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Turbulent Boundary Layers
in Subsonic and Supersonic Flow

(AGARD AG-335)

Executive Summary

The aim of this work is to determine the state of the art of experimental knowledge in this field, by
gathering and analysing the most recent data on subsonic and supersonic turbulent boundary layers and
focussing on scaling laws with respect to Reynolds number and Mach number effects. Hypersonic
flows are not considered in depth, mainly because of the lack of comprehensive data. A major
drawback of the current knowledge of Reynolds number and Mach number effects is that the data have
been collected from many different sources, using different data acquisition and analysis procedures.
These differences have resulted in large variations among the published results. Nevertheless, some
definite conclusions are made. Given the diversity of the data, participation was called for from
research workers in 4 different NATO nations. This report provides the latest developments in this field
to the scientific and technical community.

The most important parameter in the description of incompressible turbulent boundary layer behavior
is, of course, the Reynolds number. Engineering applications cover an extremely wide range and values
based on the streamwise distance can vary from 10° to 10°. Most laboratory experiments are performed
at the lower end of this range, and to be able to predict the behavior at very high Reynolds numbers, as
found in the flows over aircraft and ships, it is therefore important to understand how turbulent
boundary layers scale with Reynolds number. For compressible flows, the Mach number becomes an
additional scaling parameter.

What is more, we know that friction and heat transfer are directly related to the structure of these layers.
In particular, in the case of turbulent boundary layers, the various transfers are mainly governed by
large scale eddies (or “organised structures’), whose size is of the order of the thickness of the layer.
Knowledge of the properties of these eddies is crucial to the control and manipulation of turbulence; in
particular it conditions drag reduction, which in turn enables a reduction in specific fuel consumption.

For subsonic flows, Reynolds number can have a significant effect on the level of the maximum
turbulence stresses, and the location of that maximum in the boundary layer. The properties of the
organised structures are dependent on the Reynolds number. In particular, in the outer part of the layers,
the space scale which characterises the size of structures in the longitudinal direction is especially
sensitive to this, and increases with the Reynolds number. For supersonic flows at moderate Mach
numbers, it appears that the direct effects of compressibility on wall turbulence are rather small. It is
noted that certain characteristics cannot be collapsed by simple density scaling, and that the existing
data indicates that longitudinal space scales fall sharply with Mach number. There appears to be an
urgent requirement for detailed experimental data on turbulence with more pronounced compressibility
effects, these effects being produced either by increasing the Mach number with Reynolds number
constant, or by increasing the Mach number and decreasing the Reynolds number.



Les couches limites turbulentes
dans les écoulements subsoniques et supersoniques
(AGARD AG-335)

Syntheése

L’objectif de ce travail est de faire le point sur I’état des connaissances expérimentales dans ce
domaine, en rassemblant et analysant les données les plus récentes sur les couches limites turbulentes
subsoniques et supersoniques et en mettant I’accent sur les effets d’échelle en ce qui concerne les lois
de similitude par rapport au nombre de Reynolds et au nombre de Mach. Les écoulements
hypersoniques ne sont pas traités en détail, principalement & cause du manque d’un ensemble complet
de données. L’un des points faibles des connaissances actuelles des effets du nombre de Reynolds et du
nombre de Mach résulte du fait que les données obtenues proviennent de sources multiples, issues de
procédures d’acquisition et d’analyse de données différentes. Ces différences expliquent les écarts
importants dans les résultats publiés. Certaines conclusions précises en sont néanmoins tirées. Compte
tenu de la diversité des données, il a nécessité la participation de chercheurs de quatre pays de I’'OTAN,
Ce rapport met i la disposition de la communauté scientifique et technique les derniers développements
des connaissances dans ce domaine.

Le parametre le plus important pour la description du comportement de la couche limite turbulente
incompressible est, bien entendu, le nombre de Reynolds. Les applications techniques sont
extrémement diverses et les valeurs, basées sur la distance le long de 1’écoulement, varient entre 10° et
10°. La plupart des expériences réalisées en laboratoire concerent la partie inférieure de cette gamme.
Pour étre capable de prédire le comportement de I’environnement a4 des nombres de Reynolds trés
élevés tels qu’ils existent dans les écoulements autour des navires et des aéronefs, il est trés important
de comprendre comment les couches limites turbulentes évoluent avec le nombre de Reynolds. Dans le
cas des écoulements compressibles, I'influence du nombre de Mach devient un paramétre additionnel
important.

On sait de plus que le frottement et le transfert de chaleur dépendent directement de la structure de ces
couches. En particulier, pour les couches limites turbulentes, ces différents transferts sont gouvernés
principalement par les tourbillons & grande échelle (ou “‘structures organisées™), dont la taille est de
I’ordre de I’épaisseur de la couche. La connaissance des propriétés de ces tourbillons est trés importante
pour le contréle et la manipulation de la turbulence; cela conditionne notamment la réduction de la
trainée, dont on peut attendre une réduction de la consommation spécifique des avions.

Pour ce qui concerne les écoulements subsoniques, le nombre de Reynolds peut avoir un effet
significatif sur le niveau de contrainte de turbulence maximale, ainsi que sur la localisation de ce
maximum dans la couche limite. Les structures organisées ont des propriétés qui dépendent du nombre
de Reynolds. En particulier, dans la partie externe des couches, 1'échelle d’espace caractérisant la taille
des structures dans la direction longitudinale y est particulierement sensible, et est une fonction
croissante du nombre de Reynolds.

Pour les écoulements supersoniques aux nombres de Reynolds modérés, il semblerait que les effets
directs de la compressibilité sur la turbulence de paroi soient assez faibles. Il est A noter que certaines
caractéristiques ne peuvent pas étre éliminées par un simple calcul de densité et que les données
existantes indiquent que les échelles spatiales longitudinales diminuent fortement avec le nombre de
Mach. Il apparait qu’il existe un besoin urgent de disposer de données expérimentales détaillées sur la
turbulence avec des effets de compressibilité plus élevés, ces effets pouvant étre produits soit en
augmentant le nombre de Mach 4 nombre de Reynolds constant, soit en augmentant le nombre de Mach
et en diminuant le nombre de Reynolds.
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Turbulent Boundary Layers
in Subsonic and Supersonic Flow

1 Introduction

The most important parameter in the description of in-
compressible turbulent boundary layer behavior is, of
course, the Reynolds number. Engineering applications
cover an extremely wide range and values based on the
streamwise distance can vary from 10° to 10°, Most lab-
oratory experiments are performed at the lower end of
this range, and to be able to predict the behavior at very
high Reynolds numbers, as found in the flow over aircraft
and shipes, it is therefore important to understand how
turbulent boundary layers scale with Reynolds number.

For compressible flows, the Mach number becomes an ad-
ditional scaling parameter. Because of the no-slip con-
dition, however, a subsonic region persists near the wall,
although the sonic line is located very clogse to the wall
at high Mach number. Furthermore, & significant tem-
perature gradient develope across the boundary layer at
supersonic speeds due to the high levels of viscous dissipa-
tion near the wall. In fact, the static-temperature varia-
tion can be very large even in an adiabatic flow, resulting
in a low-density, high-viscosity region near the wall. In
turn, this leads to a skewed mass-fiux profile, a thicker
boundary layer, and a region in which viscous effects are
somewhat more important than at an equivalent Reynolds
number in subsonic flow.

Figure 1 shows two sets of air boundary layer profiles at
about the same Reynolds number, one set measured on an
adiabatic wall, the other measured on an isothermal wall.
The momentum thickness Reynolds number Ry is approx-
imately 2200 when based on the freestream velocity u.,
and the kinematic viscosity evaluated at the freestream
temperature i,, in accord with usual practice. That is,
R = Bu./v.. The temperature of the air increases near
the wall, even for the adiabatic wall case, since the dissi-
pation of kinetic energy by friction is an important source
of heat in supersonic shear layers. Somewhat surprisingly,
the velocity, temperature and mass-flux profiles for these
two flows appear very much the same, even though the
boundary conditions, Mach numbers and heat transfer pa-
rameters differ considerably. The velocity profiles in the
outer region, in fact, follow a 1/7th power law distribu-
tion quite well, just as a subsonic velocity profile would
at this Reynolds number. With increasing Mach num-
ber, however, the elevated temperature near the the wall
means that the bulk of the mass flux is increasingly found
toward the outer edge of the boundary layer. This effect
is strongly evident in the boundary-layer profiles shown in
figure 2, where the freestream Mach number was 10 for a
helium flow on an adiabatic wall. For this case, the tem-
perature ratio between the wall and the boundary layer
edge was about 30.

If the total temperature T, was constant across the layer,

then from the definition of the total temperature, T, =
T+U? / 20, we see that there is a very simple relationship
between the temperature T and the velocity u. Since
there is never an exact balance between frictional heating
and conduction (unless the Prandtl number equals one),
the total temperature is not quite constant, even in an
adiabatic flow, and the wall temperature depends on the
recovery factor ». Hence:

Tw it

1+7r

T. 5 Me

where M is the Mach number, the subscript w denotes
conditions at the wall, and the subscript e denotes con-
ditions at the edge of the boundary layer, that is, in the
local freestream. Since r == 0.9 for a turbulent boundary
layer, the temperature at the wall in an adiabatic flow
is nearly equal to the freestream total temperature. For
example, at a freestream Mach number of 3, the ratio
Tw/To = 0.93,

As a result of these large variations of temperature
through the layer, the fluid properties are far from con-
stant, To the boundary layer approximation, the static
pressure variation across the layer is constant, as in sub-
sonic flow, and therefore for the examples shown in fig-
ure 1 the density varies by about a factor of 5. The vis-
cosity varies by somewhat less than that: if we assume
some form of Sutherland’s law to express the temperature
dependence of viscosity, for instance (u/u.) = (T/Te)”
where w = 0.765, then the viscosity varies by a factor
of 3.4. Since the density increases and the viscosity de-
creases with distance from the wall, the kinematic viscos-
ity decreases by a factor of about 17 across the layer. It
is therefore difficult to assign a single Reynolds number
to describe the state of the boundary layer. Of course,
even in & subsonic boundary layer the Reynolds num-
ber varies through the layer since the length scale de-
pends (in a general sense) on the distance from the wall.
But here the variation is more compilex in that the non-
dimensionalizing fluid properties also change with wall
distance. One consequence is that the relative thickness
of the viscous sublayer depends not only on the Reynolds
number, but also on the Mach number and heat transfer
rate since these will influence the distribution of the fluid
properties. At very high Mach numbers, most of the layer
may become viscous-dominated. Now the boundary lay-
ers at the lower Mach numbers shown in figure 1 are cer-
tainly turbulent, but the Mach 10 boundary layer shown
in figure 2 may well be transitional. For that case, the
Reynolds number based on freestream fluid properties (for
example, Ry = p.U.0/ . suggests a fully turbulent flow,
but when the Reynolds number is based on fluid proper-
ties evaluated at the wall temperature (Rsq = p.Uc0/ pw)
it suggests a laminar low. The difference between Reg
and Rz increases steadily with Mach number and heat
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transfer, and can become very significant at high Mach
number (for a full discussion, see Fernholz & Finley, 1976).

We can see that any comparisons we try to make between
subsonic and supersonic boundary layers must take into
account the variations in fluid properties, which may be
strong enough to lead to unexpected physical phenom-
ena, as well as the gradients in Mach number. Intuitively,
one would expect to see significant dynamical differences
between subsonic and supersonic boundary layers. How-
ever, it appears that many of these differences can be ex-
plained by simply accounting for the fiuid-property varia-
tions that accompany the temperature variation, as would
be the case in a heated incompressible boundary layer.
This suggests a rather passive role for the density differ-
ences in these flows, most clearly expressed by Morkovin's
hypothesis (Morkovin, 1962): the dynamics of a com-
pressible boundary layer follow the incompressible pattern
closely, as long as the Mach number associated with the
fluctuations remains small. That is, the fluctuating Mach
number, M’, must remain small, where M’ is the r.m.s.
perturbation of the instantaneous Mach number from its
mean value, taking into account the variations in velocity
and sound speed with time. If M’ approaches unity at any
point, we would expect direct compressibility effects such
as local “shocklets” and pressure fluctuations to become
important. If we take M’ = 0.3 as the point where com-
pressibility effects become important for the turbulence
behavior, we find that for zero-pressure-gradient adiabatic
boundary layers at moderately high Reynolds numbers
this point will be reached with a freestream Mach num-
ber of about 4 or 5 (see figure 3).

Recently, some measurements in moderately supersonic
boundary layers (M. < 5) have indicated subtle differ-
ences in the instantaneous behavior of certain quantities
and parameters as compared to subsonic flow. These dif-
ferences do not seem to be due simply to fluid-property
variations. In particular, differences in turbulence length
and velocity scales, the intermittency of the outer layer,
and the structure of the large-scale shear-stress containing
motions may indicate that the turbulence dynamics are
affected at a lower fluctuating Mach number than pre-
viously believed. It is also possible that some of these
changes in the turbulence structure are due to Reynolds
number effects. As pointed out earlier, the characteris-
tic Reynolds numbers encountered in high-speed flow can
cover a very large range, extending well beyond values of
the Reynolds number typically found in the laboratory.
Furthermore, the temperature gradients which are found
in the boundary layer in supersonic flow lead to variations
in Reynolds number across the layer which must be con-
sidered along with the usual variations in the streamwise
direction.

We begin this report by reviewing the boundary layer
equations in Section 2. In Section 3, we discuss the behav-
ior of boundary layers in subsonic flow, and in Section 4
we consider their behavior in supersonic flow. A summary
is given in the final section, Section 5. We will focus on
scaling laws with respect to Reynolds number and Mach
number effects. Hypersonic flows will not be considered
in depth, mainly because of the lack of comprehensive
data. Similarly, we do not consider transonic flows, so
that the term “subsonic” will be taken to be equivalent
to “incompressible.” The preparation of this AGARDo-
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Figure 3: Fluctuating Mach number distributions. Flow
1: M. = 2.32, Rey = 4,700, adiabatic wall (Eléna &
Lacharme, 1988); Flow 2: M. = 2.87, Res = 80,000, adi-
abatic wall (Spina & Smits, 1987); Flow 3: M. = 7.2,
Reg = 7,100, T /T, = 0.2 (Owen & Horstman, 1972);
Flow 4: M. = 9.4, Reg = 40,000, T,,/Tr = 0.4 (La-
derman & Demetriades, 1974). Figure from Spina el al.
(1994).

graph was greatly helped by the availability of the recent
reviewa and commentaries on subsonic boundary layers
by Smith (1994), Gad-el-Hak & Bandyopadhyay (1994)
and Fernholz & Finley (1995), and the reviews of super-
sonic boundary layers by Smits et al. (1989), Spina et al.
{1994), as well as the cataloge of supersonic turbulence
data compiled by Fernholz & Finley (1976}, Fernholz &
Finley (1980), Fernholz & Finley (1981), Fernholz et al.
{1989)), and by Settles & Dodson (1991).

2 Boundary-Layer Equations

Derivations of the incompressible boundary layer equa-
tions can be found in many places, and they will not be
repeated here. In any case, since we will need both the
compressible and incompressible forms, it is expedient to
concentrate on the former, and treat the latter as a special
case,

Detailed derivations of the equations for compressible
turbulent boundary layers have been provided in kine-
matic variables by van Driest (1951), Schubauer & Tchen
(1959), Cebeci & Smith (1974) and Fernholz & Finley
(1980). While it is well-known that the inclusion of den-
sity as an instantaneous variable is to add terms other
than —pu't’ to the Reynolds-averaged boundary layer
equations, the interpretation of these terms and their
significance is not universally agreed upon. One of the
reasons is that these terms do not appear in the mass-



averaged (Favre-averaged) equations, as shown by, for ex-
ample, Morkovin {1962), Favre (1965), and Rubesin &
Rose (1973). A critical review of the equations of com-
pressible turbulent flow and a discussion of the relative
merits of the mass-averaged form is given by Lele (1994).

2.1 Continuity

The Reynolds-averaged, stationary, two-dimensional con-
tinuity equation for compressible flow is:

2 @)+ %(m + %W) + %(p'—u') 0. ()

The additional terms in this equation, 2 (0") and
Ba—(p’_if), act as apparent sources/sinks to the mean flow
(gchubauer & Tchen, 1959). To the boundary-layer ap-
proximation, %(p’_u’) is negligible, and a simple mixing-
length argument indicates that o+ is negative. The abso-
lute magnitudes of ¢’ and v’ increase with y near the wall
before decreasing with y in the outer part of the boundary
layer, and therefore -%W) acts a8 a mass-flux source in
the inner layer and as a sink in the outer region of the
boundary layer. The presence of a source term in the
continuity equation may indicate that the physics of the
flowfield are not well represented.

An alternative approach uses “Favre-averaging”, where
the instantaneous variable is decomposed into the sum of
a mass-weighted average, &, and a fluctuation, o (Favre,
1965). The use of mass-averaged variables leaves the
continuity equation devoid of turbulent mass transport
terms:

35 70) + 2(p9) 0. @

2.2 Momentum

For two-dimensional compressible flow, the y-component
{wall-normal) momentum equation contains many terms
associated with density and velocity fluctuations. For
zero-pressure-gradient boundary layers in a steady su-
personic flow, however, the usual order-of-magnitude ar-
guments show that the pressure across the layer can be
taken as constant, as for subsonic flows. The pressure is
then a function only of streamwise distance, so that 85/8x
may be replaced by dg/dz in the z-momentum equation.
Hence, the mean pressure is considered to be “imposed”
on the boundary layer in that it appears as a boundary
condition rather than as an independent variable.

If the continuity equation is multiplied by the stream-
wise velocity, added to the boundary-layer approximation
of the r-momentum equation, and the resulting equation
Reynolds-averaged, we obtain:

O 2. B, —dp, D, U
E(PU )*‘%(PUV)—':&—*‘EQ(ME—WU
- Up'v’ — Vp'u’ — pruivh). (3)

Equation 3 is the most general form of the compressible
boundaty layer equation. The triple-product term may
be neglected since it is one order of magnitude smaller
than the other terms, and Vs’ can be neglected since

it is smaller than Up’?’ (7&¢ and P+’ are assumed to be
the same order and V << U7). The resulting equation is:

0 ity O, —dp 8 W _——  ——

(4)
Alternatively, the boundary-layer form of the compress-
ible z-momentum equation can be written:

PiggU + Rl = 22 4 TG - F), ()

where 78 = pU + p'u’ and p0 = pV + gV, and Pt can
usually be neglected. When the Favre-averaged form of
the z-momentum equation is8 considered, that is,

= (70 + 5 (50) = ST+ 2 (e - ), (6)

it is clear that three different forms of the equation ex-
ist, and some physical insight regarding the differences is
necessary.

In Equation 4 the traditional Reynolds stress and another
“apparent” stress, —U/pv’, comprise the turbulent shear
stress. Now, [/pv" is not a “true” Reymolds stress, but
simply a consequence of the type of averaging used. Nev-
ertheless, its contribution to the total stress cannot be dis-
counted. The correlations 7u/v" and Up/v' are both nega-
tive (as evident from a mixing-length argument), and thus
Ugv' acts in addition to the “incompressible” Reynolds
shear stress. Assuming small pressure fluctuations and
using the Strong Reynolds Analogy (SRA) (Morkovin,
1962) (see Section 2.3), it is a simple matter to express
the ratio of Ug/¥” to pu’v’ as (v — 1)M? ((see, for exam-
ple, Spina et al. , 1991a). Of course, this expression is
subject to the inaccuracies inherent in the SRA (see be-
low), but it is a good approximation to at least M = 5,
and provides an order-of-magnitude comparison even at
higher Mach numbers. This relation indicates how quickly
Upv' becomes important in the boundary layer. For a
Mach 3 adiabatic-wallboundary layer with Reg = 80, 000,
{v — 1)M? rises to a value of 1.0 at approximately 0.058
{~ 500y™*), and asymptotes to a value of 3.5 at the bound-
ary layer edge (Spina, 1988). Since the Mach number is
small across much of the constant-stress layer, Schubauer
& Tchen (1959) neglected the “second-order term”™ when
developing a skin-friction theory, but this should not be
considered a general result.

The correlation Up’v’ also appears in the turbulent ki-
netic energy (TKE) equation for a compressible boundary
layer. This equation is much more complex than the in-
compressible TKE equation, with eight production terms,

including one due to the Reynolds shear stress, —pu’v’ %%.

and one due to the “fictitious” stress, —U'ﬁ’_{r?%‘zi. A com-
parison between these two terms indicates that the pro-
duction of turbulent kinetic energy due to the Reynolds
shear stress is two orders-of-magnitude greater than that
due to the term in question (in fact, there are three
other terms that are an order-of-magnitude larger than
~Upv'§Z). This indicates that Up7v is less important
than the other terms in determining the energy flow in a
compressible boundary layer because it interacts with a
considerably smaller mean strain.

If the convective terms are written as the product of
the average instantaneous mass flux and a strain (as in



Equation 5), the only additional term (in addition to
those found in laminar flow) is the traditional Reynolds
stress, pu’v’. This form of the equation was advocated
by Morkovin (1962) to isolate the turbulent momentum
transport, and the new parts of the convective terms rep-
resent the fact that there is no mean mass transfer be-
tween mean streamlines. Since Up’v’ may be thought of
a8 a turbulent mass-transport term, it is not surprising
that this form of the equation is free from this term, and
the interpretation of the equation is physically and intu-
itively attractive.

The major drawback to writing the z-momentum equa-
tion in Favre-averaged variables (Equation 6) is that 7,
is more complex than for incompressible boundary layers
{Rubesin & Roee, 1973). Expressing the instantaneous
stress tensor in mass-weighted variables, expanding, and
time-averaging results in:
Tis = 555 + A5

where Si; = [(u:,; + ;i) — 38ijuk,x]. This expression con-
tains additional terms that are not amenable to a simple
physical interpretation, but the similarity of the Favre-
averaged representation of the compressible momentum

equation to that of the incompressible equation makes its
use nevertheless attractive, especially in computations.

2.3 Energy and the Strong Reynolds
Analogy

The mean energy equation was developed in terms of
the stagnation enthalpy by Young (1951) (see Howarth,
1953, Gaviglio, 1987) in the forms corresponding to the
Reynolds-averaged and Favre-averaged variables, respec-
tively. In‘Reynolds-averaged variables, the boundary-
layer approximation for the equation is:
ulH 50l 0 |k 3H
oz Oy Oy|cp Oy

- 2)3(5) . o

where, neglecting higher-order terms, H = k + %Uz y
and H' = &' + Uy’ . As in the development of the
mean r-momentum equation (Equation 5), there are no
additional terms beyond those found in incompressible
flow, although the convective terms are slightly altered,
as noted by Morkovin.

A useful relation for the reduction of experimental data
and the comparison of compressible to incompressible re-
sults is the Strong Reynolds Analogy [first identified as
such by Morkovin (1962), but primarily due to Young
(1951)]. This analogy, leading to simplified solutions of
the energy equation, is based upon the similarity between
Equations 5 and 7 when Pr = 1 {or when molecular ef-
fects are negligible compared to turbulent processes) and
the similarity of the boundary conditions for Th and U,
and 73 and «’. For zero-pressure-gradient flow of a perfect
gas with heat transfer, the equations admit the solutions:

eTo-Tu) = Z—:U, (8)
ofy = Zru, ()

where the heat-transfer rate and shear stress at the wall
enter through the boundary conditions. For adiabatic
flows, it follows that

T = o (10)
T = —-umY, (11)
and Ry = -l (12)

The solution given by T = T and Equation 10 satisfies
the energy equation independently, and therefore may be
applied for any pressure gradient (Gaviglio, 1987).

Gaviglio notes that these relations (Equations 8 - 12) are
so strict (that is, they apply in an instantaneous sense)
that they cannot be expected to hold exactly. Morkovin
(1962) gives a “milder” form of the SRA that relates the
r.m.8. of the static temperature fiuctuations to that of
the velocity fluctuations {also see Spina et al , 1991a)).
Morkovin (1962) and Gaviglio (1987) tested the time-
averaged form of the SRA and found that H.r is not
—1.0 but is closer to —0.8 or —0.9. Still, this high corre-
lation level indicates that large-scale eddies moving away
from the wall in a supersonic flow almost always con-
tain warmer, lower-speed fluid than the average values
found at that distance from the wall. As for the instanta-
neous form of the SRA (Equation 10}, Morkovin & Phin-
ney (1958), Kistler (1959}, Dussauge & Gaviglio (1987),
and Smith & Smits (1993a) have shown that T} is not
negligible, but that the results derived from such an as-
sumption still represent very good approximations. The
instantaneous form of the SRA has been validated to a
freestreamn Mach number of 3 (Smith & Smits, 1993a), but
the only limit to its first-order approximation at higher
Mach number may be the increasing importance of low-
Reynolds-number effects near the wall at higher hyper-
sonic Mach numbers (Morkovin, 1962). There is also the
fact that T' / T is bounded, which means there exists an

upper Mach number limit on the SRA unless ' / U ap-
proaches very small values at the same time.

3 Subsonic Flows

We will now consider the behavior of turbulent bound-
ary layers in subsonic flows, starting with the mean flow.
Unless otherwise indicated this discussion follows Smith
(1994) closely.

3.1 Mean flow behavior

The boundary-layer equations for subsonic flows may be
derived from the general equations given in Section 2 in
a straightforward manner. The mean continuity and z-
momentum equations are, respectively:

au v

E-FE:O (13)
au eu  dp 8 F;1 5 J—
pU§+pVa—y——E+$(P%—P“'U’)- (14)

The energy eguation is now redundant, as long as the flow
is adiabatic and fluid properties are constant.



The turbulent boundary-layer equations differ from the
laminar equations only in the additional turbulent shear
stress term —pu'v’. One immediate result is that a turbu-
lent boundary layer has twe characteristic length scales,
rather than one. A measure of the boundary layer thick-
ness, such as §, is the appropriate length scale in the outer
part of the layer, away from the wall, and is thus termed
the outer length scale. The viscous length, v/u, {u, is
defined in Equation 17), is the appropriate length scale
near the wall, and is termed the inner length scale. In
contrast, a laminar boundary layer in zero pressure gra-
dient is characterized by a single length scale, /vL/Uw.
This is why it is possible to obtain full similarity solu-
tions for laminar boundary layers, but not for turbulent
boundary layers. For turbulent boundary layers, sepa-
rate similarity laws for the inner and outer flows must be
sought. The ratio of the outer and inner length scales,
5§t (= 6u,/v), increases with increasing Reynolds num-
ber and therefore the shape of the mean velocity profile
must also be Reynolds-number dependent.

3.1.1 The viscous sublayer

For the flow very near the wall, the “no-slip” condition
at the wall requires that T/, V, ¥’ and v’ must approach
zero as the wall is approached. Thus, for a zero-pressure-
gradient flow, for the region very near the wall, Equa-
tion 14 reduces to

U
Equation 15 may be integrated to give:
T wu.
; - v ] (16)

where u, is the Iriction velocity and is defined as

m=¢%=@¢%, (7)

where Cy is the skin friction coefficient defined as

— Tw
oV

Equation 16 may aiso be written as ut = yT, where
the superscript {*} denotes normalization with inner vari-
ables (u, for velocity, and v/u, for length). That is, very
near the wall, the velocity varies linearly with distance
from the wall.

