DATA FILE NAMING CONVENTION

An example data file name is : **P17-090.DAT**

- The 2nd character of the file name indicates the angle of attack (α) of the prolate spheroid (1: α = 10°; 2: α = 20°). So, the example file (P17-090.DAT) contains data for the prolate spheroid at α = 10°.
- The 3rd character of the file name indicates the axial position (x/L) on the prolate spheroid at which the data was acquired (6: x/L = 0.600; 7: x/L = 0.772). So, the example file (P17-090.DAT) contains data at x/L = 0.772.
- The 5th through 7th characters of the file name indicates the azimuthal position (φ) on the prolate spheroid at which the data was acquired (090: φ = 90°; 095: φ = 95°; etc). So, the example file (P17-090.DAT) contains data at φ = 90°.

COLUMN NAMES

The definitions of the column names for the ASCII pressure spectra data files are given below. A list of symbols is included at the end of this file.

RawF=Dimensional frequency (Hz)RawP=Dimensional power spectral density (Pa²/Hz)RawPdB=Power spectral density in SPL re 20 μ PaCorcF=Non-dimensional frequency (= $\omega d / 2U_c$: assuming $U_c = 14u_\tau$)CorcCor=Corcos correction (= Φ_{TRUE}/Φ_{MEAS})CorcP=Corcos corrected power spectral density (Pa²/Hz)CorcPdB=Corcos corrected power spectral density in SPL re 20 μ Pa

$$InF1 = \frac{\omega v}{u_{\tau}^{2}} \qquad OutF1 = \frac{\omega \delta^{*}}{U_{e}}$$
$$InP1 = 10 \log_{10} \left[\frac{\Phi(\omega) u_{\tau}^{2}}{\tau_{W}^{2} v} \right] \qquad OutP1 = 10 \log_{10} \left[\frac{\Phi(\omega) U_{e}}{\tau_{W}^{2} \delta^{*}} \right]$$
$$OutP2 = 10 \log_{10} \left[\frac{\Phi(\omega) U_{e}}{Q_{e}^{2} \delta^{*}} \right]$$

LIST OF SYMBOLS

<i>d</i>	Pressure transducer sensing diameter
<i>f</i>	Frequency, Hz
<i>L</i>	Model length, 1.37 m
<i>Q</i>	Dynamic pressure, $\frac{1}{2}\rho U_e^2$
<i>r</i>	Distance from model surface along a line perpendicular to the model axis
Re_L	Model length Reynolds number, $U_{\infty}L / v$
Re_{θ}	Momentum thickness Reynolds number, $U_{\scriptscriptstyle \infty} \theta / v$
u_{τ}	Friction velocity, $(\tau_W / \rho)^{\frac{1}{2}}$
<i>u</i> , <i>v</i> , <i>w</i>	Fluctuating velocity components in the directions of U , V , and W , respectively
U	Velocity component in a plane parallel to the surface, in the axial direction
<i>U</i> _{<i>C</i>}	Convection velocity of pressure fluctuations
U_e	Total velocity at edge of shear layer
$U_{\scriptscriptstyle \infty}$	Wind tunnel free-stream velocity
<i>V</i>	Mean velocity component normal to the local model surface
<i>W</i>	Mean velocity component in a plane parallel to the local model surface and
	perpendicular to the axial direction (positive in - ϕ direction)
<i>x</i>	Axial distance from the nose of the model
<i>y</i> ⁺	ru_{z}/v
α	Angle of attack of model relative to incoming flow
δ^*	Boundary layer displacement thickness

$$\delta^* = \int_0^{\delta} \left[1 - \frac{(U^2 + W^2)^{\frac{1}{2}}}{(U^2 + W^2)_e^{\frac{1}{2}}} \right] dr$$

 δ Boundary layer thickness. Distance from the wall where $(U^2+W^2)^{\frac{1}{2}}/U_e = 0.995$

v Kinematic viscosity of air

 ρ Mass density of air

 θ Boundary layer momentum thickness

$$\theta = \int_0^\delta \left[1 - \frac{(U^2 + W^2)^{\frac{1}{2}}}{(U^2 + W^2)^{\frac{1}{2}}_e} \right] \left[\frac{(U^2 + W^2)^{\frac{1}{2}}}{(U^2 + W^2)^{\frac{1}{2}}_e} \right] dr$$

- τ_W Shear-stress magnitude at the wall
- ϕ Circumferencial angle coordinate, from windward side
- Φ Spectral power density of surface pressure fluctuations such that

$$\overline{p^2} = \int_0^\infty \Phi(\omega) \, d\omega$$

ω		Circular	frequency,	$(2\pi f),$	rad/s
---	--	----------	------------	-------------	-------

superscript:

()'	The root mean square value of a fluctuating quantity	
$()^+$	Indicates that the variable is made non-dimensional using the viscous scales: τ_w for	
	pressure, u_{τ} for velocity, and v/u_{τ} for length	
()	Denotes a long-time averaged quantity	