiency	10%	4%				
the difference between grid level 2	6%	3.5%				
and grid level 4	(Sp-Al)	(Sp-Al)				
the relative uncertainty due to the	9%	2%				
selection of turbulence model	(grid 4)	(grid 2)				
the uncertainty due to the error in	0.5%	1.4%				
geometry representation	(grid 3, k-ω)	(grid 3, k-ω)				
the uncertainty due to the change	0.8%	1.1%				
in exit boundary location	(grid 3, Sp-Al)	(grid 2, Sp-Al)				

2002 NSF-SNL Grantees Meeting, 09/24/2002, Albuquerque NM

Conclusions for CFD Uncertainties

- Based on the results obtained from this study,
 - Informed users may get large errors for the cases with strong shocks and substantial separation
- Systematic uncertainty (discretization error and turbulence models) large compared to numerical noise
- Grid convergence not achieved with grid levels that have moderate mesh sizes
- Uncertainties from different sources interact, especially in the simulation of flows with separation
- We should asses the contribution of CFD uncertainties to design problems that include the simulation of complex flows

Publications

- 1. Hosder, S., Grossman, B., Haftka, R. T., Mason, W. H., and Watson, L. T., "Observations on CFD Simulation Uncertainties," Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Paper No. AIAA-2002-5531, Atlanta, GA, Sept. 2002.
- 2. Kim, H., Papila M., Haftka, R. T., Mason, W. H., Watson, L. T., and Grossman, B., "Estimating Optimization Error Statistics via Optimization Runs From Multiple Starting Points," Proceedings of the 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Paper No. AIAA-2002-5576, Atlanta, GA, Sept. 2002.
- 3. Kim, H., Mason, W. H., Watson, L. T., Grossman, B., Papila, M., and Haftka, R. T., "Protection Against Modeling and Uncertainties in Design Optimization," in *Modeling and Simulation-Based Life Cycle Engineering*, eds.: K. Chung, S.Saigal, S. Thynell and H. Morgan, Spon Press, London and New York, 2002, pp. 231-246.
- 4. Hosder, S., Watson, L. T., Grossman, B., Mason, W. H., Kim, H., Haftka, R. T., and Cox, S. E., "Polynomial Response Surface Approximations for the Multidisciplinary Design Optimization of a High Speed Civil Transport," *Optimization and Engineering*, Vol. 2, No. 4, December 2001, pp.431-452.
- 5. Kim, H., Papila M., Mason, W. H., Haftka, R. T., Watson, L. T., and Grossman, B., "Detection and Repair of Poorly Converged Optimization Runs," *AIAA Journal*, Vol. 39, No. 12, 2001, pp. 2242-2249.
- 6. Kim H., "Statistical Modeling of Simulation Errors and Their Reduction via Response Surface Techniques," Ph.D Dissertation, Virginia Tech., July 2001.
- 7. Kim, H., Haftka, R. T., Mason, W. H., Watson, L. T., and Grossman, B., "A Study of the Statistical Description of Errors from Structural Optimization," Proceedings of the 8th AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Paper No. AIAA-2000-4840-CP, Long Beach, CA, Sept. 2000.

Publications (continued)

8. Kim, H., Papila M., Mason, W. H., Haftka, R. T., Watson, L. T., and Grossman, B., "Detection and Correction of Poorly Converged Optimizations by Iteratively Re-weighted Least Squares," Paper AIAA-2000-1525, 41st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Atlanta, GA, April 3-6, 2000.