Cr (18)

3.1.2 The law-of-the-wall and the defect-law

For the inner, near-wall flow (including the linear part
of the sublayer), Prandtl (1533) argued that the viscos-
ity and wall shear stress are the important parameters,
and thue the velocity must have the following functional
dependence:

U= fly, 7w, o, 14). (19)

In the outer layer, viscosity is less important, but the
presence of the wall is still felt through the magnitude of
the wall shear stress. Thus, von Kdrmén (1930) suggested
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Figure 4: Example of a measured mean velocity pro-
file at Res = 5,100 from Purtell et al. (1981} scaled
on inner variables, and compared to theoretical and
empirical scaling-laws: O data; = -—-- the lin-
ear sublayer; —- --=-- the buffer region according to
Spalding (1961); ========~ the logarithmic overlap re-
gion (equation 24); ——-=-——- ~ Coles’ law-of-the-wake
(equation 27). Figure from Smith (1994).

that the velocity defect, I/. — T, should have the following
functional dependence

Ue — U = g(y, 6! Tw, P)- (20)

Dimensional analysis of Equations 19 and 20 leads to

Tos(m),
and _
=95 @

Equation 21 is known as the law-of-the-wall, and is valid

only in the inner layer. Equation 22 is known as the
defect-law, and is valid only in the outer layer. Rotta
(1550), Rotta (1962) suggested that the defect law should
be written as:

uv.-u Y ur
Uy _Q(K’E)' (23)
where u. /U, indicates a weak or vanishing Reynolds num-
ber dependence. Millikan (1938) proposed that at large
enough Reynolds numbers (where the u, /U, dependence
is assumed to vanish), in a region where v/u, € y € 6,
there may be a region of overlap where both the inner and
outer similarity laws are simultanecusly valid. Matching
the velocity, and velocity gradients, given by Equations 21
and 22 yields the following forms for the law-of-the-wall
and the defect-law in the overlap region:

Zotn(®)ee o
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Figure 5: Mean velocity profiles for four different Reynolds numbers using a) inner scaling, illustrating the Reynolds-
number dependence of the outer region, and b) cuter scaling, illustrating the Reynolds-number dependence of the inner

region. Rey = 2,650 1 5,650
(1994).
and
v.-7 =_11n(2) +c, (25)
Ur K é

where C, C’, and & (called von Kérmén’s constant) may
or may not be Reynolds-number dependent. Thus, the
velocity profile in the overlap region is logarithmic, and
the overlap region is often referred to as the logarithmic
region.

The preceding discussion has outlined the “orthodox”
view of mean-flow scaling. An alternative scheme, pro-
posed by George et ol. (1992) is discussed in Section 3.1.4.
Also, the “physical” boundary layer thickness, &, is exper-
imentally ill-defined [this is especially true in supersonic
flows — see Fernholz & Finley (1980) and Section 4], and
it ought to be replaced by a well-defined integral thick-
ness, such as the Clauser or Rotta (Rotta, 1950) thickness:

U, -0 /2
- d = . —
A /0 ~ Y =26 G

where * is the usual (incompressible) displacement thick-
ness.

(26)

It should be pointed out that the similarity scaling of
the mean incompressible boundary layer velocity profile
is most usefully expressed in terms of the scaling for the
mean velocity gradient 8U/8y. That is, 8U /8y in the
near-wall region scales with a length scale v/u, and in
the outer region the length scale is §. In the overlap re-
gion, the length scale becomes the wall-normal distance,
y. The velocity scale for the inner and outer regions of
the boundary layer is the same, and it is, of course, ur.

3.1.3 The law-of-the-wake

Coles (1956) compiled and analysed all of the data avail-
able at that time for velocity profiles in turbulent bound-
ary layers and proposed a scaling law to include the outer

; 11,500 —-rmmemsemes; 20,000 === — === .

Figure from Smith

layer as well as the overlap region. He found that the por-
tion of the velocity profile which deviated from the log-
arithmic formula in all cases shared a similar form that
resembled the velocity profile in a wake. Coles thus ex-
pressed the departure as a wake function and added it to
Equation 24 obtaining

(27)

Here, II is equivalent to the maximum deviation of the
velocity profile from the log-law of Equation 24 and it in-
dicates the strength of the wake; w(y/6) is Coles’s wake
function (= 2sin2(§§) such that fol(y/G)dw = 1 and
w(l) = 2). This combined law-of-the-wall and law-of-the-
wake describes the velocity profile from the inner edge
of the log region all the way to the edge of the bound-
ary layer. Figure 4 gshows a typical velocity profile scaled
with inner variables. The figure also shows the theoreti-
cal linear profile deep in the viscous sublayer, a line cor-
responding to the logarithmic overlap region, and Coles’s
wake function w. The curve which is used to interpo-
late the velocity profile between the sublayer and the
log region was derived by Spalding (1961), and this re-
gion is called the buffer layer. Figure 5 shows how these
semi-empirical expressions for the mean velocity profile
change with Reynolds number. In figure 5a, the profiles
are plotted using inner scaling, and figure 5b shows the
same profiles plotted using outer scaling. When using in-
ner scaling, only the wake component (the outer layer) is
Reynolds-number dependent. When using outer scaling,
only the inner layer is Reynolds-number dependent. This
is the expected behavior. However, what may be unex-
pected is that the logarithmic overlap region, when scaled
with outer variables, is also weakly Reynolds number de-
pendent, at least for the lowest-Reynolds-number profile.
This point is discussed further below.

A local friction law is obtained from Equation 27 by using
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Figure 6: Strength of the wake component in zero pressure-gradient equilibrium subsonic turbulent flow. Here,

A (U/u.) = 211/x. From Coles (1962).

the boundary condition U = U, at y = §, giving

2 1 {Cy
E—EID(RBE 2)+C+

where Res = 6U./v. Equation 28 provides an implicit
expression for determining Cp, if Res, II, and C are all
known.

211

™ 1

(28)

In 1962, Coles again surveyed the available data. He
assumed that s and C were constant, independent of
Reynolds number. By fitting measured velocity profiles
to the logarithmic overlap region, he determined u, for
each profile, and then determined IT by measuring the
maximum deviation from the log-law. He found that, for
Reg < 6,000, I1 is a strong function of Reynolds number,
as shown in figure 6.

In 1968, Coles further re-analysed the data. This time,
he fit the data to the logarithmic overlap region and part
of the wake to determine u, and & simultaneously. He
again assumed that x = 0.41 and C = 5.0. In this new
analysis, Coles found the asymptotic value of II to be
about 0.6 (Erm et al. , 1985), as opposed to 0.55 in the
earlier study, although the difference may be due to the
different fitting process used to determine u.,.

3.1.4 An alternative outer-flow scaling

So far, we have only considered the law-of-the-wall and
the defect-law in the forms of Equations 21 and 22, which
give rise to a logarithmic overlap region. These similarity
laws are generally accepted by most researchers. Recently,
however, George et al. (1992) have raised serious objec-
tions to the form of the defect-law given in Equation 22.
Based on the asymptotic behavior of the logarithmic laws
(see below), George et al. argue that ., is not the correct

velocity scale for the outer flow. Instead, they favor using
U.. Thus the defect-law takes the new form

T-0(3)

u.-u
U.

Matching this to the law-of-the-wall in Equation 21 re-

sults in an overlap region having a power-law form, and

the law-of-the-wall and the defect-law take the following

forms, respectively, in the overlap region:

(29)

v _ G (&)1 + B, (30)
Uy v
and U T
e~V 4 AN
G =1-C (5) Bo, (31)

where C;, C,, and ~ are all Reynolds number dependent.
The functional forms for C;, C,, v must all be found em-
pirically from data. It ie also not possible to determine
ur by fitting the data to some predetermined curve be-
cause of the Reynolds number dependence of Equations 30
and 31. Instead, u, must be measured by some indepen-
dent means. George et al. analysed several date sets for
which the values of u, were known, and empirically found
the corresponding values for C;, C,, and 7. They argue
that the power-law similarity laws collapse the data better
than the logarithmic similarity laws. As evidence, figure 7
shows one of Purtell et al. {1981) velocity profiles plotted
using George et al ’s inner scaling compared with Equa-
tion 30. One drawback of the power-law similarity laws is
that they have not yet been extended to account for the
wake. However, George et al. derive a local friction law
by matching the mean velocity given by Equations 30 and
31, which are simultaneously valid in the overlap region.

A power-law overlap region provides significant theoret-
ical and practical advantages over the traditional loga-
rithmic form. George et al. (1992) discuss the fact that
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Figure 7: Example of a measured mean velocity profile
at Reg = 5,100 (from Purtell et al. , 1981) compared to
the scaling laws proposed by George et al. (1992), George
& Castillo (1993): =eeeeeesmmmenneee the linear sublayer;
-the power-law overlap region (Equation 30). Figure
from Smith (1994).

the log-law form indicates that, in the limit of infinite
Reynolds number, 1) the velocity profile essentially dis-
appears (that is, U/U. — 1); 2) the ratio of § to ei-
ther of the integral scales, §* or 8, asymptotes to infinity,
and 3) the shape factor, H, asymptotes to a value of 1.
The first point poses a theoretical problem, in that if the
Reynolds number is increased towards infinity by simply
moving downstream on an infinitely long surface, there
should always exist a boundary layer. In addition, veloc-
ity profile data collapse equally well using either §* or &,
as a length scale, as with using §, which conflicts with
the second point. Finally, shape factors below 1.25 have
never been measured in zero-pressure-gradient turbulent
boundary layers (see, for example, figure 18), which con-
flicts with the third point. In contrast, the power-law
forms predict that 1) a velocity profile will always exist,
even in the limit of infinite Reynolds number, 2) the ra-
tios §/6* and §/8 asymptote to finite values, and 3) the
asymptotic value of the shape factor is greater than unity.

It is difficult to judge whether the traditional logarithmic
forms or the power-law forms are correct. In practice,
the two forms are not very different. This can be seen
by comparing figures 4 and 7, which show the same data
plotted using both types of scaling.

However, the difference may be important when extrap-
olating results to very high Reynolds numbers, and the
issue needs to be resolved. As shown by Smith (1994), a
full similarity analysis supports the use of U, as the outer-
layer velocity scale. His mean-flow measurements in the
range 4,600 < Reg < 13,200 also appear to support the
view that the outer region scales using the freestream ve-
locity as the velocity scale. Although these results tend
to give some confidence in power-law similarity laws, the
log-law is well-entrenched and unlikely to be replaced by

alternative scalings unless the practical consequences be-
come compelling. Certainly the data presented in this re-
port (see section 3.1.5) is consistent with the traditional
log-law over a very wide Reynolds number range, and sug-
gesta that the log-law will continue to be widely used.

In contrast to the case for boundary-layer flows, George
et al. (1992) concluded that for fully-developed pipe
and channel flows u, is indeed the correct velocity scale -
throughout the flow, The wall shear stress and the pres-
sure drop are intimately connected through the equations
of motion for these flows, and thus u, influences the entire
flow. This connection is absent in boundary-layer flows.
Since there are fundamental differences between devel-
oping boundary-layer flows and fully-developed internal
flows, it may not be appropriate to compare results from
internal Aows with results from boundary-layer flows.

3.1.5 The data

Table 1 gives an over-view of the principal sources of data
discussed in this section. The discussion follows Fernholz
& Finley (1995) closely, and further details may be found
there. The table indicates the symbols used for plotting
the data in later sections for overall comparison purposes,
the range of Reynolds number based on momentum de-
fect thickness and the shape factor, the experimental tech-
niques and the measurements made, the experimental sit-
uation and potentially important secondary factors such
as tripping devices, freestream turbulence and pressure
history. The survey not only shows that relevant data ex-
ist in a Reynolds number range 3x10? < Reg < 2.2x10°,
but indicates several gaps, especially in the case of tur-
bulence data in the medium-to-high range. The re-
cently published measurements by Saddoughi & Veer-
avalli (1994) reach a peak Reynolds number of 3.2x10°,
but were obtained on a rough wall.

The turbulence data shown in Table 1 were obtained
largely by using hot-wire probes, which can give rise
to problems with spatial resolution, especially at high
Reynolds numbers. This problem will be discussed in
Section 3.2.1 below. The only laser Doppler anemome-
ter data listed in Table 1 are those of Petrie ef al. (1990)
although there are two further investigations (Table 2) at
low Reynolds numbers (< 2100) (Karlsson & Johansson,
1988, Bisset & Antonia, 1991, Djenidi & Antonia, 1993).

We begin the discussion of Reynolds number effects by
considering the value of the minimum Reynolds number
for a fully-developed turbulent layer. At low Reynolds
numbers, the transition trip, the upstream history, or
boundary conditions such as freestream turbulence, can
all influence the development of the boundary layer, and
therefore the Reynolds number alone is thus not suffi-
cient to determine whether & zero presure gradient bound-
ary layer fulfills all the conditions for a “fully developed”
state. The shape parameter H, skin friction coefficient C'p
and the strength of the wake component IT should also be
used as criteria, a8 well as the Reynolds stress maxima
and the shape of the spectra.

Preston (1958) compared measurements made on a flat
plate by Dutton (1955) with a reworking of Nikuradse's
(Nikuradse, 1932, Nikuradse, 1933) pipe flow measure-
ments, and “the rather limited experimental information™
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Table 1: Sources for subsonic mean flow and turbulence data. Table from Fernholz & Finley (1995).
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Author Date |Mimimum] 12 | CF.EXY | Awurau| FST  Transiton | ——W.ﬂl_ﬂbui 9;14_?
RED2 % Promoter Measurement| Present
1 2 3 4 | 5 6 7 8 9 10
Purtell et al. (1) | 1981 498 155 54 0.85 0.05  Distnbuted M_:incnlu_m_ 7 Yes
| 458 < Roughness | Lquation
Murlis et al. (2) l 1582 780 1.49 455 ~12 <0.1  Trip Wire | Preston Tuhe Yes
| Stanton tuhe
Smits et al. (3) 1983 354 1.64 =55 =10 0.4 Preston Tube Yes
Pin Type
Roach & Brierley (4) | 1989 | S02 | 1.51 | S41 | 01 | 433 FST | Momentum | Yes
361 < Equation
(L) 145 4,86 1 145 FST Momentum Yes
611« Eqguation
Crm & Joubert {5) | 1991 581 .- - =053 [ 032 Trip Wire | Preston Tube Yes
i 537 |Unusual form of wake 032 Grit Preston Tube | Yes
509  {Unusual form of wake 032  Trip Wire | Preston Tube Yes
Spalart (6) . 1988 670 | 15 4.84 L] =0 None C:llcul:uid Yes
i 100 1.66 5.78 =14 =0 None Caleutated | Uncertain
;Q;cnidi & Antoniz 1993 =560 e - - - Pehbles as Slqp_e_dul_gi Yes
cocmimimeon e e IR | | _|______3DTep_| ofPrafite |

Table 2: Additional sources for subsonic mean flow and turbulence data. Table from Fernholz & Finley (1995).

available at the time led him to place the lower limit
at Reg = 320 for a boundary layer tripped by a tran-
sition wire. Table 2 liste some more recent investigations,
together with relevant characteristic information, and it
would appear that a logarithmic profile can be identified
down to Res values of the order of 350,

Murlis et al. (1982) suggested “that the main changes
in mean velocity profiles at low Reynolds number arise
because of a reduction in the wake component and not
through a failure of the inner logarithmic law”. This is
clearly seen in figure 8 where a range of fully turbulent
low Reynolds number profiles are shown. The appearance
of a log-law with a greater slope is also noted by White
(1981) in the range 400 < Rey < 600.

Figure 9 shows some skin-friction data compared to a lam-
inar correlation due to Walz (1966) and a turbulent corre-
lation, extended to low Reynolds number, due to Fernholz
(1971). The dependence of the transition process on the
freestream turbulence level is clearly demonstrated, and
the shear stress level reached after transition is closely
related to the turbulent correlation, which agrees well
with the data of Purtell et al. (1981) and Smits et al.
(1983b). In contrast, it is possible for strong tripping de-
vices to over-stimulate the boundary layer and cause an
over-shoot, with Cy values above the turbulent Cy curve
(see Dhawan & Narasimha, 1958).

As indicated earlier, the development of a low Reynolds
number boundary layer is also indicated by the strength
of the wake component (see figure 6). Figure 10 shows
data for more recent data, ag listed in Tables 1 and 2, in-
cluding some very high Reynolds number results. There is
some question regarding the trend to zero strength wake
at Reg = 500, as suggested by Coles (see also Smits et al.
, 1983b). In figure 10, the trend at low values of Reg is
principally given by the data affected by high levels of
freestream turbulence. Coles proposed that “except pos-
sibly at very low Reynolds number the effect of increased

stream turbulence is to decrease the strength of the wake
component and that the skin-friction value is higher than
for comparable experimental data.” The data indicate
that the wake factor may decrease with freestream tur-
bulence leve] even at very low Reynolds number, whereas
the skin-friction coefficient does not show any particular
trend (see figure 9). At high Reynolds numbers, the data
also suggest that the value of the wake strength may lie
below that suggested by Coles.

In preparing figure 10, the strength of the wake compo-
nent was found using the constants x = 0.40 and C' = 5.10
in the log law. As Smith (1994) and Fernholz & Finley
(1995) indicate, choosing different values can have a sig-
nificant effect, since the strength of the wake component
is always found as the difference between two relatively
large quantities. Spalart (1988), in evaluating his own low
Reynolds number computational data, found “intolerably
large discrepancies between wake-strength values conse-
quent upon small variations in the log-law constants”,
and concluded that “very accurate measurements or sim-
ulations over a wide Rep range, as well as a strong con-
sensus on the value of x (at least two significant digits)
will be needed before definitive results can be obtained
for A{U/u.)". At very high Reynolds numbers, where
U/u, near the edge of the layer takes large values, this
problem becomes even more serious, so a high-Reynolds-
number asymptotic value (if one exists) is very difficult
to establish.

Velocity profiles for a wide range of Reynolds numbers
are shown in inner-layer scaling in figures 11 — 13. Over
the entire Reynolds-number range, the agreement with
Equation 24 is excellent. Small departures are evident
but appear to relate more to differences between inves-
tigators than to variation with Reynolds number. The
data in figure 12 were measured using the same hot-wire
probes and electronic equipment in two different wind-
tunnels (HFI at TU Berlin and the DNW in Holland).
The measurements by Winter & Gaudet (1973) cover the
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Figure 8: Development of the mean velocity in inner-law scaling in a zero pressure gradient low-Reynolds-number
incompressible boundary layer. Figure from Fernholz & Finley (1995).
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Figure 9: Comparison of measured skin-friction coefficients with skin-friction relationships from Walz (1966) and
Fernholz (1971). Data from Roach & Brierley (1989). Wall stress from Preston tube or momentum balance in a
laminar-transitional-turbulent boundary layer. Figure from Fernholz & Finley (1995).
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widest Reynolds number range, and the skin friction was
measured using a large floating element balance.

The data are displayed using outer-layer scaling in fig-
ures 14 — 16, using the Rotta thickness as the outer-layer
length scale. The data collapse is impressive throughout.
Over nearly two decades (for Rep > 2,500}, Reynolds-
number effects are not detectable within the scatter of
the data. Further support for the “universal” outer re-
gion similarity is provided by, for instance, Rotta (1962),
Coles (1962), and by the agreement with transformed su-
personic boundary-layer profiles found in Fernholz & Fin-
ley (1980), where similar low-Reynolds-number behavior
was also observed.

The skin friction coefficients are shown as a funtions of
Reg in figure 17. Agreement with the semi-empirical re-
lations developed by Coles (1962) and Fernholz (1971) is
within 5% for the range 600 < Reg < 220,000, though
with a general tendency for the data to lie systematically
low at the lower end of the range (see also Smits et ol. ,
1983b).

Figure 18 shows the experimental values of H as derived
from the data in Table 1. Agreement with Coles is in
general terms good, with the Roach & Brierley data, with
high freestream turbulence, lying systematically low.

3.1.6 Discussion of Reynolds-number effects

Despite the fact that the experimental data exhibit con-
siderable scatter, they generally agree with Coles’ results,
at least in trend. The law-of-the-wall and the law-of-the-
wake seem to describe the data reasonably well. Asshown
in figures 6, 10 and 18, the Reynolds number dependence
of 11, Cy, and H is strong at low Reynolds numbers, that
is, Reg < 5,000. At higher Reynolds numbers, these pa-
rameters change only very slowly.

Smith (1994) suggested that the behavior of Cy, IT and
H might be explained partially as follows. The inner
layer occupies an increasingly smaller fraction of the to-
tal boundary-layer thickness as the Reynolds number in-
creases. That is, the ratio §t = éu./v incresses with
Reynolds number. In the early stages of a boundary
layer’s development, the Reynolds number is low, §* is
relatively small, and the inner and outer layers are likely
to interact very strongly. Once an overlap region has been
established further downstream, the inner layer may act
to set a lower boundary condition for the outer layer. The
time scales in the outer layer (one measure is §/U.) be-
come much larger than in the inner layer (one measure
is v/42), and thus it may take some time (i.e. Reynolds
number range) for the outer layer to adjust to the bound-
ary condition dictated by the inner layer. Once the
Reynolds number is high enough, the inner and cuter lay-
ers will have become essentially independent. The outer
layer will become more like a wake, with the velocity de-
fect scaling with the inner boundary condition set by the
local value of ur, and the mean-flow properties will have
reached their asymptotic values. The fact that Cy, § and
§* continue to vary, and do not reach strictly constant
values, implies that the above argument neglects some of
the physics.
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In all of his studies, Coles assumed that x and C are
constant (using x = 0.41 and C = 5.0). Purtell et al.
(1981) also found that x and C are constant. However,
Tennekes & Lumley (1972) claimed that s is Reynolds
number dependent but that C and C’ are not. In con-
trast, Hufman & Bradshaw (1972) provided strong sup-
port for a constant & (they used x = 0.41). They found
that C is only very weakly Reynolds-number dependent,
and then only at very low Reynolds number. As to the
actual values of k and C, Brederode & Bradshaw (1974)
analysed several data sets and suggested that x = 0.41
and € = 5.2 provided the best oversll fit to the data. For
a large data set of compressible boundary layers, Fern-
holz & Finley (1980) found that x = 0.40 and C = 5.1
represented a very good fit to the data. In practice,
these differences among values of the constants are not
too important, except perhaps for finding the wake func-
tion precisely. For example, using either de Brederode &
Bradshaw's values, or those recommended by Fernholz $
Finley results in only 1.2% difference in U/u, over the
range 100 < yu./v < 10,000. Finally, the matching pro-
cedure used to obtain Equations 24 and 25 requires an
integration with respect to y. The constants of integra-
tion, ¢ and C", depend on the inner limit of the integra-
tion. Duncan et al. (1970) point out that this inner limit
is Reynolds-number dependent, and therefore C and C’
must also be Reynolds-number dependent. Smith (1994)
demonstrated that the traditional inner and outer scaling
laws cannot both be Reynolds-number independent. If C
is assumed to be Reynolds number-independent, then ¢’
must be a function of Reynolds number.

The above discussion has focused on the law-of-the-wall,
and most of the published data are presented in this form,
as opposed to using the defect-law. Now, if x and C
are taken as constants in Equation 24, and if II is as-
sumed to be Reynolds-number dependent, then this im-
plies a Reynolds-number dependence of the defect-law,
Equation 22. Following both Simpson (1970) and Purtell
et al. (1981), Equation 27 may be rewritten, using the
conditions that at y = §, U = U and w(l) = 2, as

U.-U _ 1 y)-E (2) 2m
e nln(é = U\s Tt (32)

Alternatively, Equation 24 may be substituted into Equa-
tion 25, since both are valid in the logarithmic overlap
region, to yield (after using Equation 17)

oy JE Ly (e
¢=-C+yla K]n(u). (33)

(Smith, 1994). Because both Cy and §* are Reynolds
number dependent, ¢’ must be a function of Reynolds
number. If both C and C’ are assumed to be constant,
this requires that C; and 6 have a very specific rela-
tionship, namely that /2/Cy — (1/x)In{§*) = constant.
Coles’s (1968) correlations for Cy and 67 do not support
this relationship. It is clear that if C is a constant, C’ is
not. Consequently, if the log-law given by Equation 24 is
universal, then the log-law given by Equation 25 is not.
Smith (1994) suggested that this may explain the slight
Reynolds-number dependence of the logarithmic region
when using outer scaling, as was shown in figure 5b.
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3.2 Turbulence statistics

Despite the discussion given above, the mean flow in-
ner/outer scaling scheme as expressed by Equations 21
and 22 (or better in terms of the velocity gradient 8U /8y
appeals to be very successful in practice. A similar in-
ner/outer scaling is therefore expected to apply to the
time-averaged turbulence statistics. That is, for the inner

region,
Wl
=1 (%), (34)
and for the outer region,
e
z=9(3): (3

(these statements imply that the mean velocity and tur-
bulence intensities scale with the same set of velocity and
length scales: more precisely, they imply that the veloe-
ity gradient and the turbulence intensities scale similarly).
However, matching the turbulence intensity in the over-
lap region leads to the conclusion that u? /u? is constant
in the log-law region (see, for example, Townsend, 1976).
This is not observed (see figures 29 and 30. One explana-
tion of this (Bradshaw, 1967, Bradshaw, 1994)) is that the
“true” or “active” turbulent motion is overlaid by an irro-
tational “inactive” motion imposed by the pressure field
of the large eddies in the outer part.of the layer. Motions
of this nature have large wavelengths, of order 4, and so
are large as compared to the scale of motions in the inner
layer. However, as the wall is approached the v’ compo-
nent of the inactive motion must become small due to the

wall constraint (the “splat” effect) so that its influence
on the shear stress is minor, and the mean velocity log-
law is preserved. The question remains as to what extent
the turbulence profiles are similar in the sense that they
collapse onto a Reynolds-independent curve.

Unfortunately, the methods available for measuring tur-
bulence quantities are less accurate than the relatively
simple methods used to measure the mean flow. Will-
marth (1975) states that in 1960 he attempted to col-
lect all the available data for turbulence intensity pro-
files and show them on a single plot. The data did
not agree to within +50%. Willmarth attributed the
large scatter to freestream disturbances and differences in
tripping devices among the various investigations consid-
ered. Difficuities and uncertainties associated with hot-
wire anemometry, such as differences in calibration meth-
ods, calibration drift, and spatial averaging and atten-
uation due to finite probe size also contributed to the
uncertainty. It is important to take these measurement
difficulties into account, before we conclude that the tur-
bulence statistics are Reynolds-number dependent.

3.2.1 Spatial resolution effects

Before analyzing the existing turbulence data, we present
the following discussion by Smith (1994) on the effects
of spatial averaging on turbulence measurements. The
velocity measured by a probe such as a hot wire is a
spatial average along the sensor length, and, according
to Johansson & Alfredsson (1983) a weighted average ow-



ing to the effects of non-uniform temperature distribution
along the wire. If the velocity variation along the sen-
sor is large, the averaging is also likely to be influenced
by the non-linearity of the probe calibration. Thus ed-
dies which have scales smaller than the length of the wire
will not be accurately resolved. Not all components of
the three-dimensional spectrumn are filtered equally: for
example, the attenuation of the turbulence intensity as
measured by a single-wire probe is determined by the rel-
ative magnitude of the wave-number parallel to the probe.
The spatial filtering of the wire is applied to the three-
dimensional spectrum, and it will not remove all the dis-
turbances with a wavelength emaller than the wire length
(see Blackwelder & Haritonidis, 1983, Ewing et al. , 1995).

Uberoi & Kovasznay (1953) first developed a technique
for calculating the effect of spatial averaging on measured
energy spectra. Wyngaard (1968), Wyngaard (1969) ex-
tended this work and developed a framework for correct-
ing measured energy spectra to account for the attenua-
tion at high frequencies (or high wavenumbers) due to
spatial averaging. Wyngaard showed that when using
normal wire probes, measurements of the energy spec-
tra begin to show significant attenuation at wavenumbers
k1l > 1 for wires of length I/ = 1 ({ is the wire length, k;
is the longitudinal wavenumber, and 7 is the Kolmogorov
length scale defined in Equation 39). For longer wires,
the effects are more severe and begin at lower wavenum-
bers. For crossed-wires, the issue ia even more compli-
cated, because the spacing of the two wires and the cross-
talk between them are further sources of error. Wyn-
gaard’s correction method assumes that the small scales
are isotropic and that Pao's (Pao, 1965) formulation for
the three-dimensicnal energy spectrum is correct.

Ligrani & Bradshaw (1987} studied wire-length effects on
turbulence measurements in the near-wall region (y"' Az
17) of turbulent boundary layers. They found that ad-
equate resolution (+4%) of turbulence statistics {mean
squared values and higher-order moments) requires probe
dimensions of {/d > 200, and T = lu./v < 20. They
also found that adequate resolution of the high wavenum-
ber end of the energy spectra appears to require It < 5
(in their study, n* = 2 at y* = 17). Browne e al
(1988) proposed much more stringent eriteria: they sug-
gested that for accurate measurements (+4%) of turbu-
lence statistics, crossed-wire probes should have dimen-
sions {/n < 5 and d,,/n < 3 (dw is the distance between
the two wires of the crossed-wire probe). These criteria
are difficult to meet in a typical laboratory experiment:
such small probes are very difficult to manufacture, and
with such small distances between wires, cross-talk will
be a major problem.

Perry et al. (1986) found that probe dimensions can dra-
matically affect measured energy spectra and turbulence
statistice and thereby alter the apparent scaling behav-
ior of the data. Klewicki & Falco (1990) compiled data
from several investigations in boundary layers and chan-
nel flows, along with their own measurements in a bound-
ary layer. Although they do not give any specific rec-
ommendations for the probe dimensions, they show that
wire length effects can easily obscure Reynolds-number
effects, leading to incorrect conclusions about the scal-
ing behavior of the turbulence. They also studied the
effect of wire spacing on measurements of velocity deriva-
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tives (both spatial and temporal) and suggest that wires
should be spaced only a few Kolmogorov lengths apart at
most.

For high-Reynclds-number laboratory flows, n is very
small, and these restrictions are extremely difficult to
meet in a laboratory flow, particularly when it is nec-
essary to maintain [/d > 200 to minimize end-conduction
effects, as discussed by Perry et el (1979) and Hinze
(1975). Fernholz & Finley (1995) point out that high
Reynolds number experiments using hot wires therefore
need to be made in large wind tunnels where the Reynolds
number is a consequence of large physical scale and de-
velopment Jength rather than high velocity, so as to take
advantage of the smallest wires available, with minimum
diameters of about 0.6um. Thia requirement argues for
the development of new techniques to study small-scale
turbulence. For example, cryogenic tunnels achieve high
Reynolds numbers with very small viscosities. In such
cases the physical length scales are even smaller than
that of the equivalent flight environment, and hot-wire
anemometry i8 only of limited use,

To illustrate the effects of gpatial filtering on turbulence
levels, figure 19 is reproduced from Fernholz & Finley
(1995). Here, the maximum value of u™/u? is clearly
seen to decrease as the dimensionless wire length it in-
creases. This trend is shown even more clearly by the re-
sults of Ligrani & Bradshaw (1987) (see figure 20), where
the maximum value of u3/u? increases from 2 to 2.8 as
I* decrease from 60 to 3. (These results are discussed
further in Section 3.2.3.)

Westphal {1990) presented a method for estimating spa-
tial resolution errors in which the error is assumed to
depend on the ratio of probe dimension to the Taylor
microscale. Westphal’s analysis is an extension of work
by Frenkiel (1954) and includes corrections for normal
wires, crossed-wire probes, and dual wire V-configuration
probes. Nakayama & Westphal (1986) studied the effects
of sensor length and spacing on turbulence statistics mea-
sured using a crossed-wire probe in a turbulent bound-
ary layer (Res = 8,300). Their results showed that the
Reynolds normal stresses suffer more severe errors than
the Reynolds shear stress. However, the shear correla-
tion coefficient, —u'v’ fit}, ,¥ma, Was quite insensitive to
probe dimensions, because increased sensor spacing acted
to overestimate v'2 but underestimate u™. Overall, u”?
showed the greatest sensitivity to sensor length, while v’
was most influenced by sensor spacing.

The effect of sensor-wire separation of one viscous length
on the synthetic response of an X-wire probe was in-
vestigated by Moin & Spalart (1987). They found that
even this small separation led to an overestimation of the

ﬁ component of more than 10% near the wall. Park
& Wallace (1993) have computed the influence on an X-
array, and found that for L* = 9 at y* = 30 the \/v’__f
value was about 40% high, while u™v' was about 3% low.
With Lt = 2.3 the corresponding values were 3% and
5%. These calculations do not provide the final answer,

but indicate that we can expect the error in v v'? will be
larger than the error in w'v’ and will increase with L*.
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Figure from Fernholz & Finley (1995).
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Figure 21: Sketch of the streamline patterns and spatial influence of attached eddies at three different scales (reproduced

from Perry et al. , 1986).

8.2.2 Scaling laws for turbulence

To find the scaling laws for the turbulent stresses, it is
useful to begin by considering the scaling of the turbu-
lence spectra. The most consistent and successful scal-
ing laws for the turbulence energy spectra were first sug-
gested by Townsend and developed extensively by Perry
and his co-workers. Based upon Townsend’s (Townsend,
1976) “attached eddy” hypothesis and the flow visualiza-
tion results of Head & Bandyopadhyay (1981) (see Sec-
tion 3.3.2), Perry & Chong (1982) developed a physical
model for near-wall turbulence. They assumed that a
turbulent boundary layer may be modelled as a forest of
hairpin or A-shaped vortices, which originate at the wall
and grow ofitward. Figure 21 shows three A-shaped vor-
tices of different scales, and indicates their influence on
the velocity field sensed by a probe at a position y. The
probe will sense contributions to 4’ and ' from all eddies
of scale y and larger. However, only eddies of scale y will
contribute to v'. Therefore, v’ and w’ should follow simi-
lar scaling laws, while v' may follow a somewhat different
scaling law. Using these ideas in conjunction with dimen-
sional analysis, Perry et al. (1985), Perry et al. (1986)
derived scaling laws for the energy spectra in the turbu-
lent wall region, defined as v/u. € y <€ 4. In general, it is
the region beginning far enough from the wall such that
direct wall effects, such as the damping of the velocity
components, are unimportant, and extending to a point
far enough inward from the boundary layer edge such that
the direct influence of the large scale flow geometry and
outer boundary conditions are also unimportant. Thus,
at sufficiently high Reynolds numbers, any wall-bounded
turbulent shear flow should have a turbulent wall region,
where the following analysis will apply.

First consider the u' component of the turbulence fluctu-
ations. Eddies of scale § will contribute only to the large-
scale, low-wavenumber (low-frequency) region of the en-
ergy spectrum, ®,;. For the large-scale eddies, viscosity is
less important, and the spectrum in the low-wavenumber
region should depend only on u,, ki, ¥ and 6, where
k1 is the streamwise component of the three-dimensional
wavenumber vector k. Thus, from dimensicnal analysis,
the spectrum of 4’ at low wavenumbers should have the

form P
—atas) =200 g
3

Throughout this section, the argument of ®,; will denote
the unit quantity over which the energy spectral density
is measured, following Perry et al. (1986). Perry et al
call Equation 36 an “outer-flow™ scaling, since it describes
the effects of the large scale eddies.

$11(k16)
u?

Eddies of scale y will contribute to the intermediate
wavenumber range of the spectrum, while eddies of scale
§ will not contribute to this range. Thus, in this range the
spectrum should have the following “inner-flow” scaling

form: 11 (ky) Sua(k)
11{k1y 1k

—= =gmlhy) = .

ek = T

The smallest-scale motions, which contribute to the high-

wavenumber range of the spectrum, are dependent on

viscosity. Kolmogorov (1961) assumed that these small-

scale motions are locally isotropic, and that their energy

content will depend only on the local rate of turbulence

energy dissipation, €, and the kinematic viscosity, v. Di-
mensional analysis leads to

®11(k1n)
v?

(37)

(38)

b1y (k1)
= ga(k1n) = T

where 1 and v are the Kolmogorov length and velocity
scales respectively, and are defined as

n = (39)

(we)t/*. (40)

Equation 38 is valid in the high wavenumber region of
the spectrum and is commonly referred to as Kolmogorov
scaling. The region in which Equation 38 is valid is called
the inertial subrange.

v

Just as the mean flow exhibited an inner and outer acaling
with a region of overlap, it is expected that Equations 36
and 37 will have a region of overlap {overlap region I), and
that Equations 37 and 38 will also have a region of overlap
{overlap region II). Perry et al. (1986) have shown that
in overlap region I, the spectrum must have the form

2u(h8) _ A

u k16 = g1(k1d),

(41)
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or
d”u(’hy) A]_
— Y = 2 - glkay), 42
5 oy g2(k1y) (42)
where A; is a universal constant.

In overlap region 11, the spectrum follows the same form
derived by Kolmogorov (1961),

@11{(;1'?) = (kf;;ﬁﬂ = ga{kan), (43)

where K, is the universal Kolmogorov constant. Follow-
ing the suggestion of Townsend (1976), Perry et al. (1986)
agsumed that in the turbulent wall region dissipation is
equal to production, thus

€= —u'_v’%g. (44)

They also assumed that in the turbulent wall region 1)
the velocity profile is logarithmic as given by Equation 24,
and 2} —~u't’ = u?. These assumptions can be used with
Equations 3% and 40 to show that, in the turbulent wall

region,
3 1/4
vURYy
n = ( ug ) (45)
il 1/4
v - (:;) . (46)

Substitution of Equations 45 and 46 into Equation 38 and
forcing it to match with Equation 37 yields

d11{k1y) K,
W gy = etk @7)

Figure 22 shows an example energy spectrum plotted us-
ing Kolmogorov scaling. The spectrum shown was ob-
tained in a tidal channel by Grant et al. (1962). The
extremely high Reynoclds number results in a very long
—5/3 range in the spectrum.

According to these arguments, the spectra of w', $aa3, will
follow similar scaling laws with A; replaced by A;. Fig-
ure 23a summarizes the spectral scaling laws for ®;; and
P33. The boundaries of the overlap regions are denoted by
P, N, M,and F. P, N, and M are universal constants,
and F is a large scale characteristic constant, and is thus
likely to be Reynolds number dependent. Figures 23b and
23c illustrate the deduced form of ®;;, and @33 using inner
and outer flow scaling.

For +', figure 21 suggests that there will be no contri-
butions from 6-scale eddies, and thus there will be no
outer-flow scaling for ®33. There will only be inner-fiow
and Kolmogorov scaling, with one region of overlap. ®$22
is described by Equations 37, 38, and 43. Figure 24a
summarizes the scaling laws for $22, and figures 24b and
24c illustrate the expected form of the spectrum using in-
ner and outer flow scaling. Energy spectra measured by
Perry & Abell (1975), Perry & Abell (1977), Perry et al.
(1986), Perry et al. (1985}, Li (1989), Perry & Li (1990),
Erm (1988), Erm et al. (1985) and Smith (1994) have all
shown encouraging agreement with these spectral scaling
laws (see also Section 4.7).
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Figure 22: Longitudinal energy spectrum, &1;(k;), mea-
sured in a tidal channel at Re = 10®. The straight line
has a slope of —5/3. Figure from Grant et al. (1962).

By integrating these spectral forms, Li (1989) and Perry
& Li (1990) derived the following expressions for the tur-
bulence normal stresses:

-1

%—? = B]_ - A1 In (%) - V(y+)1 (48)
J

%.j — .« By—Asln (1-;) -vt), (49)

7

%:? = Ag -_— V(y+), (50)

where B; and B; are large-scale characteristic constants,
particular to the flow geometry, and A;, A2, and A; are
expected to be universal constants. V(y*) is a Reynolds-
number-dependent viscous correction tertn, which ac-
counts for the dissipation region of the spectrum at finite
Reynolds numbers. Equations 48-50 are valid only in the
turbulent wall region, defined as v/u, € y < & (corre-
sponding roughly to the logarithmic overlap region of the
mean velocity profile).

By comparison, Equations 34 and 35 neglect the mixed
scaling in that the inner and outer regions have a contri-
bution from inner and outer scales at all finite Reynolds
numbers. Note, however, that by matching the gradients
of the turbulence intensity in the inner and outer regions,
Equations 34 and 35 will yield a logarithmic term in y/8é.
Thig may represent an infinite Reynolds number limit.

To extend these scaling laws to regions outside the overlap
region in the mean velocity profile, Uddin (1994) consid-
ered the distribution of the turbulence intensities for the
entire region outside the viscous sublayer. He noted that
the broadband turbulence intensities for the streamwise
and spanwise velocity fluctuations follow a logarithmic
distribution at sufficiently high Reynoclds numbers. As
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Figure 23: Behavior of the energy spectra of the longitudinal and spanwise velocity fluctuations, $11(k:), according
to Perry et al. (see text). ®aa(k;) is expected to behave similarly. a) Chart showing the different scaling regions, b)
inner scaling behavior, and c) outer scaling behavior. Note that in Perry et ol ’s notation, z is distance from the wall,
and Ag is a boundary layer thickness, similar to §. Figure from Perry et al (1986).
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(see text). a) Chart showing the different scaling regions, b) inner scaling behavior, and ¢) outer scaling behavior. Note
that in Perry et al. 's notation, z is distance from the wall, and Ag is a boundary layer thickness, similar to §. Figure
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Figure 25: Theoretical Reynolds shear-stress profiles,
—wv /ul, derived by Li & Perry (1989), form which this
figure is taken. In their notation, z is the distance from
the wall, and 6y (=Ag) is a boundary layer thickness
similar to &.

with the mean flow, the deviation from the logarithmic
profile near the wall is attributed to viscous effects, and
the deviation in the outer part of the layer is due to wake
effects. He suggested that a wall-wake type of distribution
where, for example,

by}

S =Bi-Ailn (%) —Va(yt) - Wi (%) . (51)
Here V1 is ealled the viscous deviation, and W, is called
the weke deviation. Uddin gave empirical forms for Vi,
and W, which agreed well with data over the range
6,570 < Hes < 35,100.

Li (1989) (see also Perry et al. , 1991, Li & Perry,
1089)) also derived an expression for the total stress,

T= p%% — pu'v’. If the mean velocity profile is assumed
known, then the boundary-layer equations may be used
to solve for the total stress. For the derivation, Li used
the traditional logarithmic law and Coles’ law-of-the-wake
(Equations 24 and 27) for the mean velocity profile. Li
also assumed that the logarithmic law is valid down to the
wall, thus introducing a small error by ignoring the buffer
layer and viscous sublayer. He then subtracted the vis-
cous stress, ,u%g, to obtain an equation for the Reynolds
shear stress. ﬂ‘igure 25 shows several Reynolds shear-
strese profiles calculated from Li's equation. Note that
the variation of the Reynolds shear stress with Reynolds
number is not monotonic.

Klewicki & Falco (1990), Falco (1991) proposed a differ-
ent scaling for the streamwise turbulence intensity and
Reynolds shear stresses. Instead of starting with argu-
ments on spectral scaling, they used Falco's concept of
“typical eddies” {discussed in Section 3.3.2). They first
obtained empirical correlations for the length and veloc-
ity scales of the typical eddies as functions of Reynolds
number. They then scaled the longitudinal turbulence in-
tensity and Reynolds shear stress using these typical eddy
scales. Data were collected from several sources spanning
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the Reynolds number range 1,010 < Reg < 39,000, and
plotted in the form of u,,,,/urg vs. y/lre, and vv' judp
ve. y/lrg. As shown in figure 26, the data collapsed very
well for y/iTg < 30, and followed a power law in the range
corresponding to the logarithmic region of the mean ve-
locity. It would be interesting to see how well Falco’s
typical eddy scales correlate the mean flow data over the
same wide range of Reynolds numbers but such a study
is outside the scape of this AGARDograph.

3.2.3 Reynolds-stress data

The discussion in this section was adapted from that first
given by Fernholz & Finley (1995) where further details
of the analysis may be found.

Figures 27 and 28 show the distributions of 4’7 normalised
with wall variables. Even at very low Reynolds numbers,
similarity can be observed in the range 3 < y* < 50,
even for the cases with high freestream turbulence lev-
els. However, the maximum value of u?/u? tends to in-
crease slightly with Reynolds number. The data shown
in figure 20 clearly suggest that if all results are extrap-
olated to zero sensor length the peak value of ui.,,/#-
increases with Reynolds number, ranging from about 2.8
at Reg = 1,000 to about 3.2 at Reg = 10,000. The po-
sition where this maximum occurs seems to be, however,
at y* = 15 (see also Sreenivasan, 1988).

The highest Reynolds number case [DNW 57720 shows
some deviations from similarity, but the value of It is un-
acceptably high. The data are all from single normal wire
observations excepting those for Rep = 41,260, where
an X-wire was used, so that the data do not approach
the wall so closely. For values of y* > 100 large de-
partures are observed in inner scaling, with a tendency
for the intensity to form a second maximum in region
corresponding to the mean-profile log-law-region, which
becomes more pronounced as Regs increases. Such sec-
ond peaks are often observed in high Reynolds number
compressible boundary layers (figures 3.1.1 and 3.1.2 in
Fernholz & Finley, 1681), although generally not so pro-
nounced.

The u? data plotted using the Rotta thickness as the
outer length scale are shown in figures 29 and 30. It can
be seen that with this scaling the data collapse well for
y/A > 04 (y/6 > 0.1) for Rep > 5,000 in the same way
as the mean velocity profile (figures 14 to 16). The second
maximum shown in figure 28 can be seen to represent a
further extension of outer similarity towards the wall as
Rey rises. Figure 29 shows the convergence of the u? pro-
files towards this universal behaviour at lower Reynolds
numbers.

We conclude, therefore that at high enough Reg, the
w2 profiles display similarity in the viscous sublayer and
buffer layer in inner scaling, while similarity in outer scal-
ing is observed in the logarithmic layer and the outer re-
gion.

Smith (1994) found that all three non-dimensional
Reynolds normal stresses w2 /u?, v3 /42 and w'/u? were
found to increase with Reynolds number throughout the
boundary layer. Comparisons with the predictions by
Perry et al. (Equations 48 — 50) in the overlap region
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Figure 26: Turbulence stresses scaled on “typical” eddy velocity and length scales, urg and Cy, respectively: &) urm,

for 1,010 < Reg < 39,000. b) —u'v’ for 1,010 < Res < 14,500. See Falco (1991) for data sources (reproduced from
Falco, 1991},
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Figure 27: Development of v/ u/? / u, in a zero pressure gradient laminar-transitional-turbulent boundary layer. Tus
is the freestream turbulence level. Figure from Fernholz & Finley (1995).
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Figure 28: Distribution of the longitudinal Reynolds stress in inner-layer scaling at medium to high Reynolds numbers.
Data from Bruns et al. (1992} and Nockemann et al. (1994).
=, Resz = 57,720. Figure adapted from Fernholz & Finley {1995).
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Figure 30: Distribution of the longitudinal Reynolds stress in outer-layer scaling at medium to high Reynolds numbers.

Data from Bruns et al. (1992) and Nockemann et al. (1994).

-, Resz = 57,720. Figure adapted from Fernholz & Finley (1995).

indicated that their additive “constants” are, in fact,
Reynolds number dependent. The profiles of v/Z/u? and
w3 Ju? plotted against yt for the studies listed in Table
1 show little or no sign of similarity. Now, v’ and w' mea-
surements using an X-wire probe are subject to errors
due to spatial averaging errors caused by the separation
L of the two wires. The dimensionless distance LT is
likely to have as great an influence as I1, and as a result
v’ and «' measurements are usually less precise than
measurements (see also Section 3.2.1).

Figures 31 and 32 show these data plotted against y/4.
As with the u’ and v’ profiles, an orderly similarity behav-
jor is found, though again the peak values are functions
of Reg. The value of 2 /u? increases from about 1 to 1.6
as Reg increases from about 600 to 60,000 (for details see
Fernholz & Finley, 1995). Similarly, the value of w3 /u3
increases from about 2 to 3 as Reg increases from about
700 to 40,000. In contrast, Perry & Li (1990) and Erm
(1988) found that the peak value of v"? was almoet in-
dependent of Reynolds number, although they agreed on
the trend observed here for w2, The y* location of the
peak for 1'? moves away from the wall as Rey increases,
in agreement with the findings of Sreenivasan (1988}, ap-
proximately as ¥}, = 0.071Reg. For w? the location of
the peak can not be determined with sufficient precision
to make any meaningful conclusions.

As far as the Reynolds shear stress is concerned, Sreeni-
vasan (1988) suggested “that the location of the peak
Reynolds stress in a zero pressure gradient boundary layer

is something like a critical layer for the fiow and that
it shares some of the properties of the transitional crit-
ical layer”. Ome of these properties is that the veloc-
ity of the mean flow in the transitional critical layer ap-
pears to be a constant fraction of the freestream velocity.
For several wall-bounded shear fiows Sreenivasan found
Uerir = 0.65U,, 80 that the position of this “critical” layer
is in the logarithmic region of the boundary Iayer. Since
the convection velocity of the large-scale motions is al-
most the same a8 the local mean velocity (see figure 67},
this proposition is promising. Now, the errors in mea-
surements of the Reynolds shear stress in boundary layers
are related to the size of the X-wire probe (which makes
measuremente close to the wall difficult), spatial averag-
ing effects, the separation L* of the two wires, gradient
effects near the wall and variations in the approach angle
of the instantaneous velocity vector relative to the sensor
wires,

The shear stress in inner-layer scaling shows a plateau in
the vicinity of the peak value where the scaled Reynolds
shear stress lies approximately between 0.92 and 0.95 (for
details see Fernholz & Finley, 1995). The near wall ob-
servations are, however, not precise enough to confirm
Spalart (1988) suggestion that the total shear stress ap-
proaches the wall with a finite slope of approximately -
0.6, with the slope falling to zero only in the buffer layer.
Figure 33 shows the data in outer layer scaling. The data
collapse for y/A > 0.09. Li & Perry {1989) also found this
to hold for Reg up to 11,000. The peak value of the shear
stress shows almost no dependence on Reynolds number,
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Figure 31: Distribution of the wall-normal Reynolds stress in outer-layer scaling at mediwmn to high Reynolds numbers.
, equation 50 for Resz = 5,023, -——wsw=u=- , Rega = 57,720. Figure adapted from Fernholz & Finley

(1995). For symbols see Table 1.
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Figure 33: Distribution of the Reynolds shear-stress in outer-layer scaling at medium to high Reynolds numbers. Data
from Brums et al. (1992) and Nockemann et al. (1994). Figure from Fernholz & Finley (1995).

but the location of the peak is described approximately
by vhaz = Rel®!, showing that the peak location of Wv’
is & weaker function of Reynolds number than that of v/2.
This is in qualitative agreement with the results collected
by Sreenivasan (1988), who also noted that the peak in
the Reynolds shear stress moves inwards in terms of outer
scaling as Rey increases (see figure 33) and that the part
of the dynamics contributing to the Reynolds shear stress
does not reside either at constant y* or at constant y/A.

It is interesting to note that Direct Numerical Simula-
tions (DNS) of turbulent boundary layers give shear stress
values near the wall which are generally in good agree-
ment with the experimental values obtained at the same
Reynolds number. For example, at Rey = 670 Spalart
(1988) finds a maximum value of uwv’/u3 of about 0.95
{compared with the value of 0.87 found by Erm & Jou-
bert, 1991), and Yeung et al. (1993) finds a maximum
value of about 0.89. The position of the maximum value
also agrees well with the experiment (for further details
see Fernholz & Finley, 1995). In all other respects, as for
example in the turbulent stress and skewness and flat-
ness distributions, the DNS results also agree well with
experiment (see Erm et al. , 1994).

Some particular stress ratios are also of interest, in par-
ticular the “structure parameter” a;, the correlation co-

efficient R., and the anisotropy ratios vv3/v/u? and

Vu3/ \/ﬁ . The parameter a, is the ratio of the
Reynolds shear stress to the turbulent kinetic energy g3/2,
and Klebanoff (1955) found it to be approximately con-
stant in a range 0.1 < /8 < 0.8, at a Reynolds number
Reg = 7,660. Erm (1988) found similar results in the
range 697 < Rep < 2,788, with a, taking values between
0.14 and 0.16. Higher Reynolds number data are shown
in figure 34 in outer law scaling. The location of the peak
value is approximately constant, and the magnitude of the

peak value lies between 0.14 and 0.17, increasing slightly
with Reg.

Asg for the other stress ratios, the correlation coefficient
R, increases from about 0.3 near the wall to about 0.45
in the outer part of the layer (see, for example Klebanoff
{(1955)’s results in figure 61), and there is a weak tendency
for these values to decrease with Reynolds number. The

anisotropy ratio v ¥?/v/ u’? increases across the bound-
ary layer from a value of about 0.4 to about 0.8, and shows
little Reynolds number dependence (see also Smith, 1994},

and Vw2 /v/ w7 is nearly constant at a value of between
0.6 and 0.7 at all y-locations and Reynolds numbers.

The Reynolds number dependence of the higher moments
of the fluctuating quantities was also studied by Fernholz
& Finley (1995). Ir; summary, the skewness and flatness
of v (vw3/{Vw?) anduwd/ (@2, respectively) appear
to be independent of Reynolds number when scaled us-
ing the appropriate scaling parameters for each region, as
found by Smith (1994). The behavior of the triple corre-
lations and production terms is discussed by Murlis et al.
(1982), Erm (1988), Fernholz & Finley (1995) and Morri-
son et al. (1992). Note also that Johansson & Alfredsson
(1983} investigated the influence of I* on the skewness
and flatness factors of v’ in the range 1.4 < It < 33,
They found little effect on the flatness, but substantial
differences in the skewness factor which varied from - 0.20
to 0 as I* varied from 14 to 33. They also found that the
skewness was sensitive to the value of It at much greater
distances from the wall than for the moments of u'.

Although the distribution of the shear stress among
the four quadrants in the u'-v’ plane did not vary
with Reynolds number, the shear correlation coeffi-
cient Ry, and the non-dimensional shear rate §* =
(9*/€) (8U/By) = —q¢* /u'v’ indicated that the large-
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Figure 34: Distribution of the structure parameter a;

scale structure plays a less active role in near-wall tur-
bulence production as the Reynolds number increascs
{Smith, 1994): with increasing scale disparity the large-
scale motions have a decreasing influence on near-wall
events. This is not unexpected, but what is surprising
is that the large-scale motions continue to have an influ-
ence at Reynolds numbers where the boundary layer is
often thought to be fully-turbulent.

If the Reynolds number dependence can be empirically
quantified by examining available data over a wide range
of Reynolds numbers (for example, if the peak value of W'
can be expressed as a function of Reynolds number), then,
in principle, it is possible to suggest velocity and length
scales which will also have the same Reynolds number
dependence. Thus, when the turbulence quantities are
nondimensionalized using these new scales, the Reynolds
number dependence will cancel out, and all of the data
will collapse onto a eingle curve. This is, in effect, what
Falco’s typical eddy scales do. Falco obtained a correla-
tion for urg; for a fixed value of ¥+, urp/u, o Rej 1%,
Thus, if the value of u,,,,/urg at a fixed y* is inde-
pendent of Reynolds number, the value of upy,, /u, will
increase with Reynolds number, which agrees with the
majority of available data (see figure 26). Note that urs
and lTg were obtained from combined flow visualization
and hot-wire measurements.

3.3 Organized motions in turbulent
boundary layers

This section is concerned with the structure of turbulent
boundary layers, in the sense of organized, spatially cor-

—Eﬁ/ ¢? in outer-layer scaling at medium to high Reynolds
numbers. Data from Bruns et al. (1992) and Nockemann et al. (1994). Figure from Fernholz & Finley (1995).

related motions. it was adapted from the review given by
Smith (1994), and further details are given there. There
are several additional reviews of turbulent flow structure
in the literature, including Willmarth (1975), Cantwell
(1981), and Robinson (1991)a. More personal interpre-
tations are offered by Coles (1987), Hussain (1983), and
Sreenivasan (1983). The emphasis here is on Reynolds
number effects and scaling laws.

In turbulence research, the term “structure” has been
used to denote two different ideas. First, it is used to
describe the behavior of the mean flow and Reynolds
stresses. The scaling of the mean flow and Reynolds
stresses, the compoeition of Reynolds stresses (e.g. as
deduced from quadrant analysis), anisotropy ratios, the
shear correlation coefficient, the structure parameter, and
intermittency profiles, can all be viewed as describing the
“structure” of a turbulent boundary layer. Second, the
term “structure” is used to describe coherent, organized
motions occurring in the flow. Robinson (1991)a defines
a coherent motion, or structure, as

“p three-dimensional region of the flow over
which at least one fundamental flow vari-
able (velocity component, density, temperature,
etc.) exhibits significant correlation with itself
or with another flow variable over a range of
space and/or time that is significantly larger
than the smallest local scales of the flow.”

This definition is quite general. More specific definitions
have been proposed (e.g. Hussain, 1983), but in essence
they are just restricted forms of Robinson’s definition.
Both definitions of structure are used here, but the dis-
tinction should be clear from the context.
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3.3.1 Inner-layer structure

Klebanoff (1955) showed that in a turbulent boundary
layer about 75% of the total turbulence production in the
entire layer occurs in the inner region, y/§ < 0.2. There-
fore, most investigations of turbulent boundary layer
structure have focussed on the near wall region, primarily
the viscous sublayer and buffer layer. Because of practi-
cal considerations, such as the small scales involved, and
the need for adequate resolution, these studies have been
limited predominantly to low Reynolds numbers, that is,
Reg < 5,000,

In 1967, Kline et al. (1967), in a culmination of work ini-
tiated by Runstadler et al. (1963), reported the results of
a study of the near-wall structure of a turbulent boundary
layer in the range 545 < Ree <« 1,680. Using hydrogen
bubble flow-visualization in a water channel, Kline et al
found that the viscous sublayer is occupied by alternating
streaks of high- and low-speed (relative to the mean) fluid.
The spanwise spacing of the streaks was found to scale on
inner variables and to have a non-dimensional mean value
of A} == 100. The streaks were presumed to be the re-
sult of elongated streamwise vortices very near the wall,
H.P. & Lumley {1967), using correlation measurements
in a pipe flow (Re = Ud/v = 8700, d = pipe diameter)
together with the technique of proper orthogonal decom-
position, also concluded that the dominant structures in
the sublayer are pairs of counter-rotating vortices with an
average spanwise wavelength of A} = 90 — 100. Kline et
al. observed that the low-speed streaks would gradually
lift up from the wall, oscillate, and then break up vio-
lently, ejecting fiuid away from the wall and into the outer
layer. They coined the term “bursting” to describe this se-
quence of events. Kline et al. concluded that all the events
comprising the bursting process were consistent with a
stretched and lifted vortex. Later, Kim et al. (1971) per-
formed further investigations in the same facility. They
determined that in the wall region, 0 < y* < 100, nearly
all of the turbulence production occurs during bursting,
thus establishing the dynamical significance of the near-
wall region and the bursting process.

Corino & Brodkey (1969} performed a visual study of
the near-wall region of fully developed pipe flow. They
seeded the flow with a suspension of colloidal particles,
illuminated the flow field, and photographed the flow
with a high-speed camera moving with the flow velocity.
Thus, they were able to follow the development of inter-
esting events. Corino & Brodkey observed a recurring
sequence of events which closely resembled the bursting
process obeerved by Kline et al. . They found that a
large scale disturbance would frequently impinge upon a
near-wall region of low-speed fluid. This would be fol-
lowed by one or more ejections of low-speed fluid up into
the large scale disturbance, resulting in violent, chaotic
interaction. Once the ejection(s) had subsided, a large
region of high-speed fluid would cleanse the area of the
debris of the interaction. Corino & Brodkey called this
latter event a “sweep”. They further found that, as the
Reynolds number was increased, the frequency and inten-
sity of the ejection events increased. At high Reynolds
numbers (Re = 52,000), it was difficult to distinguish
between individual events.

Since these initial studies, many other researchers have in-

vestigated the near-wall flow structure. Two of the most
widely studied aspects of the near-wall structure are the
mean spanwise streak spacing, A., and the mean bursting
period, Ty {or mean bursting frequency, fy ~ 1/7}). Kim
et al. collected the results of several independent measure-
ments of streak spacing, and the results generally agreed
with Kline et al 's value of Al = 100. Smith & Met-
zler (1983) showed that A} is independent of Reynolds
number over the range 740 < Reg < 5,830. The value of
A} 22 100 is now widely accepted.

In contrast, the scaling of the bursting period is highly
controversial. Initially, Kline et al suggested that, since
the bursting process is a wall layer phenomenon, T}, should
scale with inner variables. Subsequent research has pro-
vided many conflicting results. Rao et al. (1971), work-
ing in a turbulent boundary layer in the range 600 <
Reg < 9,000, concluded that outer scaling is appropri-
ate, and that T,U. /6 =~ 5 (or T3U./6* = 30), inde-
pendent of Reynolds number. Alfredsson et al. (1988),
working in a fully developed channel flow in the range
13,800 < Re. < 123,000 (Re, based on channel height
and centerline velocity), found that T, was independent of
Re when nondimensicnalized by a mixed time scale equal
to the geometric mean of the inner and outer time scales.
Thus, three different scalings for T, {and thus f,) have
been proposed, and each has its own proponents. Those
who obtained results in favor of outer scaling include Rao
et al. (1971), Kim et al. {1971}, Lu & Willmarth (1973)
(turbulent boundary layer, Res = 4,230 and 38,000),
Blackwelder & Kaplan (1976) (turbulent boundary layer,
Reg = 2,550), Brodkey et al. (1974) (fully developed
channel flow, Re = 7,700, equivalent to Rey == 430),
and Narasimha & Kailas (1987) (atmospheric bound-
ary layer). Proponents of inner scaling include Black-
welder & Haritonidis (1983) (turbulent boundary layer,
10* < Reg < 10*), Luchik & Tiederman (1987) (fully de-
veloped channel flow 9,400 < Re, < 17,800, Re, based
on mass-averaged velocity and channel height), Kim &
Spalart {1987) (numerically simulated turbulent bound-
ary layer, Reg = 300,670, and 1,410), and Willmarth &
Sharma (1984) (turbulent boundary layer, Res = 6,480
and 9, 840).

There are many reasons for the discrepancy among the
various results. First, in order to measure the bursting pe-
riod, it is necessary to devise a criterion for detecting the
bursting process. Visual methods, as used by Kline et al. ,
Corino & Brodkey, and Kim et al , are limited to very low
Reynolds numbers. Therefore, several researchers have
developed methods based upon measurements of fluctu-
ating velocities. Lu & Wilimarth (1973} introduced the
u-level method, in which low values of u, relative to the
mean, were used to detect ejections, and high levels of u
were used to detect sweeps. Wallace et al. (1972) and
Lu & Willmarth (1973) proposed splitting the u’-v’ ve-
locity plane into four quadrants, as shown in figure 35.
Instantaneous values of u'v' can then be associated with a
certain quadrant and a corresponding event. Blackwelder
& Kaplan (1976) developed the variable interval time av-
eraging {VITA) technique, whereby the variance of the
velocity, u', is computed over a short time interval. If the
short time variance exceeds a preset threshold level, then
an event is detected. The goal of these detection schemes
is to identify segments of the velocity signal which corre-
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Figure 35: The four quadrants of the u'-t' plane, and
the common terms for the events corresponding to each
quadrant (from Robinson, 1991b).

spond to events of interest (e.g. ejections and sweeps), and
to analyse these segments separately from the remaining
signal, that is, by conditional sampling and averaging. All
detection methods are quite subjective, requiring the user
to choose threshold levels and/or averaging times. Will-
marth & Sharma (1984) state that the bursting period
determined using the VITA technique is highly sensitive
to the threshold level and the averaging time. They found
that when the threshold level was changed by 5%, the
measured bursting frequency changed by 40%, and a 20%
change in the averaging time resulted in a 15% change
in measured bursting frequency. More disturbing is the
fact that it is not even certain what relation the detected
events have with the actual events of the bursting process.
Bogard & Tiederman (1986), Bogard & Tiederman (1987)
evaluated several detection methods and found that dif-
ferent methods could yield values of T}, which differed by
an order of magnitude. They also found that different
techniques detected different phases of the bursting pro-
cess. Corino & Brodkey (1969) had observed earlier that
more than one ejection may occur during a single burst.
Luchik & Tiederman (1987) introduced the idea of group-
ing multiple ejections into a single burst, but most other
researchers did not do this, resulting in further variation
among reported results.

A further difficulty in measuring bursting frequency is
related to spatial averaging effects, as discussed in Sec-
tion 3.2.1 For example, Blackwelder & Haritonidis (1983)
showed that the measured value of f; drops sharply for
wire lengths It > 20.

Another difficulty arises from the fact that it is possi-
ble that the structure of fully-developed internal flows
and that of turbulent boundary layers are different. As
discussed in Section 3.1.4, it is possible that the mean
flow can follow different scaling laws in the outer region
of different flow geometries. In fully-developed internal
flows, the inner and outer layers are intimately connected
through the relation between the pressure drop and the
wall shear stress. Luchik & Tiederman (1987) accounted
for this connection when they concluded that inner scaling
of T}, is more appropriate than either mixed or outer scal-
ing. However, the outer layer of an internal flow does not
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have the same highly intermittent character as do bound-
ary layers. Therefore, a comparison of results obtained in
fully developed internal flows and in turbulent boundary
layers may not be valid.

Finally, Reynolds number effects are quite possibly caus-
ing some of the disagreement among the data. Shah &
Antonia (1989) specifically addressed this issue. They
measured T; in fully developed channel flow for 3,300 <
Re < 33,000, and in a turbulent boundary layer for
650 < Res < 13,000, using both the VITA and the u-
level techniques. They found that inner scaling is effective
for Re < 20,000 in the channel flow, and Rey < 6,000
in the boundary layer. It is interesting to note that
Reg¢ = 6,000 is the value above which Coles' wake pa-
rameter, I1, is constant. Shah & Antonia conclude that
above these Reynolds numbers, mixed scaling is more ap-
propriate for both flows. However, they emphasize that
their data do not preclude the validity of outer scaling at
Reynolds numbers greater than Reg == 10, 000.

Another interesting issue, indirectly raised by Shah & An-
tonia (1989), is related to the work of Luchik & Tieder-
man (1987). Luchik & Tiederman measured u, in their
flow using two techniques: 1) by measuring the veloc-
ity gradient in the viscous {linear) sublayer, and 2) using
the Clauser method. They found that the second method
yielded values typically 15% higher than the first method.
When they concluded that T, scales on inner variables up
to Res = 10%, they had used u, determined from the
first method. Shah & Antonia reanalysed Luchik & Tie-
derman’s results using u. from the Clauser method, and
found that the data scaled better with mixed or outer
variables for Reg > 6,000, in support of their own con-
clusions.

Tinh (1982) used hot-wire anemormetry to study the near-
wall structure in a channel flow for 43,200 < Re <
177,100 (Re based on channel height and centerline ve-
locity). He found that, for yt < 50, the skewness and
flatness of the streamwise velocity fluctuations exhibited
some Reynolds number dependence. Using conditional
sampling techniques, he also showed that.the relative im-
portance of the ejection and sweep motions changed with
Reynolds number. At Re = 43, 200, ejections contributed
more than sweeps to the total w2 for y* > 10, while for
yt < 10, sweeps dominated. At Re = 177,100, sweeps
contributed more than ejections to u> over the entire
range 0 < ¢+ < 50. The nondimensional hot-wire lengths
for van Tinh’s experiments varied from It =~ 12to!* = 42
over the range of Reynolds numbers investigated. There-
fore, spatial averaging effects may have created an arti-
ficial Reynolds number dependence in the data. Similar
results were obtained by Andreopoulos et al. (1984), in
a boundary layer with 3,642 < Heg < 15,406, also found
that sweeps become stronger relative to ejections with in-
creasing Reynolds number, but, as noted in Section 3.2.2,
their data also suffer from severe spatial averaging effects.

In summary, the spanwise spacing of the near-wall streaks
has been established to be A7 =z 100 for low to medium
Reynolds numbers, but with a standard deviation of ap-
proximately 50 (Smith & Metzler, 1983). The scaling
of the bursting period remains unresolved, and may be
Reynolds number dependent. Resolution of the issue may
come when we have a better understanding of the turbu-
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Figure 36: Flow visualization by Falco (1977), of a boundary layer at Reg == 4,000, obtained by seeding the flow with
a fog of oil droplets, and illuminating the flow with a planar laser sheet. Flow is from left to right. Figure from Van

Dyke (1982).

lence production cycle, and better techniques to study it.
A knowledge of the scaling of T}, is important to an under-
standing of the overall dynamics of the turbulent bound-
ary layer. If T, scales on inner variables, this suggests
that the inner layer controls the dynamics of the bound-
ary layer, and the outer layer structure may be merely
the debris of the bursting process. Alternatively, if T, fol-
lows outer scaling, this implies that the bursting process
is controlled or modulated by (and may be responding
passively to) the outer layer structure. In between these
two extremes, if T}, scales on mixed variables, this implies
an important mutual interaction between the inner and
outer structure.

3.3.2 Outer-layer structure

There is also considerable controversy regarding the na-
ture of the outer-layer structure. Nevertheless, a general
picture has emerged. A specific characteristic component
of the outer layer is believed to be the large scale turbulent
“bulge”, also referred to as a “large scale motion” (LSM).
The large scale motions evolve and decay slowly as they
convect downstream, and, on average, they are inclined
to the wall at an acute angle, leaning in the downstream
direction. Between neighboring bulges, the flow is irrota-
tional, resulting in the intermittent character of the outer
layer. Figure 36 shows several LSM’'s. The structures
are seen to vary greatly in size and inclination angle. The
properties of the large scale motions, such as length scales,
time scales, convection velocity, and stucture angle, as
well their internal structure, such as velocity, vorticity,
and pressure fields, remain the subject of controversy and
active research. Furthermore, the Reynolds number de-
pendence, if any, of the LSM’s is not known.

Part of the difficulty in experimental studies of the outer-
layer structure, as it is in studies of the inner-layer struc-
ture, is finding an unambiguous criterion for ensemble-
averaging. One method is based on discriminating be-
tween “turbulent” and ‘non-turbulent” fluid, and using
the intermittency function (a box-car logic function) to
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Figure 37: Comparison of flatness distributions: [J,
Owen et al. (1975) (Reg = 8,500, M = 7), based on
mass flux; <, Robinson (1986) (Res = 15,000, M = 3.0,
based on mass flow; A, Klebanoff {(1955) (Reg = 7,100,
M == 0), based on velocity. Figure from Robinson (1986).

sort the data. The most basic output is the intermit-
tency itself, v, which is the fraction of the time the flow
is judged to be turbulent. One definition of + is 3/F,

where the flatness F' = u™ / (u3)?. The distribution of F

is shown in figure 37 for a number of different freestream
Mach numbers. The results imply that the intermittency
in the outer part of the layer decreases with Mach num-
ber. Another method uses the VITA technique originally
developed by Blackwelder & Kaplan (1976) for studies
of the near-wall bursting process. A variety of similar
techniques have been developed (for example, VISA by
Kim & Spalart (1987), WAG by Antonia et al. (1990a),
Antonia et al. (1990b)), but they are all subject to am-
biguities related to the uncertainties in setting threshold
levels. Nevertheless, they may still give useful insights if
carefully used.

Before the advent of conditional sampling methods, sev-



Figure 38: The
Theodorsen (1955) as the basic structure in wall-bounded
turbulent flows. Figure from Spina (1988).

horseshce vortex proposed by

eral fundamental observations were made regarding the
nature of the LSM's in turbulent boundary layers. The
first physical model of the large scale structure of tur-
bulent boundary layers was proposed as early as 1955 by
Theodorsen (1955). He hypothesized that the basic struc-
ture of all turbulent shear flows is the inclined horseshoe
vortex, as shown in figure 38. Using the vorticity trans-
port equation, Theodorsen attempted to prove that the
only vortical structures which can sustain a non-decaying
turbulent field must have a horseshoe shape. As seen in
figure 38, the model can certainly account for the gen-
eration of Reynolds stress. Between the legs of the vor-
tex, the induced velocity ejects low-speed fluid up, away
from the wall, into a region of higher mean velocity, hence
v < 0,v" > 0 (a Quadrant II event). On the outboard
sides of the legs, high speed fluid is swept toward the wall,
hence ¥ > 0,v' < 0 (a Quadrant [V event).

Townsend (1976) did not regard the LSM’s as having any
particular shape, but he made two important hypothe-
ses about the large scale motions based upon theoretical
considerations. First, he concluded that

“,..the main eddies of the flow have diame-
ters proportional to the distance of their centers
from the wall, because the motion is directly
influenced by its presence. In other words, the
velocity fields of the main eddies, regarded as
persistent, organized flow patterns, extend to
the wall and, in a sense they are attached to
the wall.”

This is commonly known as Townsend’s attached eddy hy-
pothesis. Second he assumed that the interaction between
a large eddy and a smaller, viscous-dominated eddy oc-
curs over several intermediate steps. Due to this highly in-
direct interaction, Townsend proposed that the large-scale
motion is essentially inviscid, and thus independent of
Reynolds number. This is known as Townsend'’s Reynolds
number similarity hypothesis. It should be noted that the
idea that eddies of largely dissimilar scale do not directly
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interact i currently being challenged (see, for example,
Brasseur, 1991, Praskovsky, 1993).

Despite the extensive literature on the subject of the
large-scale structure of turbulent boundary layers, only
a few studies have specifically addressed the issue of
Reynolds-number effects. This is primarily due to the
general acceptance of Townsend’s Reynolds number sim-
ilarity hypothesis.

The flow visualization work of Head & Bandyopadhyay
{1981) provided strong support for the concept that at
least some of the LSM's are loop-shaped vortical struc-
tures. Head and Bandyopadhyay showed that the aspect
ratio of these vortical structures is Reynolds-number de-
pendent. Figure 39 shows that at Regs = 600, the struc-
tures have the proposed horseshoe shape, with a low as-
pect ratio. As Reg increases, the structures are elon-
gated, and at Reg = 9,400, they appear more as hairpins,
with a large aspect ratio. At all Reynolds numbers, the
spacing between the legs of the structures is similar to
the spacing between the near-wall streaks (=~ 100w/u, ).
The structures appear to extend to the wall, in support
of the attached eddy hypothesis. Head and Bandyopad-
hyay also suggested that, at low Reynolds numbers, the
LSM’s were merely single horseshoe elements. At higher
Reynolds numbers, the LSMs were actually agglomera-
tions of many elongated hairpin vortices. At low Reynolds
numbers, the LSM’s exhibited a “brisk” overturning mo-
tion, while at higher Reynolds numbers, they overturned
slowly. This suggests that entrainment decreases with in-
creasing Reynolds number, which is in agreement with the
observation that the boundary layer grows more slowly
with increasing Reynolds number.

Other visualizations of turbulent boundary layers reveal
that, as Reynolds number increases, the outer-layer bulges
appear to be comprised of, or contain, a wider range of
scales (Falco, 1977, Fiedler & Head, 1966). This is in
accord with the fact that the ratio of the outer to inner
length scale, §1, increases with increasing Reynolds num-
ber.

Another useful method for investigating the large scale
structure is multiple-point measurements of one or more
flow variables, typically velocity, wall pressure, and wall
shear stress. The data are then analysed in the context of
space-time correlations. The correlation of two variables
measured at two points in the flow field is given by

Rab(‘ft 1 Elh El 3 T) =

a(z, ¥, 5,00z + &,y + &, 2+ &+ T) (52)

al‘m.bf‘fﬂl

where a and b are the two flow variables being correlated,
&z, &y, and £, are the separations between the two points
in the three coordinate directions z, y, and z, respectively,
and 7 is the time delay applied to the signal of variable
b. For the case when both a and b are velocities, Ry is
typically denoted by Ri;, where i and j are the indices of
the velocity components (R11 = Ryu, R12 = Ruu, ete...).
When any of £; are nonzero in Equation 52, R,, is called a
space-time correlation. Space-time correlations generally
have a single well-defined peak, which occurs at 7 = Tmaz,
the optimum time delay, which may be nonzero.
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Figure 39: Flow visualizations by Head & Bandyopadhyay (1981), showing the Reynolds number dependence of vortex
loop structures in a turbulent boundary layer. The visualizations were obtained by filling the boundary layer with
smoke, and illuminating the flow with a laser sheet inclined 45° downstream. a) Regs = 600; b) Reg = 1,700; c}
Reg = 9,400. Figure from Head & Bandyopadhyay (1981).



Favre et al. (1957), Favre et al. (1958) pioneered the
use of velocity space-time correlations. Their results, for
Reg == 1,400 and 2, 700, showed that the fluctuating ve-
locities in the outer layer are correlated over distances
comparable to the boundary layer thickness, §, in the
spanwise and wall-normal directions, and over several § in
the streamwise direction. Favre et al. ’s space-time cor-
relations at optimum time delay clearly showed that in
the outer-layer flow structures are convected downstream
several {O(10)) 6 before decaying. Nearer the wall, the
structures decay more rapidly than farther from the wall.
Sternberg (1967) noted that Favre et ol 's results also
indicated that the large eddies are inclined to the wall in
the downstream direction.

In a later paper, Favre et al. (1967) used space-time corre-
lations to measure convection velocities of the large scale
motions in a turbulent boundary layer with Reg = 8, 700.
To complement their broadband results, they band-pass
filtered the data to measure the convection velocities of
structures within a narrow range of scales. Their re-
sults are reproduced in figure 40, which shows that the
smallest scales convect at about the local mean velocity
throughout the boundary layer. For y/§ > 0.2, large scale
structures convect at speeds less than the local mean ve-
locity, and the convection velocity decreases with scale.
For y/§ < 0.2, the opposite behavior is observed. At
y/6 = 0.2, all scales convect at the local mean veloc-
ity. This behavior could be explained as follows. A large
structure will extend across a significant fraction of the
boundary layer, and will convect at a speed which is a
weighted average of the local mean velocity acting over
the vertical span of the structure. This convection veloc-
ity will be greater than the local mean near the wall, and
less than the local mean in the outer layer. The greater
the verticdl extent of the structure, the greater will be
this effect. Based upon space-time correlations of wall
pressure fluctuations, Tu & Willmarth (1966) and Corcos
(1963) reached similar conclusions regarding the differ-
ence in convection velocity between large and small scale
structures. Spina et ol. (1991b) obtained similar results
in a compressible low, and their results are discussed in
greater detail later in Section 4.9.

Grant (1958} measured all nine components of the cor-
relation tensor F;; in a turbulent boundary layer at
Reg = 2,200. His results, shown in figure 41, indicate
that the correlation tensor is quite complex. Grant stated
that such complex behavior could only occur if the large
eddy structure of the flow was highly organized. Grant
attempted to deduce a simple model of the large scale ed-
dies which was consistent with the measured correlations,
but was not entirely successful. However, through a de-
tailed and insightful interpretation of his data, he postu-
lated the existence of “stress relieving motions originating
very near the wall, perhaps involving the boundary of the
laminar sublayer (sic). The motion would be in the na-
ture of an outward eruption originating near the wall.”
Grant's paper i8 in remarkable agreement with the later
flow visualization results of Kline et ol (1967). Tritton
{1967) extended the measurements of Grant, but did not
deduce a simple eddy model to explain the features of the
correlations.

Townsend (1961) also suggested that the large-eddy struc-
ture is likely to be simple, but added that the structures
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undergo a cycle of growth, decay and renewal. He warned
that time averaging will superpose contributions from ed-
dies at all stages of this cycle, and thus the results will
appear to suggest a more complicated structure than is
actually present in the flow.

Kovasznay et al. (1970) and Blackwelder & Kovasznay
(1972) obtained space-time correlation measurements of
velocity in the outer region of a turbulent boundary layer
at Rep = 2,970. Using conditional-averaging techniques
based on the intermittency, their measurements revealed
the presence of a stagnation point on the back (upstream)
side of the turbulent bulges. Because the large bulges
convect at a speed less than the freestream velocity (see
figure fig:favreuc), the high-speed, freestream fluid in the
regions between the bulges will impinge on the backs of
the bulges, resulting in a stagnation point in the con-
vected frame of reference, as shown in figure 42. Similar
to the results of Favre et al. (1957), Favre et al. (1958),
Kovasznay et al. found that isocontours of the space-time
correlations of the streamwise velocity, shown in figure 43,
were elongated in the streamwise direction and spanned
the entire boundary-layer thickness, and that the large
eddies lean downstream. The contours were generated by
correlating the velocity measured by a probe at a fixed
point in the middle of the boundary layer with the veloc-
ity measured by a probe which was traversed in both the
y and z directions while maintaining a constant longitudi-
nal probe separation of 3.86. The isocorrelation contours
shown in figure 43 indicate that the large eddies are in-
clined with an average angle of approximately 16°. At
the location of the fixed point, the streamwise extent of
the correlations is about 0.46 (based on a minimum cor-
relation value of 0.5).

Additional examples of such boundary layer data do not
exist, but Liu et al. (1992) recently constructed isocor-
relation contours of the large scale structure in a fully
developed turbulent channel flow for Re = 2,872, 5,378,
and 29,935 (Re based on channel half-height and bulk ve-
locity). They used particle image velocimetry to obtain
several realizations of the instantaneous velocity field in
the z-y plane. The isocorrelation contours were computed
by mapping the correlation of the velocity at each point
in the plane with the velocity of a fixed point located
at y/H = 0.40 (H is the channel half-height), and en-
semble averaging the resulte for all realizations. Liu et
ol. 's results were very similar to those of Kovasznay et
al. . For the two highest Reynolds numbers, the stream-
wise extent of the correlations at the position of the fixed
point (based on a minimum correlation value of 0.5) in-
creased from approximately 0.9H at Re = 5,378 to about
1.4H at Re = 29,935. Note that these length scales are
larger than those obtained by Kovasznay et al. probably
because the large streamwise probe separation used by
Kovasznay et al. reduced the measured correlation val-
ues. Liu et al 's contours also indicated that the struc-
tures leaned downstream, and that the angle of inclina-
tion, which did not differ appreciably between the two
highest Reynolds numbers, was about 10°.

Brown & Thomas (1977) used space-time correiations and
conditional sampling techniques to investigate the rela-
tionship between the large-scale motion and the wall shear
stress in a boundary layer at Res = 4,940 and 10, 160.
They found that large-scale motions were inclined at an
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Figure 40: Scale-dependent convection velocity profiles measured by Favre et al. (1967) in a turbulent boundary
layer at Res ~ 8,700. In Favre et ol 's notation, ¥ is the local mean velocity, Vinaz is the freestream velocity, V;, is
the scale dependent convection velocity, and L is a length scale corresponding to the center frequency of the standard
third-octave band filters used to filter the velocity time series before calculating convection velocity. Figure from Favre

et al. (1967).
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Figure 41: Space-time correlations measured by Grant (1958) in a turbulent boundary layer at Ree = 2,200. In
Grant’s notation, r is the probe separation, and &, is the boundary layer thickness. Figure from Grant (1958).
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Figure 42: Schematic of the flowfield within and surrounding a large scale motion in a turbulent boundary layer,
according to Blackwelder & Kovasznay (1972). Figure from Spina et al. (1991a).
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Figure 43: Isocorrelation contours of space-time correlations of the streamwise velocity component measured by
Kovasznay et al. (1970). a) z-2 plane, b) z-y plane, and c) y-z plane. The position of one probe was fixed at y/§ = 0.5.
Figure from Smits et ol. (1989).
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angle of 18° to the wall and extended ~ 2§ in the stream-
wise direction. As the structures passed over the wall,
they created a characteristic wall-shear-stress signature.
Brown & Thomas concluded that this wall-shear-stress
pattern was related to the bursting process, and hence
that the large scale, outer-layer structure influenced the
near-wall structure and dynamics. Although they only
reported results for Res = 10,160 in Brown & Thomas
(1977), they stated that the results were the same at
Reg = 4,940 when scaled on outer variables (U, and &).

Falco (1977) used combined flow visualization and hot-
wire measurements to study the large-scale motions over
a range of Reynolds numbers. His flow visualizations
showed two distinct scales of motions in the outer layer —
LSM's and “typical eddies.” Falco found that the typical
eddies are small scale motions, which scale on wall vari-
ables and are responsible for a significant fraction of the
total Reynolds shear stress in the outer layer. Falco de-
termined that the average streamwise extent of the LSM's
was about 1.66 at Rep = 1,000. The streamwise length
scale of the typical eddies was a constant value of 200 /u.,
for 1,000 < Reg < 10,000. The vertical length scale
varied nearly linearly from 100r/u. at Res = 1,000, to
150v/u, at Reg = 10,000. Falco found that the typical
eddies generally appear on the backs of the LSM’s, and
propagate toward the wall, thus acting as sweeps very
near the wall,

Falco (1977) claimed that the typical eddies may be an
intermediate link between the inner and outer layers; how-
ever, this is difficult to justify. As discussed by Smith &
Smits (1991), if the typical eddies scale on wall variables,
then at very high Reynolds number, when 6% is very large,
the typical eddies will become vanishingly small compared
to the boundary layer thickness, and are unlikely to be dy-
namically significant (i.e. they will not carry significant
levels of shear stress). Furthermore, fiow visualizations at
very high Reynolds numbers, as shown in figure 44, show
features which appear to be very similar to the typical
eddies observed by Falco at lower Reynolds numbers, but
which are at least an order of magnitude larger (in terms
of inner variables), even taking into account the variations
in fluid properties, as expressed by the difference between
Rep and Rsz. Nevertheless, Falco (1991) has recently
used measured typical eddy length and velocity scales to
collapse turbulence intensities and Reynolds shear stress
data over a very wide range of Reynolds number, as dis-
cussed in Section 3.2.2. In light of the objections raised
here, the success of the typical eddy scaling is somewhat
surprising.

Antonia et al (1982) and Chen & Blackwelder (1978)
studied coherent structures using cold-wires in a turbu-
lent boundary layer developing over a slightly heated wall.
Chen & Blackwelder’s experiments were performed at
Reg = 2,800, and Antonia et al examined three cases,
Res = 990, 3,100, and 7,100. Both studies used con-
ditional sampling and found that the temperature traces
showed characteristic features wherein a slow increase in
temperature was followed by a rapid decrease. This sug-
gests that the downstream side of the large structures
is not as well defined as the upstream side. The up-
stream side appears ag a sharp interface between high
temperature fiuid inside the structure, and low temper-
ature fluid behind the structure (note that this interpre-

tation assumes that the Prandtl number ie near unity).
The interface was found to extend down to the wall, and
the convection speed at any location along the interface
was approximately equal to the local mean velocity. An-
tonia ef al. measured the average inclination angle of the
interface to be about 35° for 0.2 < y/6 < 0.8. Above
and below this range, the angle decreased. These an-
gles are lower, by about 10 - 15°, than those measured
by Chen & Blackwelder, and higher, by about 15°, than
those measured by Brown & Thomas (1977). Within the
scatter of Antonia ef al ’s results, the average inclination
angle appears to be independent of Reynolds number for
the range they investigated. They also found that the
ensemble averaged velocity and temperature signatures
of the large-scale structures are independent of Reynolda
number for Reg > 1,000. Furthermore, the contribution
of the large-scale structures to the Reynolds shear stress
seemed to increase with Reynolds number in the range
0.1 < y/6 <0.5.

Antonia et al. (1990a), Antonia ef ol. (1990b) studied
the effect of Reynolds number on the topology of the or-
ganized motion over the range 1,360 < Rey < 9,630.
Broadband isocorrelation contours of u’ showed that the
average structure extends in the wall-normal direction
across most of the boundary layer, has a streamwise ex-
tent on the order of &, and is inclined to the wall, leaning
in the downstream direction. Isocorrelation contours for
v’ also extend across most of the boundary layer, but are
narrower in the streamwise direction, and are oriented
perpendicular to the wall. The contours show a slight
Reynolds number dependence for Reg < §, 000, but are in-
dependent of Reynolds number for Res > 5,000, as shown
in figure 45. Instantaneous streamline patterns showed
no significant changes over the entire range of Reynolds
numbers.

Using what they called a “window average gradient”
(WAG) detection scheme, Antonia et al. (1990a), An-
tonia et al. {1990b) found that the time period of oc-
currence of detected events is independent of Reynolds
number when scaled on outer variables and has a value
of == 2.56/U,. This value is similar to that obtained by
Corrsin & Kistler {1955) and Ueda & Hinze (1975), as
noted by Falco (1977). Conditionally averaged isovortic-
ity contours were observed to extend further freom the
wall and have a larger inclination angle {i.e. were more
upright) at lower Reynolds numbers. Antonia and his
coworkers also found that the contribution of the orga-
nized motion to the turbulence stresses decreases as Reg
increases. This is in contrast to the earlier results of An-
tonia et al. (1982) in which the conditional averages were
based upon visual identification of characteristic temper-
ature signatures. The difference is most likely due to the
difference in detection method.

Murlis et ol (1982) used hot-wire anemometry and
temperature “tagging” methods to study the effect of
Reynolds number on boundary-layer structure for 791 <
Rey < 4,750. Using temperature signals to determine
intermittency factors, assuming a Prandtl number near
unity, they found that the intermittency profile is essen-
tially independent of Reynolds number. However, the av-
erage length of zones of turbulent motion was found to
decrease with increasing Reynolds number up to Reg =
5,000, Their data suggested that, beyond this Reynolds
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Figure 44: Double-pulsed Rayleigh images from a Mach 3 turbulent boundary layer (Reg = 80,000, Rs3 = 35, 000);
Left: time = ¢; Right: time = ¢ + 20us. The flow is from right to left. Figure from Cogne et al. (1993).
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Figure 45: Reynolds number dependence of isocor-
relation contours of a} Ryu, b) Ryw. Rep =
1,360 0 2,180 === === 6,030 =mwnecrmamnenes
- 9,630 -~+. Ome probe was fixed at y/6 = 0.56.

Two contour levels, 0.05 and 0.2, are shown for each
Reynolds number. Figure from Antonia et al. (1990b).

number, the turbulent zone length remained constant.
Through a detailed analysis of the turbulence statistics,
Murlis et al. also concluded that there is a large varia-
tion of eddy structure with Reynolds number, but that
the basic transport mechanisms did not vary appreciably.
This conclusion was based on the finding that the second-
order statistics showed significant Reynolds-number de-
pendence, while the triple products, which describe the
turbulent transport of the turbulence stresses, were ap-
proximately independent of Reynolds number. Murlis et
al. also suggested that the large-scale motions carry more
shear stress at higher Reynolds numbers, owing to the
diminishing importance of the “typical eddies.”

Alving & Smits (1990a), Alving et al. ({1990b) mea-
sured the broad-band structure angle of the LSM's by
using two probes separated by a distance &, in the wall-
normal direction. The structure angle was defined by
8 = tan~ ! (£, /U.Tmaz), Where U, is the convection ve-
locity {assumed to be equal to the local mean velocity)
and UcTmaz i8 the time delay to the maximum in the
space-time correlation. The results are shown in figure 46
and they indicate that # is a strong function of probe
separation when £, is small. It appears, however, that
& reaches a limit as £, increases, where it becomes inde-
pendent of probe separation. The angles in the middle
of the layer are about 30°, considerably higher than the
values found by Brown & Thomas (1977) and Kovasznay
et al. {1970). Perry et al. (1992) later measured struc-
ture angle by fixing the wall-normal separation of two
probes and varying the streamwise separation until the
value of the crosscorrelation of the signals from the two
probes attained a peak. This method has the advantage
of not depending on the validity of Tayler's hypothesis.
The results agreed well with the data of Alving et al.
(1990b) , for which the probes were separated in only the
wall-normal direction and Taylor's hypothesis was used.
Thus, Perry et al. concluded that the use of Taylor's hy-
pothesis is an accurate approximation for measurements
of turbulence structure in a boundary layer (at least for
reasonable Reynolds numbers and large-scale features).

MacAulay & Gartshore (1991) determined that the major
contributions to the broadband crosscorrelations in a tur-
bulent boundary layer at Rep = 8,390 came from §-scale
segments of the velocity signals, which encompass many
aspects of the flow structure, rather than from individual
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Figure 46: Broadband structure angle in a subsonic
boundary layer, as a function of probe-separation dis-
tance. Figure from Alving et al. (1990b).

hairpin eddies, which are an order of magnitude smaller
than §, in the streamwise and spanwise directions, at this
Reynolds number. Using conditional sampling, they were
able to measure the inclination angle of the sharp interface
at the backs of the large-scale motions. This interface an-
gle is compared to their measurements of the broadband
structure angle in figure 47, and the difference is signifi-
cant.

Based upon their own data and a review of the literature,
MacAulay & Gartshore developed a conceptual model il-
lustrating the Reynolds number dependence of the outer-
layer structure, which is shown in figure 48. As in the
visualizations of Head & Bandyopadhyay (1981) at low
Reynolds numbers, the horseshoe vortices are of the same
magnitude as the boundary-layer thickness in the span-
wise and wall-normal directions. At high Reynolds num-
bers, the spanwise scale of the hairpin eddies is much
smaller than the boundary-layer thickness. An interesting
feature of the high-Reynolds-number model is the con-
gregation of small-scale features near the backs of the
large-scale structures. Due to their own self-induction,
the hairpin vortices will propagate backwards (in a frame
of reference moving at the mean velocity) through the
low-speed fluid within the turbulent bulges. When they
reach the back of a bulge, they encounter a sudden in-
crease in streamwise velocity which balances their self-
induced velocity. MacAulay & Gartshore suggest that
stronger structures {(with higher eelf-induced velocities)
will penetrate the rear interface further than weaker struc-
tures. This results in the appearance of small scale struc-
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Figure 47: Structure angles measured by MacAulay
& Gartshore (1991) in a turbulent boundary layer at
Reg = 8,390: 0, broadband general structure angle; A,
structure angle of the trailing (upstream} interface of the
large-scale motions as detected using the VITA technique.
Figure from MacAulay & Gartshore (1991).

tures on the backs of the large scale motions, similar to
Falco’s typical eddies. When the hairpin vortices cease
their backward propagation, their self-induction will con-
tinue to carry them up, away from the wall, resulting in
a slow overturning motion.

Wark et al. (1991) and Naguib & Wark (1992) used
Spalart (1988) DNS data (670 < Reg < 1,410) together
with their own data for 1,579 < Ree < 5,961 to inves-
tigate the scaling of space-time correlations between the
fluctuating wall shear stress and the streamwise velocity
component. Their study concentrated on the near-wall
region (the overlap layer and below). Close to the wall,
the correlations for different Reynolds numbers scaled on
inner variables for spanwise probe separaticns £ < 40.
For £,/8 > 0.5, the correlations scaled on outer variables.
This would seem obvious, since the spatial separation of
the probes acts as a spatial filter. At larger separations,
small-scale motions, which scale on inner variables, do
not contribute to the corrrelation, since they do not pass
by both probes. Only large-scale motions, which scale
on outer variables, will contribute to the correlation. In
the overlap layer, the correlations were found to scale on
outer variables for all spanwise probe separations.

Wark et al. (1991) found that the commonly observed
negative correlation region in the spanwise correlations
disappeared at higher Reynolds numbers. Naguib & Wark
(1992) filtered the data to show that the region of negative
correlation is due to the small structures which scale on
inner variables. They also found that, as Rey increases,
the larger, lower-frequency structures make in increased
contribution to w3. However, at yt = 35, small-scale
features were found to make the greatest contribution to
Reynolds shear stress, and thus to the production of tur-
bulence kinetic energy, at all Reynolds numbers.

Space-time correlation measurements by Smith (1994) at
Reynolds numbers in the range 4,600 < Reg < 13,200
showed that the broad-band convection velocity and the
decay of the large scales with increasing time delay scaled
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dependence of the structure of turbulent boundary layers.
Figure from MacAulay & Gartshore (1991).
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on outer-layer variables (specifically U, and §) were only
weakly dependent on Reynolds number. However, iso-
correlation contours indicated that the streamwise length
scales increased with Reynolds number, in agreement with
the results by Liu et al. in a fully-developed channel flow.
Furthermore, space-time correlations in the wall-normal
direction revealed that the broadband structure angle de-
creased by about 10° over the same range in Res.

Isocorrelation contour maps (figures 49 and 50) showed an
increase of between 30 and 60% in the streamwise length
scale over the same Reynolds number range, and this be-
havior may be related to the decrease in the structure
angle. The spanwise length scale showed comparatively
little variation.

These subsonic results provide an interesting contrast to
the results obtained by Spina et al. (1991a) in & Mach 3
boundary layer with Rep = 80,000 (see figures 51 and 52).
In the supersonic flow, the streamwise length scales were
two to three times smaller than in the subsonic flow, and
the structure angles were about 10° larger. The span-
wise scales were almost independent of the Mach num-
ber. Now, the smaller streamwise scales correlate well
with the increased structure angle, but the trend with
Reynolds number seen in the subsonic data does not seem
to hold for the supersonic flow. Therefore it seems that
the streamwise length scale and the structure angle de-
pend on the Mach number and the Reynolds number.
These observations have important implications for de-
veloping turbulence modele for high speed flows, where it
is commonly assumed that length scales follow the same
scaling as in subsonic flow, and only fluid proerty varia-
tions are important. The fact that some characteristics of
the turbulence depend on Mach number in a more subtle
way, even at supersonic speeds where these assumptions
work reasonably well, indicate that at higher Mach num-
bers the scaling will need to include compressibility effects
directly.

4 Supersonic Flows

4.1 Introduction

At supersonic Mach numbers, viscous energy dissipation
makes a significant contribution to the energy budget. As
a result, the temperature rises and significant tempera-
ture gradients occur within the boundary layer. In a tur-
bulent boundary layer in supersonic flow, therefore, the
mean temperature and velocity vary, and significant tem-
perature and velocity fluctuations occur. Pressure fluc-
tuations are usually small at supersonic speeds but may
become important at Mach numbers exceeding 5.

The increased influence of viscous dissipation is illustrated
by the evolution of the mass-flux profile with Mach num-
ber. The elevated static temperature at the wall creates
a low-density region that shifts the majority of the mass
flux toward the outer part of the boundary layer, and the
profile becomes more skewed as the freestream Mach num-
ber becomes larger. In addition to affecting the density
profile, the mean static temperature variation also creates
fluid-property gradients across the boundary layer. For an
adiabatic wall, the temperature at the wall T,,, depends
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Figure 49: Isocorrelation contour maps in the z-y plane,
as measured by Smith (1994), in a turbulent boundary
layer at Reg = 4,981 and 13,052 using different wall-
normal probe separations: a) £,/6 =~ 0.1. Figure from
Smith (1994).
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Figure 50: Isocorrelation contour maps in the 2-z plane,
as measured by Smith (1994), in a turbulent boundary
layer at y/6 = 0.09,0.42,0.80. {a) Reg == 4,600. Figure
from Smith (1994).
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Figure 50 (cont.) (b) Reg = 13,200.

on the recovery factor r and the freestream Mach number,
but it is always within 10 to 12% of the freestream total
temperature. Typical wall-to-freestream ratios of some
flow propetties are provided in Table 3 for three differ-
ent Mach numbers. Since the density of gases decreases
and the viscosity increases with temperature, the ratio of
VYuw/v. can become very large. Of course, when the wall
i heated or when the flow is perturbed so that normal
pressure gradients exist, the gradients of p, &, and k may
be even more severe. As a result of the fluid-property
gradients, the low Reynolde number effects usually found
only very near the wall will encompass a larger portion
of the boundary layer as M., increases, and the influence
of the viscous sublayer will increase. Such considerations
indicate the physical basis for preferring the use of Rgq

M, TidTe  PulPe Bl  VolVe

2.9 (air)* 3 0.33 14 4.2
4.5 (air)® 5 0.2 2.9 14
10.3 (He)* 1 0.03 9.6 320

*Spina & Smits 1937,
*Mabey et al 1974,
¢ Watson et al 1973,

Table 3: The ratio of fluid properties across three bound-
ary layers in supersonic flow on adiabatic walls . Table
from Spina et al. (1994).
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in the desription of supersonic boundary layers over the
conventional Reg.

4.2 Stagnation-Temperature
Distribution

The stagnation-temperature profile must be known to cal-
culate the velocity distribution. Measurements and the-
ory often seem to conflict, however, and a truly represen-
tative stagnation-temperature profile is difficult to define,
particularly at high Mach number. The measurement dif-
ficulty stems from the compromise that must be made
between spatial resolution and accuracy when selecting
a stagnation-temperature probe (sce, for example, Fern-
holz & Finley, 1980). Since approximately one-half of the
decrease in 7 to the wall-recovery value occurs in the in-
ner layer of near-unity Prandtl-number gases (Morkovin,
1962), this compromise leads to a kind of uncertainty prin-
ciple on the accuracy of the data.

As for theoretical stagnation-temperature distributions,
Fernholz & Finley (1980) present and discuss many of
the energy-equation solutions commonly applied to su-
personic turbulent boundary layers. They nete that many
of the relations are applied beyond their range of valid-
ity when used to benchmark experimental data. The two
most widely discussed stagnation-temperature distribu-
tions in the literature are the “linear” and “quadratic”
solutions. It has been commonly assumed that (To —
Tw)/(To, - Tw) = © = U/U. is the proper distribu-
tion for flat-plate flows, while © = (U/U.)? is the appro-
priate tunnel/nozzie wall solution. It has been claimed
that the quadratic nature of the measurements along
tunnel walls is due to the upstream history of the flow
(significant dT/dx and dp/dx) and the resultant local
non-equilibrium. While Feller (1973), Bushnell et al.
{1969), and Beckwith (1970) offer convincing arguments
for flow-history effects, there is little experimental evi-
dence that the linear profile is the equilibrium stagnation-
temperature distribution in supersonic, turbulent bound-
ary layers.

The classic (linear} Croceo solution, & = U/U., is derived
from the energy and momentum equations for laminar
flow with Pr = 1, zero pressure gradient, and an isother-
mal wall. The Crocco solution is extended to turbulent
flows under the same conditions with the additional as-
sumption of unity turbulent Prandtl number (Fr,). How-
ever, it has been shown that Pr, is less than 1.0 across the
outer layer for both near-adiabatic walls (Meier & Rotta,
1971) and cold walls (Owen et al. , 1975). Fernholz &
Finley (1980) show that the origins of a quadratic profile
for turbulent flow lie in a solution by Walz (1566):

2
e=ﬁ%+(1—ﬂ)(,%), (53)

where 8 = (Tow—Tw)/(To, —Tw). The assumptions inher-
ent in this solution are zero pressure gradient, isothermal
wall, and a constant “mixed” Prandtl number, Pry =
ep(pt + pe)/(k + k:) between 0.7 and 1.0. The linear pro-
file therefore holds only for 8 = 1, that is, Ty, = Taw, and
the purely quadratic profile holds only for a zero-pressure-
gradient flow, with constrained Prs, and an isothermal
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Figure 51: Isocorrelation contour maps in the z-y plane,
as measured by Spina (1988), in a turbulent boundary
layer at Reg = 81,000 and M = 2.9 using different wall-
normal probe separations: a) §,/6 = 0.09; b) £,/6 = 0.30;
c) £y /8 = 0.51. Figure from Spina (1988).
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Figure 52: lsocorrelation contour maps in the z-z plane,
as measured by Spina (1988), in a turbulent boundary
layer at Reg = 81,000 and M = 2.9 at three positions
in the boundary layer: a) y/6 = 0.20; b) y/6 = 0.51; c)
y/6 = 0.82. Figure from Spina (1988).



(also adiabatic) wall {# = 0). The range of validity of the
quadratic relation is often extended improperly to flows
with pressure gradients because of the similarity of the
equation to one that is valid for laminar and turbulent adi-
abatic flows with pressure gradients. Perhaps due to the
relaxed constraint on the Prandti number (as compared to
the linear solution), much of the stagnation-temperature
data appears to be characterized by a quadratic trend
(Bushnell ¢t al. , 1969, Bertram & Neal, 1965, Wallace,
1969, Hopkins & Keener, 1972).

A critical shortcoming is the dearth of near-wall Tp mea-
surements, which are critical for determination of the wall
heat-transfer rate. The lack of data makes it impossi-
ble to determine whether these temperature-velocity re-
lations, or even those provided by Bradshaw (1977) to
represent the inner layer, accurately describe the near-
wall behavior of the stagnation temperature. For flows
with non-iscthermal walls and significant pressure gradi-
ents the situation is much worse, however, as no theo-
retical temperature-velocity relations exist for these con-
ditions. Much of the confusion surrounding stagnation-
temperature distributions is due to comparison between
data taken under these conditions and theoretical rela-
tions that are applied beyond their range of validity.

4.3 Mean-Velocity Scaling

When the mean velocity in a supersonic boundary layer
is plotted as U/U, vs. y/8, the profile appears qualita-
tively similar to that of an incompressible low. When
the velocity is replotted in classic inner- or outer-layer
coordinates, however, the velocity does not follow the fa-
miliar incompressible scaling laws for these regions. But
a modified scaling that accounts for the fluid-property
variations correlates much of the existing compressible
mean-velocity data with the “universal” incompressible
distribution. This velocity scaling was first employed in
the viscous sublayer and the logarithmic region by van
Driest (1651), was extended to the wake region and to
velocity-defect scaling by Maise & McDonald (1968), and
to Coles’ universal wall-wake scaling by Mathews et al.
(1970). The following outline of the scaling arguments
for supersonic turbulent boundary layers is based largely
on the discussion given by Fernholz & Finley (1980).

The usual derivation of the velocity distribution in the
inner region is based on the assumptions:

(1) that the convective term 3/0z in the equation of
maotion is small compared with the viscous term,

(2) that the pressure gradient term can be ignored so as
to simplify the discussion, and

(3) that the total stress 7 = p2 (80 /8y) — pu'v’ is con-
stant in the inner region and equals 1,

(4) Morkovin's hypothesis holds, in that the structure
of the turbulence does not change significantly due

to compreseibility effects up to about a freestream
Mach number of about 5.

“The dominating factor in the compressible
turbulent-boundary layer problem is apparently
then the effect of high temperature on the ve-
locity profile near the wall and therefore on
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the shear stress. This latter observation was
first advanced by von Kdrmén in 1935 but has
been somewhat neglected in favour of interpola-
tion formulae or of elaborate generalizations of
the mixing length hypothesis” (Part I of Coles,
1953).

The increased dissipation rate in the viscous sublayer has
the effect that at a fixed Reynolds number the sublayer
thickness increases with increasing Mach number. The
same effect is of course responsible for the observed in-
crease in the thickness of the laminar boundary layer at
high Mach numbers (see, for example, van Driest, 1951).

If one assumes that in the viscous sublayer the molec-
ular shear stress ;2 (80 /8y) is large compared with the
Reyneolds shear stress — pu'v’ and equal to the skin friction
Tw, then one obtains for the velocity gradient

in which the variation of the viscosity with temperature
is taken to be given by

Using Equation 53 for the temperature distribution (valid
under the assumptions dp/dz = 0 and T,, = constant),
Equation 54 yields:

g _ Yur
u v (56)
where the transformed mean velocity in the sublayers T7*
is defined by
U
— e
s = — . 57
[ (&) w )
0
Hence, with w = 1: .
P 1 U 1.0
U _U[1+2aUe 30 (U) ] (58)
in which ; T
= Yo iMRy i
a—(1+r - M,)Tm 1 (59)
2 _ Y- 1,2Te
b = r oM (60)

We see that the transformed velocity U* has a linear dis-
tribution similar to the linear velocity distribution in the
viscous sublayer of an incompressible turbulent boundary
layer, and to which it reduces for T =T\, and M. = 0.

Between the viscous sublayer and the cuter layer there
exist a region, defined by y* >> 1 and << 1, where
the Reynolds shear stress —pwv’ is dominant and is ap-
proximately equal to the skin friction 1,. If it is as-
sumed that Prandtl’s mixing length theory is also valid
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for compressible turbulent boundary layers, then from
Tw = —puv = pb? (3[7/8;;)2 we obtain:

o0 _ y/rule

oy Ky
where & is von Kérmén's constant and £ is Prandtl’s mix-
ing length (assumed to be equal to sy, as in subsonic

flows), This result is independent of Mach number. Since
the pressure is constant in the wall-normal direction, we

have, for a perfect gas:
T
(%) “

We can again use Equation 53 to substitute for the tem-
perature ratio in Equation 57 and obtain (Fernholz, 1969):

(61)

U _u
% ny

T _lpyr o (63)
Ur K Vw
where
t
v — /Tw +
Us = f —T—dU . (64)
v
Hence:
— U . _,| ¥F-a
U+* = —sin _— 65
b [‘ /(az + 4b%) (65)
and

2b20‘ _
C* = lln - &lsﬂn‘1 —--—--—~—U: e
K Ve ursb (6% T 4b9)

where a and b are given by Equations 59 and 60, and the
suffix 1 denotes a boundary condition at the lower end of
the validity range of the log-law (which can in principle
only be found by experiment).

For an adiabatic wall, T\, becomes the recovery temper-
ature Tr, and a = 0. In this case experiments show that
U1 /U lies in the range 0.3 < U7 /U. < 0.6. With a value
for TJT/ U, = 0.5 one can show that arcsin can be replaced
by its argument for Mach numbers up to 8 with a relative
error of —4% or less, Then C* reduces to

e _ v o (66)
Ur [ Vuw

that is, the same value as for the incompressible case.
This result was also confirmed by the measurements dis-
cussed by Fernholz & Finley (1980) and by general com-
putational experience (Bushnell et al. , 1976).

Fernholz & Finley (1980} concluded that velocity pro-
files in compressible turbulent boundary layers are well
represented by Fquation 63 within the limits set by the
assumptions. A comparison between measurements in
transformed and un-transformed coordinates is given in
figure 53.

The first approach to this type of transformation was sug-
gested by van Driest (1951) who derived a relationship

similar to Equation 63 also using the mixing length con-
cept. He assumed Prandtl number unity and so a recov-
ery factor equal to one and determined the constant C
so that for the limit M, — 0 and ({T./T.) — 1 the well-
established relationship for the incompressible case should
result. Van Driest’s equation for the logarithmic law then
reads the same as Equation 63, except that r = 1 in the
definitions of ¢ and b.

The differences likely to appear if the alternative trans-
formation is used can be seen in figure 54. Here three sets
of profile data are plotted using firstly Equation 65 with
r = 0.896 and secondly Equation 65 with » = 1.0 which
then reduces to van Driest’s transformation. The differ-
ences, although systematic, are small when compared to
experimental error, particularly in the determination of
Cy. Given the uncertainties in the transformation ap-
proach, and the experimental difficulties in obtaining ac-
curate values for Cy, there is little that can be said for any
given set of log-law constants and their possible variation
with Reynolds number or Mach number. It is equally dif-
ficult to say anything meaningful regarding the existence
of power law similarity, rather than log-law similarity, as
discussed in Section 3.1.5.

The empirical validity of Morkovin’s hypothesis offers
some support for the concept behind the van Driest
transform (and similarly that by Fernholz & Finley) by
suggesting that multi-layer scaling holds in compressible
boundary layers. And despite the assumptions inherent to
the mixing-length hypothesis, the underlying dimensional
argument is sound as long as the length-scale distributions
in supersonic boundary layers follow the same behavior as
in subeonic flows. In fact, experimental data taken over a
wide Mach-number range, with various wall-heating con-
ditions and modest pressure gradients, and transformed
via van Driest show good agreement with incompressible
data correlations (for example, Kemp & Owen, 1972, La-
derman & Demetriades, 1974, Owen et al. , 1975, Wat-
son, 1977). The systematic discussion given by Fernholz
& Finley (1980) is particularly persuasive.

It is important to note what the limits of applicability
appear to be, however. Other than strong pressure gradi-
ents, the primary constraint is impoeed by the dependence
of similarity on large values of the Reynolds number,
implying universality and independence from upstream
history. Fernholz & Finley (1980) observe that the low-
Reynolds-number region that begins to dominate the in-
ner layer at high Mach number may eventually cause the
failure of the velocity scaling laws that the transformed
data follow. Hopkins et al. (1972) attribute the poor per-
formance of van Driest at M., = 7.7 to the low Reynolds
number of the flow, Rep = 5,000. This can be compared
to a successful application of van Driest at M, = 9.4 and
Reg == 37,000 by Laderman & Demetriades. It seems
reasonable, however,that the transformation suggested by
Fernholz & Finley offers a slightly more accurate variation
of van Driest, since the temperature distribution is based
on a Prandt] number assumption (0.7 € Pry < 1.0)
that is more realistic than van Driest's assumption of
Pry=Pr=1.

In the outer region, the similarity of the velocity pro-
file can be verified by plotting the velocity defect
(U,’ —U7) / u, versus y/6 where the transformation of
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Figure 53: Log-linear plots of the velocity profile for a compressible turbulent boundary layer. Natural and transformed
velocities (7*). From Fernholz & Finley (1980}, where catalog numbers are referenced.
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Figure 54: Comparison of velocity profiles transformed by using recovery factors of 1 and 0.896 (Mabey et al. , 1974,
Horstman & Owen, 1972). From Fernholz & Finley {1980), where catalog numbers are referenced.
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the velocities U2, U* and the characteristic length 4 have
yet to be determined. Since the mean velocity approaches
the velocity U. asymptotically the boundary layer thick-
ness ig an ill-defined quantity, and it is sensible to use in-
stead an integral length A as suggested by Rotta {1950)
for incompressible boundary layers (see Equation 26).
The only difficulty in using the reference length A is that
both the velocity profile and the skin friction must be
known which, unfortunately, is not always the case for the
published measurements. If both are available then the
velocity defect distribution and the integral length scale
can be transformed and applied to compressible turbulent
boundary layers. It is then hoped that the dimensionless
velocity defect will be described by a function

BT @

Ur

{for zero pressure gradients), where

1

$-[ETE e

0

There is no justification for the simple relationship of
Equation 67 other than verification by experiment. How-
ever, an evaluation of a large number of experiments in
zero-pressure gradient boundary layers, mainly along adi-
abatic walls appears to support this particular scaling
scheme. The data suggest the following semi-empirical
relation (Fernholz, 1971):

U;——LF__ ¥

with M = 4.70 and N = 6.74 (1.5x 10° < Rep < 4x10%).
More elaborate semi-empirical relationshipe of the type:

Ur -+ 1.y (y)

were suggested by Coles (1853), by Stalmach (1958) and
by Maise & McDonald (1968), the latter two authors us-
ing van Driest's velocity transformation, that is, with
Prandtl number one. Due to the different methods ap-
plied in specifying the boundary layer thickness §, the
authors of the semi-empirical relations mentioned above
do not agree with each other nor do they agree with mea-
surements if these are plotted using values as given by the
experimentalists.

Figure 55 shows this comparison. Since the figure is
meant only to illustrate the problem, the reader is referred
to Fernholz (1969) for the identification of the experimen-
tal data.

Libby & Visich (1959), Mathews et al. (1970) and Sun &
Childs (1973) extended the Coles (1956) wall-wake ve-
locity profiles (Equation 27) to compressible turbulent
boundary layers (a) for adiabatic flows with pressure gra-
dient and (b) for isothermal wall and zero pressure gra-
dient, using the van Driest transformation in the 1973
paper. Sun & Childs (1976) modified Coles's relationship
to avoid the shortcomings basic to this formulation that
the velocity gradient at the boundary edge has a non-zero

value. Though the basic elements of this “amalgamated”
velocity profile look promising, no sufficient comparisons
with experiments are available as yet. Transformed ve-
locities according to van Driest were also used by Lewis
et al. (1972) for a semi-empirical description of the ve-
locity distribution in the inner and outer region.

Finally, it should be pointed out (as we did for incom-
pressible flows) that the similarity scaling of the compress-
ible boundary layer mean velocity profile is most usefully
expressed in terms of the scaling for the mean velocity
gradient 8U/8y. That is, 8U /8y in the near-wall re-
gion scales with a length scale v,, /u, and a velocity scale
tr (T /T)“/?. In the outer region the length scale is 5,

and the velocity scale is u-.-\/ (T/ Tw). In the overlap re-
gion, the length scale becomes y, but the velocity scale is

still uf\/ (T/ Tw). So we see that the mean velocity pro-

file in a compressible boundary layer scales with the same
length scales used in acaling incompressible flows, but the
velocity scale is modified by the variation in mean tem-
perature.

4.4 Skin Friction

Skin-friction measurements are more difficult to make and
to interpret in supersonic flows (Fernholz & Finley, 1980,
Smith et al. , 1992). Floating-element gauges are suscep-
tible to inaccuracies stemming from leakage, local varia-
tions in heat transfer, flushness, and moments applied by
streamwise pressure gradients. Preston-tube data can be
analyzed using a variety of calibration schemes, leading to
considerable uncertainty in the results. Most schemes for
reducing Preston-tube data rely on boundary-layer edge
conditions (for example, Hopkins & Keener, 1966), and
this can introduce gdditional errors, particularly in per-
turbed flows where the edge properties are often unrelated
to the flow behavior near the wall. As Finley (1994) points
out, calibration equations which involve an empirical “in-
termediate temperature”, and/or freestream properties
are functionally incorrect, since the Preston tube pres-
sure should depend on wall variables only. He adds that
as long as they are used in flows with small or negligible
normal pressure gradients, this is not crucial. However,
in many compressible flows there are significant normal
pressure gradients and the calibration equations should
be expressed in terms of wall variables. The only cali-
bration which does so is that by Bradshaw & Unsworth
(1974). Here, for adiabatic flows and for u,d/ve > 100:

Ap _ u,-d 2 u.,-d )
"1':: =96 + 60 logm (m) + 23.7log10 (m

—10°M? [(ﬂ)m - 2.0] (11)

Vy

which reduces to a very good fit to the calibration data
of Patel (1965) for incompressible flows as M, — 0.

Allen (1977) suggested that the constants used by Brad-
shaw & Unsworth were incorrect and proposed that the
last term should read:

0.3
—10° M2 [(“’d) - 2.38] .

P
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Figure 55: Mean velocity profiles in outer-layer scaling for zero pressure gradient compressible turbulent boundary
layers . From Fernholz & Finley (1980). The key to the data is given in Fernholz (1969).

However, Finley (1994) concluded that these corrections
were based on unreliable balance data, and on the basis
of a detailed analysis of the available data recommended
that the original constants as given in Equation 71 are
more accurate than those given by Allen (1977). It should
also be noted that Finley introduced a reduction proce-
dure originally due to Gaudet (1993, private communica-
tion), in wall variables, which depends on the van Driest
(1951) transformation, and not directly on balance mea-
surements,

The Clauser method (Clauser, 1954) can also be used as
long as & logarithmic region can be found, but the re-
sults obviously depend on the validity of the particular
compressibility transformation used. In perturbed-flows,
the compressibility transformation of Carvin et al. (1988)
should be more reliable than that of van Driest because
it does mot have the additional requirement of a self-
preserving boundary layer. In practice, for a wide variety
of flows, including flows with strong pressure gradients
and shock wave boundary layer interactions, the differ-
ences between the Clauser-chart results obtained using
the two transformations seem to be within about £15%
of the Preston-tube results (Smith et al. , 1992). The laser
interferometer skin friction meter (LISF) is a promising
new technique that does not require assumptions about
the character of the wall region to deduce the wall shear
stress, and can thus provide direct measurement of the
skin friction in a perturbed flow. Kim et al. (1991) com-
pared LISF results to Preston tube measurements in a
three-dimensional shock-wave boundary-layer interaction
and found encouraging agreement.

As a result of the increased viscous dissipation in com-
pressible boundary layers is a decrease in the skin-friction
coefficient with increasing Mach number (at fixed Re).
The low density of the fluid near the wall indirectly results
in a decrease in the slope of the non-dimensionalized ve-
locity profile relative to that for an equivalent-Reynolds-
number incompressible boundary layer. Since density
has a stronger dependence on temperature than viscos-
ity does, the skin-friction coefficient decreases with Mach
number (although the dimensional wall shear increases

due to the increase in velocity). The general trends for
hot and cold walls can be predicted from these considera-
tions, with heated walls leading to lower Cy (Hinze, 1975,
Fernholz, 1971, Fernholz & Finley, 1980).

‘While the Howarth-Dorodnitsyn compressibility transfor-
mation provides an analytical solution for Cy in lami-
nar boundary layers (Pr = 1}, no such solution exists in
turbulent compressible boundary layers. Instead, a va-
riety of experimental correlations, transformations, and
finite-difference solutions exist. Bradshaw (1977) criti-
cally reviewed the most widely-used skin-friction formu-
las and found that a variation of “van Driest II” (van
Driest, 1056) exhibited the best agreement with reliable
zero-pressure-gradient data, with less than 10% error for
0.2 € Tw/Taw < 1. Of course, the success of van Driest
11 is mainly due to the fact that for air the molecular and
turbulent Prandtl numbers are close to unity.

4.5 Scales for Turbulent Transport

In the analysis of the mean velocity distributions in su-
personic boundary layers it was assumed that the mix-
ing length distribution was the same as in subsonic flows.
This comprises essentially a variable fluid property as-
sumption, that is, the mechanisms governing turbulent
transport are the same as at low speed, and the varia-
tions of density are taken in account by scaling the local
stress. This hypothesis is quite successful, since, as we
have seen, experimental evidence supports that the log
law is observed on the van Driest transformed velocity,
with the same constant as in at low speed. Therefore it
may be expected that the typical size of the energetic ed-
dies producing turbulent transport obeys the same laws
a6 in subsonic flows. Note that this scale is built on the
shear stress —iiv, and that it is a scale related to turbulent
diffusion.

The following discussion has been adapted from the re-
cent work by Dussauge & Smits (1995). Consider the
characteristic time scales of the turbulent and mean mo-
tions. The turbulent time scale ¢; can be expressed as a
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function of mean time scale, low parameters such as the
Reynolds and Mach numbers R and M, the position y
and the length scale L. That is:

te=gtm R My L,..).

We know that the energetic structures and the mean mo-
tion have characteristic scales of the same order. This
suggests that the previous relationship can be rewritten
as

te =tmg(R,M,y,L,....) (72)

where the function ¢ is of order 1. If we msssume
Morkovin’s hypothesis, then for weak compressibility ef-
fects, for example in boundary layers at moderate Mach
numbers, the relation between the scales is the same as
at low speeds. Equation 72 reduces to:

ty =tmg(R,y,L,....). (73)

The turbulent time scale is defined as usual by k/e. The
mean time scale is chosen as (8U/8y)™', the turnover
time of the mean motion, as in low speed flows. This
choice can be justified as follows. The main role of the
mean inhomogeneity is to amplify turbulence through lin-
ear mechanisms described, for example, by rapid distor-
tion theories. In general, a fluctuation subjected to mean
shear obeys an equation of the form:

Dv’ ,8U
ﬁ-&-u Fm =f.

In this equation, f represents the pressure, non-linear and
viscous terms. It appears from the linear left hand side
that the amplification of 4’ by linear mechanisms occurs
with a time constant of order of (8U/8y)~" (for incom-
pressible turbulence, the role of the pressure terms in f is
to reduce u'8U /By, but the order of magnitude remains
unchanged). The mean time scale can therefore be inter-
preted as a response time of fluctuations to mean homo-
geneity, and it must therefore be of order (AU /8y)~". If
we evaluate f in the zone where the shear is constant, and
where production and dissipation are equal:

—pu'v'  =pu'y = pwu3 .

Moreover, in this region, we assume that similarity of the
profile is achieved by using either a viscous length scale, or
an external length scale. We denote L the scale, whatever
the choice. Equation 73 can then be rewritten as:

ﬂz —g (% R,.....) (74)
We recognize in Equation 74 the scaling proposed by
Morkovin for the similarity of the Reynolds stresses: simi-
larity is achieved if the local velocity scale in the constant
stress region is now ,/(pw/p)us instead of u,. We can
now define a length scale in the particular case when pro-
duction is balanced by dissipation. The turbulent time
scale is defined as A/u’, where ¢’ is a characteristic scale
for velocity fluctuations, for example vk Equating this
time to k/e, and setting ¢ equal to production gives the
relation:

A___ Pk
v puoU/dy

or, according to Equation 74,

s

A=g(%,R, ) E')Tj'u/_a;' (75)

From Equation 75, it can be deduced that the length
scale is the same in subsonic and supersonic flows when
the ratio u'/(8U/8y) is unchanged. This implies that
the scaling for density effects should be the same for u’
and 8U /8y. We know from experiment (and from Equa-
tion 74) that in supersonic layers, u’ varies like p~!/2,
We also know that 3U/8y varies as p~'/2 since the van
Driest transformed velocity obeys the same log-law as in
subsonic flows. Therefore the characteristic length scales
governing turbulent transport should not change in the
supersonic regime.

To conclude these scaling considerations on turbulent
transport, it should be emphasized that the presence of a
logarithmic region in the mean velocity profile is & neces-
sary condition, and that we have only considered a single
velocity scale and a single length scale. 'This was ap-
plied to turbulent stresses, which are represented by a
tensor. Therefore, it is likely that the results we obtained
are related mainly to a single component or to the tur-
bulent kinetic energy, but not to all of the components.
Finally, Equations 72 and 74 may give some insight into
the influence of compressible turbulence on the high speed
boundary layers, and indicate some possible ways to in-
vestigate departures from Morkovin's hypothesis in these
flows. In Equation 72, an acoustic time scale (or a Mach
number) may be introduced, while the equilibrium condi-
tion should be modified by balancing the dissipation rate
by the sum of production and pressure divergence terms,
and by modifying Equation 74.

4.6 Mean Turbulence Behavior

Sandborn (1974) and Fernholz & Finley (1981) both crit-
ically reviewed turbulence measurements in supersonic
boundary layers. While many data sets were acquired
in the period between the two reviews, their conclusions
were similar and they continue to be relevant. In particu-
lar, accurate, repeatable measurements of the Reynolds-
stress tensor are still needed over a wide Mach-number
range. The most well-documented component is the lon-
gitudinal normal stress, which has been widely measured
and properly scaled. But there have been so few system-
atic investigations of the effects of Reynolds number and
wall heat transfer in supersonic flow that their influence
on the turbulence field is not well known. The reason
for the scarcity of measurements and their generally poor
quality is simple: the measurement of turbulence quanti-
ties in supersonic boundary layers is exceedingly difficult,
with the level of difficulty increasing with flow complexity
and Mach number. But furthermore, there are significant
measurement and data-reduction errors associated with
every technique designed to measure fluctuating veloci-
ties in supersonic flow: thermal anemometry (see Smits
& Dussauge, 1989), laser-Dopptler velocimetry (Johnson,
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Figure 56: Distribution of turbulent velocity fluctuations
in boundary layers. Measurements are from Kistler {1959)
and Klebanoff (1955). Figure from Schlichting (1979).

1989), and advanced laser-based techniques such as laser-
induced fluorescence (Logan, 1987, Miles & Nosenchuck,
1989).

Despite these uncertainties in the measurements, certain
trends can be distinguished. For example, when the longi-
tudinal velocity fluctuations are normalized by the shear
velocity, w2/u3, there is a clear decrease in fluctuation
level with increasing Mach number (see Kistler, 1959,
Fernholz & Finley, 1981). This is shown in figure 56.

However, when the streamwise normal stress is nor-
malized by*the wall shear stress, the data exhibit some
degree of similarity {as suggested in Section 4.5), par-
ticularly in the outer layer (see figure 57). This formu-
lation of the velocity fluctuations indicates the success
of the scaling suggested by Morkovin (1962) to account
for the mean-density variation, and provides some sup-
port for the discussion given in Section 4.5. In fairness,
it should be mentioned that Fernholz & Finley (1981),
in considering an earlier set of data, concluded that the
streamwise Reynolds stress did not show a similar behav-
ior in the outer region, no matter which velocity scale
was used in the non-dimensionalization. It appears that
the later data shown in figure 57 displays a more regu-
lar behavior. The streamwise normal stress distribution
for supersonic flows is in fair agreement with the incom-
pressible resulta of Klebanoff (1955), except near the wall
where reduced accuracy affects the supersonic measure-
ments. Morkovin’s scaling appears to be appropriate to
at least Mach 5. Measurements by Owen et al. (1975)
at M. = 6.7 and Laderman & Demetriades (1974) at
M. = 9.4 exhibit damped turbulent fluctuations, partic-
ularly near the wall. Since both of the hypersonic data
sets are for cold-wall conditions, this may simply indicate
the stabilizing effect of cooling.

Cross-wire measurements of both streamwise and wall-
normal components of velocity have suggested additional
apparent differences between Mach 3 and incompressible
boundary-layer structure (Smite et al. , 1989). Measure-
ments of v and w’? are less common than those of w2,
the data exhibit more scatter, and the conclusicns are
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Figure 57: Velocity fluctuation intensity in supersonic
boundary layers: *, Dussauge & Gaviglio (1987); ,
M =1.72; 0, M = 3.56; O, M = 4.67, Kistler (1959);
A, hot wire; ©, laser, M = 2.9, Johnson & Rose (1975);

, M =29, Smits et al. (1989); B, M = 2.32, Eléna
& Lacharme (1988); O, M = 2.3, Debitve (1983); .
M = 2.32, Eléna & Gaviglio (1993); ©, M = 3, Yanta
& Crapo (1976). Figure taken from Dussauge & Gaviglio
(1087).

therefore less certain. In contrast to the streamwise tur-
bulence intensity, both distributions appear to increase
slightly with increasing Mach number (Fernholz & Fin-
ley, 1981). In this case, Morkovin’s scaling does not col-
lapse the data, and '3/, and pw?/r, show no real
trend toward similarity. Konrad (1993} using hot-wire
anemometry found that w’? and ¥% in a Mach 2.9 bound-
ary layer were approximately equal throughout the layer
(see figure 58). In contrast, the measurements by Eléna
& Lacharme (1988) in a Mach 2.3 boundary layer us-
ing laser Doppler anemometry indicate that the behav-
jor of v3/u. is almost identical to that found in subsonic
flows (see figure 59). The behavior of the anisotropy
parameter is therefore not clear: the measurements by

Eléna & Lacharme (1988) indicate that \/:r’—;/ u? is al-
most the same as in subsonic flows, whereas the hot-wire
measurements by Fernando & Smits (1990} and Konrad
(1993) indicate that this ratio increases with Mach num-
ber (Reynolds number effects were shown to be negligibly
small in Section 3.2.3). The limited nature of the data
precludes any conclusions regarding the effects of com-
pressibility on this structure parameter.

Sandborn {1974} reviewed direct measurements and in-
direct evaluations of the zero-pressure-gradient Reynolds
shear stress, —pu'v’ (a later, more comprehensive study
was provided by Fernholz & Finley, 1981). Sandborn
constructed a ‘best fit’ of normalized shear stress pro-
files {r/7,) from integrated mean-flow data taken by a
variety of researchers over a wide Mach-number range,
2.5 < Moo < 7.2 (extended to Mach 10 by Watson (1978)
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Figure 58: Turbulence distributions in a Mach 2.9
boundary layer, measured using hot-wire probes (Reg =
65,000). Adapted from Konrad (1993).
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Figure 59: Turbulence distributions in & Mach 2.3
boundary layer, measured using LDV (Res = 5,8650).
Figure from Eléna & Lacharme (1988).

for adiabatic and cold walls). The data indicate a near-
universal shear-stress profile that agrees well with the in-
compressible measurements of Klebanoff (1955) (see fig-
ure 60). As Sandborn pointed out, the universality of
T/Tw over such a wide Mach-number range is not surpris-
ing in light of the fixed constraints on the values of the
shear stress at the wall and in the freestream. Even so, the
only Reynolds shear stress measurements to agree with
the ‘best fit’ in 1974, and then only in the outer layer,
were the LDV data of Rose & Johnson (1975). Subse-
quent Reynolds shear stress measurements by Mikulla &
Horstman (1975), Kussoy et al. (1978), Robinson (1983},
Smita & Muck (1984), and Donovan et al. (1994) (all
using hot wires except Robinson} have exhibited modest
agreement with Sandborn’s best fit and the incompress-
ible distribution. The agreement js limited tc the outer
layer, with great scatter in the inner layer and most pro-
files not tending toward 7/7. = 1 near the wall. The data
in the inner layer do not scale with yu, /v, almost cer-
tainly because of the difficulties with the measurements.

The behavior of the shear correlation coefficient Ry, is
affected strongly by the level of v/7. In the measurements
by, for example, Fernando & Smits (1990) at Mach 2.9,
R, . decreases significantly with distance from the wall,
from a value of about 0.45 near the wall to about 0.2
near the boundary layer edge (see figure 61). This is in
contrast to most subsonic flows where the correlation co-
efficient is nearly constant at a value of about 0,45 in the
region between 0.1§ and 0.85. As can be seen in the fig-
ure, the data by Eléna & Lacharme (1988) at Mach 2.3
follow the subsonic distribution closely, and it is difficult
to say what the effect of compressibility is on the level of
R, without further experiments. However, the subsonic
data showed that the maximum value of v/ increases sig-
nificantly with Reynolds number (see figure 32), and con-
sidering that there is about a factor of 15 difference in
the Reynolds numbers between the results of Fernando
& Smits (1990) and Eléna & Lacharme (1988), the differ-
ences seen in the distribution of R., may well indicate the
effects of Reynolds number. Joint probability density dis-
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Figure 61: Distribution of R.. in subsonic and super-
sonic boundary layer: (a) Data from Eléna & Lacharme
(1988): the dotted line corresponds to the subsonic data
of Klebanoff {(1955). (b) Data from Fernando & Smits
{1990): the filled-in symbols are subject to errors due to
transonic effects.
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Figure 62: Test of the Strong Reynolds Analogy in a
supersonic boundary layer {M. = 2.32, Rey = 5,650).
Data from Debiéve (1983).

tributions of the two velocity (or mass-flux) components
may also be somewhat different between subsonic and su-
personic flows, with the supersonic case favoring verti-
cal fluctuations in the mid-layer slightly more than the
subsonic case (for further details see Fernando & Smits,
1990), but again the evidence is not conclusive.

In Section 2.3 the Strong Reynolds Analogy was dis-
cussed. Some measurements designed to test the validity
of this analogy in adiabatic flows are presented in fig-
ures 62 and 63. The results indicate that the SRA is
closely followed in supersonic boundary layers, and the
correlation coefficient R, is close to the value of 0.8
throughout the layer (note that for y/6 > 0.8, the as-
sumptions used in the data reduction are probably in-
valid). This value is considerably higher than that found
in slightly heated subsonic flows, as seen in figure 63, and
the reason is not entirely clear. However, the SRA can
be a very useful tool in describing the behavior of super-
sonic turbulent boundary layers, especially in formulat-
ing turbulence models. The SRA can also be extended to
non-adiabatic flows, as discussed by Gaviglio (1987).

At hypersonic Mach numbers, it is possible that the triple
correlation pu'v’ may become comparable to the ‘in-
compressible’ Reynolds shear stress, gu’y’, since p’'/p ~
M3 /U. Owen (1990) evaluated the various contribu-
tions to the ‘compressible’ Reynolds shear stress at Mach
6 through simultaneous use of two-component LDV and a
pormal hot wire. His resulte indicate that p/v’v’ is negligi-
ble compared to puw’v’. Even though density fluctuations
increase with the square of the Mach number, it should be
remembered that the main contribution to the Reynolds
shear stress occurs in the region where the local Mach
number is small compared to the freestream value, so this
*hypersonic effect’ should only be important at very high
freestream Mach number.
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Figure 63: Distribution of R.r in boundary layers.
Curve 1: M, = 2.32, Rey = 5,650, from Debitve (1983).
Curves 2 and 3: M. = 1.73, Reg = 3,700, from Dussauge
(1981). Curve 4: M. << 1, Reg = 5,000, from Fulachier
(1972). Figure from Eléna & Gaviglio (1993).

The stagnation-temperature fluctuation must be known
to evaluate the turbulent heat.-ﬂux correlation, —cpﬁ
Kistler (1959) observed that Tj_.,/To increased with
Mach number, with maxima of 0.02 at M., = 1.72 and
0.048 at M., = 4.67. If Kistler's data is alternately non-
dimensionalized by either T}, (Fernholz & Finley, 1981) or
T, — T (Sandborn, 1974), the Mach-number dependence
appears to be eliminated, but similarity of the stagnation-
temperature distributions ia not achieved. Similar con-
clusions are reached from measurements by Morkovin &
Phinney (1958) and Horstman & Owen (1972). The maxi-
mum level of stagnation-temperature fluctuations is about
6% (for M < 7). Further analysis of these data shows that
T3..... scales according to either To, — T or To.—Tv. The
fluctuations in total temperature appear to be produced
by the difference in stagnation temperature between the
wall and the freestream, and not, for example, by the
unsteadiness in pressure, through the term 8p/8t in the
total enthalpy equation. In these experiments, the max-
imum of To,,,,/{Tee — T+) is about 0.5, regardless of the
Mach number, a rather satisfactory result since it shows
that the total temperature fluctuations are of the order of
{but less than) the total temperature difference across the
boundary layer. Finally, 7§ __ is less than that of uim.
and T%,.., but not low enough to satisfy the strict Strong
Reynolds Analogy (see Gaviglio, 1987). In fact, the SRA
can be used to estimate that T3, is about 60% of T7.,
at Mach 3 (Smits & Dussauge, 1989).

4.7 Spectral Scaling

We saw in Section 3.2.2 that two overlap regions in
wavenumber space can be found by considering the scaling
for the spectra of subsonic boundary layers in the logarith-
mic region, one where the spectra has a power law with
exponent -1 and another with an exponent -5/3 (Perry
et al. , 1986). Three spectral zones were considered. In
the first zone the length scale was the layer thickness §
and the turbulent velocity scale was u,. In the second
zone, the turbulent velocity scale was the same, but the

length scale was the distance from the wall . And in
the third zone, the scales were given by the Kolmogorov
length and velocity scales  and v (see equations 39 and
40). Matching Zones 1 and 2 leads to a spectrum which
varies as k7 ', and matching Zones 2 and 3 gives a k; 2/8
variation. '

We will now extend these considerations to high speed
boundary layers (for further details see Dussauge & Smits,
1995). The scales for zones 1 and 2 were discussed in
Section 4.5, where it was shown that the local scale for
u? is (p..,ug) / 7. Again, the -1 power law is obtained as
the result of the overlap between zones 1 and 2.

For the viscous zone, however, the Kolmogorov scales will
change. We can define new length and velocity scales by
considering the dynamic viscosity u, the rate of dissipa-
tion per unit volume @ (and not per unit mass ¢) and the
density p. Dimensional analysis gives:
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Equations 42 and 43 now have the form:

e ) i) = 220
2ula) _ gy ey = 2888 ()

So the Kolmogorov scales are unchanged as long as 7 =
B/p and £ = @/p. The analysis for the overlap region
ia the same as for low speed boundary layers: the Kol-
mogorov scales are determined in the equilibrium zone
where production and dissipation are assumed to balance,
where the turbulent shear stress is constant, and where
the van Driest velocity is logarithmic. It is again found
that the spectrum of w3 should have a range in k" o/3
Since the analysis can be performed using either the in-
compressible or compressible variables, the changes in the
scales due to variations in the mean density are absorbed
in the modified dissipation rate because of the density
scaling of the velocity gradient. The differences between
the incompressible and the compressible definitions of the
Kolmogorov scales are mainly related to the link between
velocity and density in the part of the layer where dissi-
pation is maximum, and therefore it should scale with the
friction Mach number M,y = u,/aw.

It may then be inferred that for weak compressibility
effects, the spectra have two wave number ranges with
power law variations in k! and in k; 5/3 , a8 at low speeds.
This analysis does not indicate where these wave number
ranges are placed in the spectrum, that is, if high speeds
produce larger or smaller energetic eddies, or induce a
change in the orientation of these eddies. It appears also
that the existence of a k;* range seems to be a rather ro-
bust feature, since the only conditions are the existence of
two domains where the wave numbers scale respectively
with § and with . The k;‘w ? Jaw is expected to have less
generality, since the existence of a constant shear stress



zone with logarithmic velocity profiles is postulated, and
the balance between production and dissipation is aiso
required. As a last remark, it may be seen that the in-
compressible and the compressible definitions of the Kol-
mogorov scales are equivalent for moderate Mach num-
bers. However, in the buffer zone they may differ signif-
icantly from each other if the friction Mach number M,
is not much less than 1. In this case, however it may be
expected that the hypotheses required for the derivation
of the power laws are no longer valid. In practice, friction
Mach numbers are usually small (< 0.1), except at hyper-
soni¢c Mach numbers and very high Reynolds numbers, or
extremely cold walls.

4.8 Spectral Data

Experimentally, the integral scales are deduced mainly
from one point hot-wire measurements, so that the spa-
tial scales are deduced using Taylor's hypothesis. Even
when measurements of two-point correlations are avail-
able ((see, for example, Spina & Smits, 1987, Robinson,
1986}, it is often difficult to determine integral scales from
the data. The types of data which are available also de-
pend on the measurement technique. For instance, when
constant current anemometers {(CCA) are used, time his-
tories are generally not measured. Spectral data for u’
and 7' can be obtained directly by processing the signal
with the fluctuation diagram technique to separate the
contributions of v’ and T” (see Fulachier, 1972, Bestion,
1982, Debitve, 1982, Debiave, 1983, Bestion et al. , 1983,
Audiffren, 1993). Bestion (1982), and Audiffren (1993)
showed that for an adiabatic flat-plate boundary layer at
& Mach numbers of 2.3 the shapes of the spectra of (pu)’
and u' are practically the same, but differ considerably
from the spectrum of total temperature Tj. Therefore,
when anemometers are operated with a single overheat, a
sufficiently high value of the resistance should he chosen
to minimize the contribution of T3 and to obtain a signal
practically proportional to (pu)’. When constant temper-
ature hot-wire anemometers (CTA) are used at a high
overheat ratio, the measured signal is practically propor-
tional to (pu)’, which in turn gives spectral information
on u'. Such data can be inaccurate at low wave num-
bers. The spectral measurements of velocity and temper-
ature performed with a CCA in adiabatic boundary lay-
ers by Morkovin (1962}, Bestion (1982), Audiffren (1993)
show that the ratio (u’/U}/(T7/T) at low frequencies is
not a constant, and that the spectral correlation coeffi-
cient R.r (f) increases to unity at zero frequency. This
may be the cause for the differences in the shapes of the
spectra for u' and {pu)’ at low frequencies, depending
on the Mach number. For higher frequencies, the ratio
(u'/UY/(T'/T) and the correlation coefficient are approx-
imately constant, and the spectra are nearly proportional
to each other.

Now, the classical integra] scale can be determined from
one-point measurements by integrating the autocorrela-
tion coefficient of ©'. It js then necessary to define the
domain of integration, since the autocorrelation can be-
come negative. When using hot-wire anemometry in su-
personic flows, this question can be complicated by possi-
ble *strain-gauge” effects. These effects can cause peaks
in the spectrum, which may be acceptable for measure-
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ments of the overall stress or the turbulence energy, but
which can cause spurious cecillations in the autocorreia-
tions, and make the estimates of the integral scale inac-
curate,

To avoid this effect, the integral scale can be determined
by finding the value of the energy spectrum at zero fre-
quency. However, since the signal is usually filtered with
a high-pass filter, it has zero mean and its spectrum has a
zero value at zero frequency. The integral scale must then
be found by extrapolating the spectrum to zero frequency.
In practice, the value at a frequency slightly larger than
the limit of the high-pass filter is taken as the best esti-
mate. Moreover, it may be difficult to measure the low
frequencies, because they can be affected by noise of the
power supply, and by the peculiarities of each wind tunnel
such as acoustic resonances. For CTA measurements, it
has also been shown that, the spectra of u’ and of (pu)’
may be different at very low frequencies.

For these reasons, an additional scale has also been used.
Since we expect that the spectra have a region of k;!
dependence in the logarithmic zone, E (k1) varies as ki ',
and ky E (k) is constant or presents s maximum. Here
we have chosen the wave number for which this maximum
occurs as the (inverse of the) characteristic space scale.

This probably has a clearer physical meaning than the
integral scale, since for the incompressible part of the
fluctuating motion it characterizes the eddies extracting
energy from the mean field, As indicated earlier, exper-
imentalists usually measure frequency spectra, so that a
characteristic frequency is measured, and then a length
scale is deduced using Taylor’s hypothesis. There is usu-
ally a considerable amount of scatter because the loca-
tion of the maximum is not always well defined. For the
data considered here, a maximum was generally found in
the external layer, but in the logarithmic zone of the sub-
sonic boundary layer the spectra were frequently “double-
humped”and the maximum was difficult to determine.
Such shapes were also mentioned by Perry et al. (1986)
who interpreted them to mean that Taylor’s hypothe-
sis failed for low frequencies. Uddin (1994) noted that
the bump at low wavenumber became more prominent at
higher Reynolds numbers (see also Smith, 1994). These
double-hutnped profiles led to some difficulty in determin-
ing the length scale, and it was necessary to discard some
points in the log-law region of the subsonic boundary layer
data. However, the typical situation was that the higher
frequency bump corresponds to scales comparable to the
scales of the outer layer, and the other maximum occurs
at frequencies an order of magnitude lower, correspond-
ing to length scales five to ten times larger than the outer
layer scales.

For supersonic boundary layers, there is another source of
uncertainty. Generally, the point where the slope is -1 oc-
curs at frequencies beyond the natural cut-off of the wire;
this means that it occurs in a range where the shape of
the spectrum depends on the system used to extend the
systemn frequency response beyond the wire thermal lag (a
feed-back loop is used for the CTA, and a compensation
circuit is used for the CCA). In such conditions, it can be
misleading to rely on one series of experiments. The data
from supersonic flows, however, were obtained in different
laboratories using different techniques (CTA and CCA).
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Figure 64: Integral scales in turbulent boundary layers. Subsonic data: +, Klebanoff (1955); A, Fulachier (1972); ©
Rga = 20,900, Fernholz et al. (1995); O Rs; = 57,720, Fernholz et al. (1995). Supersonic data: +, Debidve (1083);
A, Bestion et al. (1983); O, Spina & Smits (1987); V, Audiffren (1993); ¢ Rs; = 633, McGinley et al. (1994); V
Rsz = 1,115, McGinley et al. (1994). Figure from Dussauge & Smits (1995).

Authors kY] Ry K53 Measurcment Remarks
meibod
KichanofT (1954) EURESEY F000 CCA
Fulacher (19723 nast 4740 CCA
Fernholz o al | U ieand | 20000 and 60000 CTA
1994 07
Spica & Smng T 8o S0 000. 40 600 CTA Scales  estimated  from
(198¢) spectsa of (puy
Beston 1982 23 <4200 - 2900 TCA Spectra of w' (fluctuation
Dobieve 1983 diagram techmigue)
Bestiaon et al 15 £000- 350D CCA Spectra of u* (fluctuation
1983 diagram techmque)
AudifTren 1903 Spectra of ' iuctuation
Audiffren, I a2 6300- 3800 CCA diagram techmique}
Fhehieve 1904 '
I 124n0- 1113
McCanley et al : 1 6500-63) CTA Spectra of (pu)
10900

Table 4: Sources for spectral data. Table from Dussauge
& Smits (1995).

In the CCA data, two different generations of anemome-
ters were used, where the compensation of the wire was
performed in completely different ways. With such sets of
independent measurements, it is believed that firm con-
clusions can be drawn from the results.

The characteristics of the boundary layers considered in
the analysis of spectra are given in Table 4. As noted
in the Introduction, Reg and R;; are Reynolds numbers
based on momentum thickness. Reyp is defined in the usual

way (Rg¢ = peU.0/u.), whereas Rs; = p U 6/ py,.

The results on the integral scale A are given in figure 64.
The outer-layer scaling was used, since most of the data

were obtained outside the inner layer. Plotting the data in
inner-layer variables does not alter the conclusions. The
data points from Smits & Dussauge (1989) were deduced
from autocorrelations in a way which may underestimate
the integral scale, due to a lack of experimental points for
large time delays. The results in figure 64 were obtained
by defining the boundary-layer thickness from the profiles
of total pressure. This was recommended by Fernholz &
Finley (1980) sincethe usual definition based on the ve-
locity is probably not appropriate at high Mach numbers
because variations of velocity near the edge of the layer are
weak whereas the temperature or Mach number still vary
significantly. Choosing a boundary-layer thickness based
on 0.99U, would make some difference in the magnitude
of A/é at Mach 3: in this experiment, the integral scale
would be a little closer to its subsonic value. It would also
significantly increase A/§ for the hypersonic experiment
by McGinley et al. (1994), but in this case, the mean pro-
files indicate that the traditional choice based on 0.99U,
would be rather unphysical. In any case, a first result ap-
pears very clearly: the subsonic data indicate that in the
external layer, A is about 0.55 in subsonic flows, but is
only about half that value in supersonic layers. The hy-
personic data of McGinley et al. (1994) indicate a very
low value, about 0.24, for Rz = 1,115, but larger values
at the lower Reynolds number. In this case, the spectra at
low frequency reveal peaks and bumps which precludes an
accurate estimate of the integral scale. The uncertainty
on A has been evaluated and is indicated in figure 64 by
error bars. In fact, the lower limit of the error bar over-
laps the other high speed data. This could be due to
the remnants of transition, as speculated formerly. In the
data by Spina & Smits, the point at at y/6 = 0.1 has
an integral scale nearly equal to the subsonic value. This
is due to the significant slope in the spectrum, observed
at low frequency, where the spectra of »' and (pu) are
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Figure 65: Production scales in turbulent boundary layers. Symbols as in figure 64. Figure from Dussauge & Smits

(1995).

perhape not proportional, as discussed above. In spite of
this trend, the integral scales at Mach 2.9 in the middle
of the layer are significantly below the subsonic results.
Note that Demetriades & Martindale (1983) in a bound-
ary layer on a flat plate at Mach 3 report measuring an
integral scale of 0.286, also considerably smaller than that
found in subsonic flows. Within the experimental accu-
racy the results are independent of Reynolds number.

The production scales L are given in figure 65. The
Reynolds numbers in the subsonic and supersonic cases
cover comparable ranges, except perhaps for the hyper-
sonic data. It is clear that the production range is shifted
to higher frequencies in supersonic flows. It should be em-
phasized that the limited spatial resolution of the wires
probably precludes any accurate determination of the
—5/3 law in the supersonic data, and it tends to shift the
maximum of fE (f) to lower frequencies, and therefore if
such systemadtic errors are significant the values measured
in high-speed flows are probably overestimated, reinforc-
ing the notion that the scales are reduced with increasing
Mach number.

It appears that the production scale L follows the same
trends as A, and L == 2A. That is, L is about 26 for low
speed boundary layers, and about § in high speed bound-
ary layers. Note that the measurements of Morkovin
& Phinney, quoted in Morkovin (1962) and not shown
here, suggested the same trend for the production scales.
Again, plotting these data in inner layer variables does
not change the differences between the subsonic and su-
personic data. The only discrepancy is found in the Mach
11 boundary layer, but several reasons can be found for
this departure. First, the boundary layer ie probably not
fully turbulent, at least at the lower Reynolds number.
Second, it is not clear that the velocity and mass flux
spectra are proportional to each other at this Mach num-
ber. Third, the conclusions drawn from the power law
analysis are probably not valid if strong compressibility

effects are present. Fourth, the change in the shape of
the spectra may indicate a modification of the turbulence
structure. In hypersonic boundary layers, most of the
mass flux occurs near the external edge of the layer, and
the mean mass flux profiles have an inflexion point. This
suggests that the external layer can behave more like a
mixing layer than like a classical boundary layer. Such
free shear flows are known for containing turbulent struc-
ture of large spatial extent, with production scales several
layer thicknesses in size. This would be consistent with
the surprisingly high level of energy obeerved at low fre-
quencies in the present Mach 11 experiments.

So it seems that the apparent size of the energetic eddies
in the longitudinal direction, deduced from ' or (pu)
measurements in zero pressure gradient boundary layers,
decreases with increasing Mach number, whatever the ex-
perimental method. This trend can also be illustrated
by using another representation. If we assume that the
friction Mach number can be used to characterize com-
pressibility in turbulent boundary layers is the friction
Mach number M. Since M? = CyMZ2 /2, this parame-
ter depends on Mach and Reynolds number. The average
value of L/§ in the outer layer is shown as a function
of M, in figure 66. The results obtained for M, = 2
by Bestion, Debiéve, Dussauge and Audiffren have prac-
tically the same values of M, and L/§, and the results
obtained by Smits et al. , although at M. = 2.89, have a
comparable value of M. All these results agree on the
average value of L/§ in supersonic flows. The hypersonic
results by McGiniey et al have a value of M, only a little
larger than 0.1, but they indicate a further decrease in
the production scale.

This change in typical frequencies or time scales can be
attributed either to variations in the convection veloc-
ity or variations in the spatial scales. Measurements of
convection velocity by Spina & Smits {1987) in a high
Reynolds number boundary layer at Mach 2.9 showed that
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Figure 66: Evolution of the integral scale as a function
of the friction Mach number. Symbols as in figure 65.
Figure from Dussauge & Smits (1995).

this quantity is not very sensitive to compressibility. This
implies that smaller space scales are found in supersonic
flows. In contrast, the transverse scales related to turbu-
lent diffusion remain unchanged, while the longitudinal
scales determined from u' decrease. Now Spina & Smits
(1987) showed that the direction of the maximum space-
time correlation in their boundary layer at Mach 2.9 is
steeper than at low speeds (see figures 46 and 67). If
the boundary layer is thought of as a forest of hairpin
vortices, it can be imagined that the cross-section of the
vortices is unchanged, but their inclination is changed.
In fact, Uddin (1994) suggested that at high Reynolds
numbers, the cross-section of the vortices reduces. This
purely geometric explanation is not sufficient to explain
all the evolution observed seen in figure 66 since it would
not be consistent either with the rather high values of v’
messured in the same boundary layer.

It is expected that the observed modifications in the flow
structure and scales are due to compressibility. Therefore,
a possible interpretation can be found in the changes in
the potential field induced in the external flow by the
boundary layer, and in the generation of acoustic noise
by supersonic boundary layers. Can they create smaller
scales, and modify the orientation of the lines of maxi-
mum correlations? The variation of the angle has been
interpreted in the previous paragraph as a change in the
direction of vortical structures. In fact, the two-point
measurements by Spina & Smits did not use conditional
statistics, and therefore did not discriminate betwesen the
vortical and potential contributions in the intermittent
zone. In supersonic flows, the induced pressure field can
depend on local condition {the pressure perturbation in-
duced by a large scale structure, for instance), but also
by the noise radiated by Mach waves (see for example,

Laufer, 1961). These waves can have low levels of (pu)’,
but they are generally more conservative than ordinary
turbulence, and could modify the space-time correlations
for large separation distances. The formation of these
Mach waves necessitates the velocity difference between
the sources and the external flow to be supersonic. In a
boundary-layer, this condition is always fulfilled, but at
moderate superscnic Mach numbers the part of the layer
able to radiate Mach waves is very thin and generally
confined to the viscous sublayer or the logarithmic zone.
In this case, the behaviour will be Reynolds and Mach
number dependent. The orientation of the Mach waves
will depend on this Mach number difference. For ex-
ample, transonic perturbations would be very steep, and
would contribute to make the maximum space-time cor-
relation locus more vertical, Another element, as noted
by Laufer (1961), is an increase of the radiated field near
Mach 3, which could be interpreted as follows. If the con-
vection velocity of the large eddies in the external layer
is typically 0.8U,, as at low speeds, the velocity differ-
ence with respect to the external flow is 0.2U.. Now, it
may be expected that these large eddies will start forming
eddy shocklets when this relative Mach number is larger
than, say, 0.6. This corresponds to an external Mach
number of 3, and this criterion would be independent of
the Reynolds number since the convection velocity of the
large structures appeare to be independent of Reynolds
number. The measurements taken at a Mach number
of 2.9 would then be at the cnset of a new regime, and
represent the first manifestation, in boundary layers, of
compressible turbulence phenomena as observed in mix-
ing layers. Of course, the previous interpretation is very
approximate, because it depends critically on the value
of the instantaneous convection velocities which are not
known very accurately, so that the value of the Mach num-
ber for which such effects are important remains poorly
determined. Such an interpretation, although specula-
tive in many respects, is tempting because it can explain
changes in the structure of v/, as long as the radiated noise
does not affect significantly the shear stress. To conclude,
the spectral data show that there are modifications to the
motions which contribute to the energy scales but not to
the turbulent transport. This implies that the primary
action of compressibility is to alter inactive motions. As
these motions are related to the irrotational part of the
fluctuations and to the pressure fluctuations induced by
the layer, this explanation may be correct, but a full as-
sessment would require a more complete knowledge of the
two-point correlations, and of conditional statistics of tur-
bulence in these flows.

4.9 Boundary-Layer Structure

The eddy-structure and internal dynamics of compressible
turbulent boundary layers play an important role in many
aerospace engineering applications. These include turbu-
lent mixing for high-speed propulsion systems, tripping of
hypersonic laminar boundary layers (for inlet efficiency),
acoustic noise generation and propagation from high-
speed engines, surface heat-transfer on high-speed vehi-
cles, performance optimization for low-obeervable config-
uratjons, and unsteadiness in shock/turbulent boundary
layer interactions. The following review was adapted from
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the paper by Spina et al. , where further details may be
found.

The current state of knowledge concerning compressible
boundary layer structure is limited to large-scale motions
in the outer-region, and is derived largely from recent
studies by Spina et al. (1991a), Spina et al. (1991b),
Smits et al. (1989), Spina & Smita (1987), Fernando &
Smits (1990), Donovan et al. (1994), and Robinson (1986)
of flat-plate layers with free-stream Mach numbers of ap-
proximately 3.0. These studies were preceded by a pio-
neering investigation by Owen & Horstman (1972), who
made extensive two-point cross-correlation measurements
with hot-wires in a Mach 7.2 boundary layer. Most of the
results available in the literature were obtained using hot-
wire anemometry {with its attendant limitations), with
some degree of corroboration by high-speed flow visual-
ization techniques (Cogne et al. |, 1993, Smith & Smits,
1988).

For moderate Mach numbers, the outer region of the
boundary layer (beyond the logarithmic region) is domi-
nated by the entrainment process rather than by turbu-
lence production. Thus the available studies of supersonic
turbulent boundary layer structure are primarily relevant
to the processes by which the boundary layer grows. In
contrast, for subsonic turbulent boundary layers, most of
the attention has focused upon the near-wall turbulence
production processes. In addition, while most structure
measurements in supersonic flow have been conducted at
very high Reynolds number, the majority of studies in
subsonic flow has been at quite low Reynolds number.
These mismatches in emphases between subsonic and su-
personic investigations sometimes make comparisons in-
conclusive, at least for isolating effects of compressibility
on turbulence physics. To avoid the additional uncer-
tainties due to measurement difficulties, it seems best to
study quantities which are largely independent of calibra-
tion and measurement errors, such as the intermittency,
ratios of Reynolds stresses, space-time correlations and
structure angles.

The intermittency is one measure of the wallward ex-
tent of the entrainment process. The intermittency pro-
file is often estimated with measurements of u’' flatness.
The measured flatness profile displays an apparent Mach-
number dependence (see figure 37), wherein the onset of
intermittency (corresponding to the rise in flatness fac-
tor) occurs nearer the boundary-layer edge as the Mach
number increases. Since the cone of influence of a flow dis-
turbance is inversely proportional to Mach number, the
intermittent zone could become thinner as the Mach num-
ber increases. This interpretation is not fully supported
by high-speed flow visualizations, however, so the data re-
main provocative. For example, double-pulsed Rayleigh-
scattering flow visualization by Cogne et al. (1993} show
deep potential incursions into the turbulent eddies of a
Mach 3 boundary layer (figure 44) in patterns that are
strikingly similar to visualizations of low-speed boundary
layers.

For both incompressible low Reynolds number boundary
layers, and compressible high Reynolds number boundary
layers, the most identifiable feature of the outer-region is
a downstream-sloping shear-layer interface between up-
stream high-speed fluid and downstream low-speed fluid.

(Unfortunately, these structures have been labeled both
“fronts” and “backs” in the literature.) These interfaces
are three-dimensional shear layers which are believed to
form the upstream side of the largest of the boundary-
layer eddies, and remain coherent long enough to convect
several boundary-layer thicknesses downstream. They are
not inert, however, since Spina et al. (1991a) have shown
that 40% of the outer-layer Reynolds shear stress can
be found in the neighborhood of these sloping interfaces
(causality is not implied.) The intense turbulence produc-
tion processes near the wall in the Mach 3 layer have not
been investigated, but incompressible experience suggests
that the large-scale sloping interfaces are not closely affili-
ated with near-wall regions of high Reynclds shear stress.

Sloping interfaces are easily detected with dual hot-wires
separated in y, using either traditional space-time corre-
lations, or a variety of conditional sampling techniques.
For Mach 3 turbulent boundary layers, the effect of com-
pressibility on the large-scale outer structures has been
found to be generally small, which may be expected since
the fluctuating Mach number in the outer regions is un-
likely to approach unity (figure 3). However, differences
between subsonic and supersonic large-scale motions have
been observed, and some of these results were mentioned
in earlier sections. The main results can be summarized
as follows.

The average “structure angle” at which delta-scale in-
terfaces lean downstream in a Mach 3 turbulent bound-
ary layer ranges from 45° to 60° (standard deviation
= 20°) across most of the boundary layer, with a de-
crease near the wall and an increase near the boundary
layer edge. The measured value of the structure angle is
strongly dependent on measurement technique, although
one method in current favor employs two hot-wires, sep-
arated by a fixed distance in i of 0.1 to 0.35, with both
traversed across the+layer. Structure angles measured us-
ing this technique in subsonic, low-Reynolds-number tur-
bulent boundary layers are somewhat lower than those
for Mach 3, high-Reynolds-number layers (see figures 46
and 67). As indicated in Section 3.4, it seems likely that
increasing Reynolds number decreases the structure an-
gle, while increasing Mach number increases the structure
angle.

Hot-wire and flow visualizations show that the sloping
delta-scale structures convect downstream at approxi-
mately 90% of the freestream velocity (slightly greater
than for similar structures in low Reynolds number, in-
compressible turbulent boundary layers), and persist for
at least 4 boundary-layer thicknesses {and probably much
farther) downstream (Spina et al. , 1991b).

Quter-region space-time correlations suggest that the av-
erage spanwise extent of the largest eddies in the Mach 3
turbulent boundary layer is similar to that of subsonic tur-
bulent boundary layers: approximately 1/25 in the cuter
layer, decreasing near the wall, (Although mean and in-
stantaneous results for the sloping interface structure are
in good agreement, the average cross-correlations used to
deduce spanwise extent probably suffer from ‘jitter’ aver-
aging, and the instantaneous extents may be larger.) The
average streamwise scales of the largest eddies in the high
Reynolds number, Mach 3 turbulent boundary layer are
about two to thrée times those of low Reynolds number,
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Figure 68: Ensemble-averaged view of the large-scale motions in a Mach 2.9 boundary layer. Figure from Spina et al.

(1991a).

subsonic turbulent boundary layers {see figures 48, 50, 51
and 52). This seems to be the most significant structural
difference between the two flows yet found, and as in-
dicated earlier Reynolds number and compressibility ap-
pear to be important. Increasing Reynolds number will
increase the streamwise scales, whereas increasing Mach
number will decrease them. Otherwise, the structural
model for the large-scale motions in a supersonic is very
similar to that derived from studies of subsonic flows, as
cam be seen by comparing Figures 42 and 68,

Since the influence of compressibility on the large-scale
turbulent boundary layer motions seems to be subtle, ex-
planations for the observed differences between low- and
high-speed boundary layer structure are mostly specula-
tive, Density-gradient effects are known to play a signif-
icant role in turbulent shear layers, but these effects are
most likely to influence the near-wall region of the wall-
layer, out of reach of standard measurement techniques.
Parallels have also been drawn between the 45-degree
slope of the interfacial structures in supersonic boundary
layers and that of the bhairpin-vortex structure observed
in incompressible boundary layers. Insufficient evidence
exists to support either side of this comparison, however.
More conclusive results concerning compressibility effects
on large-scale structure require higher Mach number in-
vestigations.

For boundary layers with freestream Macli numbers above
5, the near-wall region is more likely to show significant
departures from known incompressible structure. The vis-
cous sublayer for hypersonic boundary layers is likely to
be much more quiescent than for incompressible flows (al-
though pressure fluctuations will be imposed from above},
and may not display the familar streaky structure. Since
the mass-flux near the wall is very low for high Mach
numbers, the buffer region may not be the dominant re-
gion for turbulence production, as in subsonic boundary
layers (note that hypersonic laminar boundary layers un-
dergo transition by disturbances spreading inward from
the outer layer). Further investigation will depend on the

development and application of non-intrusive measure-
ment techniques to the near-wall regions of hypersonic
boundary layers.

Finally, we note that the rate of decay of the large scale
motions, as measured by the rate at which the peak in
the space-time correlation decays with distance, appears
to decrease significantly with Mach number. For exam-
ple, the distance over which the peak decreased to half
its original level differs by an order of magnitude in the
experiments by Favre et al. (1957), Favre et al. (1958)
at Mach 0.04 and Owen & Horstman (1972) at Mach 7
when scaled by 8. A better scaling for the rate of de-
cay may be the time scale of the energy-containing ed-
dies, A/u’. A and ¥’ both decrease with Mach number,
so that their ratio seems to remain approximately con-
stant. This result may in turn suggest that the decrease
in the streamwise length scales with Mach number simply
reflects the fact that the time scale of the large eddies re-
mains constant as the absolute fluctuation level decreases.
The more complex scaling arguments presented by Smith
& Smits {1991) to explain the experimental observations
may therefore not be necessary.

5 Summary

This AGARDograph has provided a lengthy, but cer-
tainly not exhaustive, review of the literature on turbu-
lent boundary-layer structure. The emphasie has been
on Reynolds-number effects and Mach-number effects. A
major drawback of the current knowledge of these effects
ie that the data have been collected from many different
flows, using different data acquisition and analysis proce-
dures. These differences have resulted in large variations
among the published results. Nevertheless, some definite
conclusions can be made.

From the review of the subsonic flows, it is clear that
the classic arguments on inner- and outer-layer similarity
hold extremely well over a very large range of Reynolds
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numbers ( approximately 350 < Reg < 210,000), and the
overlap region is well established over the same range (see
Fernholz & Finley, 1995). There still exist certain issues,
such as the Reynolds number dependence of the constants
in the log-law, and the evidence for power-law similarity
arguments, which cannot be answered on the basis of the
existing data, primarily because of the difficulty of mea-
suring accurately the friction at the wall. The wake pa-
rameter becomes constant for Reg > 5,000, and although
there have been some previous indications that it may de-
crease at very high Reynolds numbers, we believe there is
enough uncertainty in the data to invalidate any strong
conclusiona regarding the asymptotic behavior.

In contrast to the mean-flow behavior, the scaling of
the turbulent stresses does not necessarily follow the in-
ner/outer scaling arguments. For example, as found pre-
viously by Sreenivasan (1989) and Gad-el-Hak & Bandy-
opadhyay (1994), the Reynolds number can have a sig-
nificant effect on the level of the maximum turbulence
stresses, and the location of that maximum in the bound-
ary layer. In other respects, the scaling arguments put
forward by Perry and his co-workers (see, for example,
Perry & Li, 1990) indicate how the stresses may scale in
the overlap region, and the experimental evidence tends
to support their conclusions. It is clear, however, that an
overlap region for the turbulent stresses appears cnly at a
much higher Reynolds number than the Reynolds number
at which an overlap region appears in the mean velocity
profile.

The evolution of the organized motions in the boundary
layer also depends on Reynolds number. In particular, the
streamwise scaling of the outer-layer structure is rather
sensitive, where the scale increases with Reynolds num-
ber. This was confirmed by Smith (1994) by direct mea-
surements of the space-time correlation, and by Dussauge
& Smits {1995) from measurements of the spectra. In
contrast, the spanwise scaling appears to be insensitive
to Reynolds number, so that on average the structures
become more elongated in the streamwise direction with
increasing Reynolde number. The average inclination of
the outer-layer structures also decreases, which may be re-
lated to the increase in the streamwise aspect ratio. It also
appears that the spanwise scaling of the sublayer streaks
is fixed at a mean value of about 100r/u. over a very
wide Reynolds-number range.

From the review of supersonic flows with moderate Mach
number, it appears that the direct effects of compress-
ibility on wall turbulence are rather small: the most no-
table differences between subsonic and supersonic bound-
ary layers may be attributed to the variation in fluid
properties across the layer. Under the assumption that
the length scales are not affected by compressibility, the
mean velocity profile can be transformed into an “equiv-
alent” incompressible profile, and the agreement with the
incompressible scaling appears to hold over very wide
Reynolds number and Mach number ranges. Further-
more, the turbulent stresses in the outer region scale on
the wall stress, as first suggested by Morkovin (1962), as
far as we can tell from the available data. This result is
not surprising in some ways since the fluctuating Mach
number (M’ = M — M) for moderately supersonic flows
is considerably less than one, as illustrated in figure 3,
However, a more detailed inspection of the turbulence

properties reveals certain characteristics that cannot be
collapsed by a simple density scaling. For example, there
are suggestions that the intermittency profile is fuller than
the corresponding subsonic profile, and the shear corre-
lation coefficient R.., decreases with distance from the
wall instead of remaining approximately constant. There
are other results, however, which indicate that R, fol-
lows the incompressible trend, and there is the possibility
that the differences may be caused by a Reynolds-number
rather than a Mach-number dependence. Unfortunately
the data base is very sparse, and considerable effort needs
to be spent before these issues can be laid to rest. With re-
spect to the streamwise and spanwise length scales of the
large-scale motions, and their average inclination to the
wall, there exists strong evidence to indicate the effect of
Mach number. The streamwise length scales are reduced
significantly by increasing Mach number, and the angle
of inclination is increased, although in coming to these
conclusions we have implicitly assumed that Mach and
Reynolds number effects are independent. It is necessary
to make this assumption since the data do not overlap
to any significant extent, and we are forced to compare
experiments in supersonic flow with the results obtained
in subsonic flow, usually at a different Reynolds num-
ber. In fact, the actual Reynolds number to be used in
such a comparison is controversial, since the temperature
varies significantly across the layer, and there is usually
a major difference between the values of Reg and Hsa.
Finally, there is an order-of-magnitude decrease in the
rate of decay of the large-scale motions as the Mach num-
ber increases from low-subsonic to high supersonic values
(Smits et al. , 1989). Even if we account for the change
in time scale of the energy-containing eddies A/u’, we
see that the lateral correlations are almost unaffected by
changes in Mach and Reynolds number.

How can we explain these differences? Part of the an-
swer may lie in understanding the role of Reynolds num-
ber more clearly, but understanding the effects of fluid-
property variations may be more important. In that re-
spect, & direct numerical simulation of a strongly heated,
incompressible turbulent boundary layer in the absence
of buoyancy effects would be particularly valuable. Ex-
perimentally, we urgently need detailed turbulence data
at higher Mach numbers. We are seeing subtle differ-
ences at supersonic speeds that may signal the onset of
direct compressibility effects such as the increased impor-
tance of pressure fluctuations and pressure-velocity corre-
lations. These effects will become more obvious at hyper-
sonic Mach numbers, and such studies would contribute
to our understanding of the supersonic behavior.

While few specifics are known, the turbulence physics be-
come more complex as the Mach number increases be-
yond about five. For example, the Strong Reynolds Anal-
ogy and Morkovin's hypothesis are staples of boundary-
layer analyses at moderate Mach number. However, an
upper-Mach-number limit must exist on the applicability
of these simplifying assumptions, if only because there is
a limit on the magnitude of temperature fluctuations. In-
deed, the change in magnitude of the fluctuating Mach
number distribution as the flow enters the hypersonic
range (see figure 3) points to the possibility of a dramatic
alteration of turbulence dynamics due to compressibility
effects around Mach 5 (in comparison, the Mach num-



ber of the fluctuations, u,.,, /& is less than 0.3 even for
the Mach 7.2 and 9.4 flows). Unlike the distribution of
Ulme/@, the Ructuating Mach number develops a peak
near the middle of the boundary layer where both the ve-
locity and temperature fluctuations are important. This
behavior, when considered together with the large gradi-
ents in density and viscosity near the wall, also leads to
the conclusion that there may be substantial differences
in turbuience dynamics at high Mach number.

At the same time, the near-wall gradients in density and
viscosity are strongly dependent on heat transfer, and
therefore the thickness of the sublayer will depend on
Mach number, Reynolds number, and wall temperature.
This leads to the issue of how the viscous instability of
the sublayer changes when fluid properties vary with dis-
tance from the wall (see Morkovin, 1992). Since the local
Reynolds number increases away from an adiabatic wall
faster in supersonic flow than in incompressible flow, we
would expect the flow to become less stable as we move
away from the wall at a rate that is faster than in an
incompressible flow at the same friction velocity. At the
same time, the increasing Mach number is known to be
a stabilizing influence in laminar-to-turbulent transition,
where the most unstable disturbance changes from being
two-dimensional to being three-dimensional as the Mach
number increases. What is then the proper basis of com-
parison between compressible and incompressible bound-
ary layers in the near-wall region? Is it simply a matter
of defining an “effective” Reynolds number? We can only
hope that further results will become available to help
shed light on these unanswered questions.

Acknowledgements

The support of the NATO Advisory Group for Aerospace
Research and Development is gratefully acknowledged.
The US participants also acknowledge support from the
Air Force Office of Scientific Research, monitored by
Drs. J. McMichael, L. Sakell and J. Tishkoff (F49620-
89-0420, F49620-90-0217, F49620-93-1-0476, F49620-93-
0064, F49620-93-1-0427 and F49620-93-1-0478}). We
would like to thank N. Reul, C. McGinley and J.F.
Debigve for their help in providing, processing and com-
menting on some of the spectral data, and to W. Saric for
his editorial advice.

References

Alfredsson, P.H., Johansson, A.V., Haritonidis, J.H. &
Eckelmann, H. 1988. The fluctuating wall shear
stress and the velocity field in the viscous sublayer.
Physics of Fluids, 31, 1026-1033.

Allen, J.M. 1877. Reevaluation of compressible flow Pre-
ston tube calibrations. NASA TM X-3{88.

Alving, A.E. & Smits, A.J. 1990a. Correlation measure-
ments and structure angles in a turbulent boundary
layer recovering from convex curvature. In: Kline,
8.J. & Afgan, N.H. (eds), Near-Wall Turbulence.
Hemisphere.

65

Alving, A.E., Smits, A.J. & Watmuff, J.H. 1990b. Tur-
bulent boundary layer relaxation from convex curva-
ture. Journal of Fluid Mechanics, 211, 529-556.

Andreopoulos, J., Durst, F., Zarié, Z. & Jovanovic, J.
1984. Infiuence of Reynolds number on characteris-
tics of turbulent wall boundary layers. Erperiments
in Fluids, 2, 7-16.

Antonia, R.A., Subramanian, C.S., Rajagopalan, S. &
Chambers, A.J. 1982. Reynolds number dependence
of the large structure in a slightly heated turbulent
boundary layer. In: Zarié, Z.P. (ed), Structure of
Turbulence in Heal and Mass Transfer. Hemisphere.

Antonia, R.A., Bisset, D.K. & Browne, L.W.B. 1990a. Ef-
fect of Reynolds number on the topology of the orga-
nized motion in a turbulent boundary layer. Journal
of Fluid Mechanics, 213, 267-286.

Antonia, R.A., Browne, L.W_B. & Bisset, D.K. 1990b. Ef-
fect of Reynolds number on the organized motion in
a turbulent boundary layer. In: Kline, S.J. & Afgan,
N.H. (eds), Near Wall Turbulence. Hemisphere.

Audiffren, N. 1993. Turbulence d'une couche limiie
soumise & une varialion de densité due & une onde de
choe ou d un chauffage paridtal. These d’Université,
Université d’Aix-Marseille I1.

Beckwith, 1.LE. 1970. Recent advances in research on com-
pressible turbulent boundary layers. NASA SP-228,
355-416.

Bertram, M.H. & Neal, L. 1965. Recent experiments in
hypersonic turbulent boundary layers. NASA TM

X-56335.
Bestion, D. 1982 Méthodes anémoméiriques par
fil chaud: Application & ['étude d'interactions

turbulence-gradient de pression élevé en couches lim-
ites & vitesse supersonique. 'These de Docteur-
Ingénieur, Université d’Aix-Marseille II.

Bestion, D., Debi¢ve, I.F. & Dussauge, J.P. 1983,
Two rapid distortions in supersonic flows: Turbu-
lence/shock wave and turbulence/expansion. In:
Dumas, R. & Fulachier, L. (eds), Structure of Com-
plex Turbulent Shear Flow. Springer Verlag.

Bisset, D.K. & Antonia, R.A. 1991. Mean velocity and
Reynolds shear stress in a turbulent boundary layer
at low Reynolds numbers. Aeronautical Quarterly,
95, 244-247.

Blackwelder, R.F. & Haritonidis, J.H. 1983, Scaling of
the bursting frequency in turbulent boundary layers.
Journal of Fluid Mechanics, 132, 87,

Blackwelder, R.F. & Kaplan, R.E. 1976. On the wall
structure of the turbulent boundary layer. Journal
of Fluid Mechanics, 76, 89. .

Blackwelder, R.F. § Kovasznay, L.S.G. 1972. Time scales
and correlations in a turbulent boundary layer. The
Physics of Fluids, 15, 1545-1554.

Bogard, D.G. & Tiederman, W.G. 1986. Burst detection
with single-point velocity measurements. Journal of
Fluid Mechanics, 162, 389-414.

Bogard, D.G. & Tiederman, W.G. 1987. Characteristics
of ejections in turbulent channel flow. Journal of
Fluid Mechanics, 179, 1-20.

Bradshaw, P. 1967. “Inactive” motion and pressure fluc-
tuationg in turbulent boundary layers. Journal of
Fluid Mechanics, 30, 241-258.

Bradshaw, P. 1977. Compressible turbulent shear layers.
Annual Review of Fluid Mechanics, 9, 33-54.



66

Bradshaw, P. 1994. Turbulence: The chief outstanding
difficulty of our subject. Experiments in Fluids, 16,
203-216.

Bradshaw, P. & Unsworth, K. 1974. Comment on “Eval-
uation of Preston tube calibration equations in su-
personic flow”. ATAA Journal, 12, 1293-1296.

Brasseur, J.G. 1991. Comments on the Kolmogorov hy-
pothesis of isotropy in the small scales. AJAA Paper
91-0230.

Brederode, V. de & Bradshaw, P. 1974. A note on the em-
pirical constants appearing in the logarithmic law for
turbulent wall flows. Report 74-03, Imperial College
of Science and Technology, Department of Aeronau-
tics.

Brodkey, R.S., Wallace, J.M. & Eckeimann, H. 1974.
Some properties of truncated turbulence signals in
bounded shear flows. Journal of Fluid Mechanics,
63.

Brown, G.L. & Thomas, A.S.W. 1977. Large structure in
a turbulent boundary layer. The Physics of Fluids,
20, 5243-5252.

Browne, L.W.B., Antonia, R.A. & Shsah, D.A. 1988, Se-
lection of wires and wire spacing for X-wires. Exper-
iments in Fluids, 8, 286-288.

Bruns, J., Dengel, P. & Fernholz, H.H. 1992. Mean
flow and turbulence measurements in an incom-
pressible two-dimensional turbulent boundary layer.
Part I: Data. Institutsbericht Nr. 02/92, Hermann-
Fottinger-Institut fiir Thermo- und Fluiddynamik,
Technische Universitat Berlin.

Bushnell, D.M., Johnson, C.B., Harvey, W.D. & Feller,
W.V. 1969. Comparison of prediction methods and
studies of relaxation in hypersonic turbulent nozzle-
wall boundary layers. NASA TN D-5455.

Bushnell, D.M., Cary, Jr., AM. & Harris, J.E. 1976. Cal-
culation methods for compressible turbulent bound-
ary layers. State of the art. NASA SP-422.

Cantwell, B.J. 1981. Organized motion in turbulent flow.
Annual Review of Fluid Mechanics, 18, 457-515.

Carvin, C., Debitve, J.F. & Smits, A.J. 1988. The near-
wall temperature profile of turbulent boundary lay-
ers. ATAA Paper 88-0136.

Cebeci, T. & Smith, A.M.O. 1974. Analysis of Turbulent
Boundary Layers. Academic Press.

Chen, C.-H.P. & Blackwelder, R.F. 1878. Large-scale mo-
tion in a turbulent boundary layer: A study using
temperature contamination. Journal of Fluid Me-
chanics, 89,

Clauser, F.H. 1954. Turbulent boundary layers in adverse
pressure gradients. Journal of the Aeronautical Sci-
ences, 21, 91-108,

Cogne, S., Forkey, J., Miles, R.B. & Smits, A.J. 1993.
The evolution of large-scale structures in a super-
sonic turbulent boundary layer. In: Stock, D.E.,
Smits, A.J. & Sheriff, S.A. (eds), Proc. of the Sym-
posium on Transitional and Turbulent Compressible
Flows. ASME Fluids Engineering Division.

Coles, D. 1953. Measurements in the boundary layer on a
smooth flat plate in supersonic flow. J.P.L. CalTech.
Reports 20-69, 20-70, 20-71.

Coles, D. 1956. The law of the wake in the turbulent
boundary layer. Journal of Fluid Mechanics, 1, 191-
226.

Coles, D. 1962, The turbulent boundary layer in a com-

pressible fluid. Report R-{03-PR, The Rand Corpo-
ration, Santa Monica, California.

Coles, 1D 1987. Coherent structures in turbulent bound-
ary layers. Pages 93-113 of: Meier, H.U. & Brad-
shaw, P. (eds), Perspectives in Turbulence Studies.
Springer-Verlag.

Corcos, G.M. 1963. The structure of the turbulent pres-
sure field in boundary-layer flows. Journal of Fluid
Mechanics, 18, 353-378.

Corino, E.R. & Brodkey, R.S. 1969. A visual investigation
of the wall region in turbulent flow. Journal of Fluid
Mechanics, 87, 1-30.

Corrsin, S. & Kistler, A.L. 1955. Free-stream boundaries
of turbulent flows. NACA Report 1244.

Debidve, J.F. 1982, Turbulent behaviour through a shock-
wave. Turbulent macroscale evolution. Arck. Mech.,
Warszawa, 34, 581-592.

Debitve, J.F. 1083. FEtude d’une interaction turbu-
lence/onde de choc. Thése de Doctorat d’Etat, Uni-
versité d’Aix-Marseille I1.

Demetriades, A. & Martindale, W.R. 1983, Determina-
tion of one dimensional spectra in high speed bound-
ary layers. The Physics of Fluids, 26, 397403,

Dhawan, S. & Narasimha, R. 1958. Some properties of
boundary layer flow during the transition from lami-
nar to turbulent motion. Journal of Fluid Mechanics,
3, 418.

Djenidi, L. & Antonia, R.A. 1993, LDA measurements
in low Reynolds number turbulent boundary layers.
Ezperiments in Fluids, 14, 280-283.

Donovan, J.F., Spina, E.F. & Smits, A.J. 1994. The struc-
ture of a supersonic turbulent boundary layer sub-
jected to concave surface curvature. Journal of Fluid
Mechanics, 259, 1-24.

Duncan, W.J., Thom, A.S. & Young, A.D. 1970. Mechan-
ics of Fluids. 2 edn. Edward Arnold.

Dussauge, J.P. 1981, Evolution de transferts turbulenis
dans une délente rapide, en écoulement superson-
ique. Thése de Doctorat d'Etat, Université d’Aix
Marseille.

Dussauge, J.P. & Gaviglio, J. 1987. The rapid expansion
of a supersonic turbulent flow: Role of bulk dilata-
tion. Journal of Fluid Mechanics, 174, 81-112.

Dussauge, J.P. & Smits, A.J. 1995. Characteristic scales
for energetic eddies in turbulent supersonic bound-
ary layers. In: Proceedings of the Tenth Symposivm
on Turbulent Shear Flows. Pennsylvania State Uni-
versity.

Dutton, R.A. 1955. Experimental studies of the turbulent
boundary layer on a flat plate with and without dis-
tributed suction. Ph.D. Thesis, University of Cam-
bridge.

Eléna, M. & Gaviglio, J. 1993. La couche limite turbu-
lente compressible: Méthodes D’étude et Résultats,
synthése. La Recherche Aérospatiale, 1-21.

Eléna, M. & Lacharme, J.P. 1988. Experimental study of
a supersonic turbulent boundary layer using a laser
Doppler anemometer. Journal Mécanique Théorigue
et Appliquée, T, 175-190.

Erm, L.P. 1988. Low-Reynolds-number turbulent bound-
ary layers. Ph.D. Thesis, University of Melbourne.

Erm, L.P. & Joubert, P.N. 1991. Low-Reynolds-number
turbulent boundary layers. Journal of Fluid Mechan-
ics, 230, 1-44.



Erm, L.P., Smits, A.J. & Joubert, P.N. 1985. Low
Reynolds number turbulent boundary layers on a
smooth flat surface in a zero pressure gradient. n:
Proceedings of the Fifth Symposium on Turbulent
Shear Flows. Cornell University.

Erm, L.P., Joubert, P.N. & Spalart, P.R. 1994. Lour
Reynolds-number turbulent boundary layers: exper-
smental data compared with numerical simulations,
Unpublished report.

Ewing, D., Hussein, H.J. & George, W.K. 1995. Spatial
resolution of parallel hot-wire probes for derivative
measurements. Experimental Thermal and Fluid Scs-
ence, 11, 155-173.

Falco, R.E. 1977. Coherent motions in the outer region
of turbulent boundary layers. The Physics of Fluids,
20, 5124-5132.

Falco, R.EE. 1991. A coherent structure model of the
turbulent boundary layer and its ability to predict
Reynolds number dependence. Pages 103-129 of:
Walker, J.D.A. (ed), Turbulent Flow Structure Near
Walls. The Royal Society. First published in Phil
Trans. R. Soc. London A. 336.

Favre, A. 1965. Equatione des gaz turbulents compress-
ibles. Journal de Mécanigue, 4, 361-421.

Favre, A., Gaviglio, J. & Dumas, R. 1967. Structure of
space-time correlations in a boundary layer. The
Physics of Fluids, 10, S138-5145,

Favre, A.]., Gaviglio, J.J. & Dumas, R.J. 1957. Space-
time double correlations and spectra in a turbulent
boundary layer. Journal of Fluid Mechanics, 2, 313
342.

Favre, A.J., Gaviglio, J.J. & Dumas, R.J. 1958. Fur-
ther space-time correlations of velocity in a turbu-
lent boundary layer. Journal of Fluid Mechanics, 3,
344-356.

Feller, W.V. 1973. Effects of upstream wall tempera-
tures on hypersonic tunnel wall boundary-layer pro-
file measurements. ATAA Journal, 11, 556-558.

Fernando, E.M. & Smits, A.]. 1990. A supersonic turbu-
lent boundary layer in an adverse pressure gradient.
Journal of Fluid Mechanics, 211, 285-307.

Fernholz, H.H. 1969. Geschwindigkeitsprofile, Temper-
aturprofile und halbempirische Gesetze in kompress-
iblen turbulenten Grenzschichten bei konstantem
Druck. Ing. Archiv, 88, 311-328.

Fernholz, H.H. 1971. Ein halbempirisches Gesetz fiir die
Wandreibung in kompressiblen turbulenten Gren-
zachichten bei isothermer und adiabater Wand.
ZAMM, 51, T148-T149.

Fernholz, H.H. & Finley, P.J. 1976. A critical compila-
tion of compressible turbulent boundary layer data.
AGARDograph 223.

Fernholz, H.H. & Finley, P.J. 1980. A critical commentary
on mean flow data for two-dimensional compressible
turbulent boundary layers. AGARDograph 253.

Fernholz, H.H. & Finley, P.J. 1981. A further compilation
of compressible turbulent boundary layer data with
a survey of turbulence data. AGARDograph 263.

Fernholz, H.H. & Finley, P.J. 1996. Incompressible zero-
pressure-gradient turbulent boundary layers: An as-
sessment of the data. Progress in Aerospace Science,
32,

Fernholz, H.H., Smits, A.J., Dussauge, J.P. & Finley, P.J.

1989. A survey of measurements and measuring tech-

67

niques in rapidly distorted compressible turbulent
boundary layers. AGARDogreph 315.

Fernholz, H.H., Krause, E., Nockemann, N. & Schober,
M. 1995. Comparative measurements in the canon-
ical boundary layer at Res, < 6x10* on the wall of
the German-Dutch windtunnel. The Physics of Flu-
ids, 7, 1275-1281.

Fiedler, H. & Head, M.R. 1966. Intermittency measure-
ments in the turbulent boundary layer. Journal of
Fluid Mechanics, 25.

Finley, P.J. 1994. The Preston tube in adiabatic com-
pressible flow. Report 94{-02, Imperial College of Sci-
ence and Technology, Depariment of Aeronautics.

Frenkiel, F.N. 1954. Effects of wire length in turbulence
investigations with a hot-wire anemometer. The
Aeronautical Quarterly, 5.

Fulachier, L. 1972, Coniribution d Uétude des analo-
gies des champs dynamiques et thermiques dans une
couche limite turbulente. Effet de ’aspiration. These
de Doctorat 28 Sciences Physiques, Université de
Provence, Aix-Marseille,

Gad-el-Hak, M. & Bandyopadhyay, P. 1994. Reynolds
number effects in wall-bounded flows. Applied Me-
chanics RHeviews, 47T.

Gaviglio, J. 1987. Reynolds analogies and experimental
study of heat transfer in the supersonic boundary
layer. International Journal of Heat and Mass Trans-
fer, 80, 911-926.

George, W.K. & Castillo, L. 1993. Boundary layers with
pressure gradient: Another look at the equilibrium
boundary layer. In: So, RM.C., Speziale, C.G. &
Launder, B.E. (eds}, Near-Wall Turbulent Flows. El-
sevier Science Publishers B. V.

George, W.K., Knecht, P. & Caatilio, L. 1992. The zero-
pressure gradient turbulent boundary layer revisited.
In: Proceedings of the Thirteenth Biennial Sympo-
sium on Turbulence.

Grant, H.L. 1958. The large eddies of turbulent moticn.
Journal of Fluid Mechanics, 4.

Grant, H.L., Stewart, R.W. & Moilliet, A. 1962. Turbu-
lence spectra from a tidal channel. Journal of Fluid
Mechanics, 12, 241-268.

Head, M.R. & Bandyopadhyay, P.R. 1981, New aspects of
turbulent boundary-layer structure. Journal of Fluid
Mechanics, 107, 297-338.

Hinze, J.O. 1975. Turbulence. 2 edn. McGraw-Hill.

Hopkins, E.J. & Keener, E.R. 1966. Study of surface
Pitots for measuring turbulent skin friction at su-
personic Mach numbers — Adiabatic wall. NASA
TN D-3478.

Hopking, E.J. & Keener, E.R. 1972. Pressure-gradient
effects on hypersonic turbulent skin-friction and
boundary-layer profiles. AIAA Journal, 10, 1141-
1142,

Hopkins, E.J., Keener, E.R., Polek, T.E. & Dwyer,
H.A. 1972. Hypersonic turbulent skin-friction and
boundary-layer profiles on nonadiabatic flat plates.
AIAA Journal, 10, 40-48.

Horstman, C.C. & Owen, F.K. 1972. Turbulent properties
of a compressible boundary layer. ATAA Journal, 10,
1418-1424.

Howarth, L. (ed). 1953. Modern Developments in Fluid
Dynamics, High Speed Flow. Oxford Clarendon
Press.



68

H.P., Bakewell, Jr. & Lumley, J.L. 1967. Viscous sublayer
and adjacent wall region in turbulent pipe flow. The
Physics of Fluids, 10.

Huffman, G.D. & Bradshaw, P. 1972. A note on von
Kérméan’s constant in low Reynolds number turbu-
lent flows. Journal of Fluid Mechanics, 53, 45-60.

Hussain, A K.M.F. 1983. Coherent structures — Reality
and myth. The Physics of Fluids, 28, 2816-2850,

Johansson, A.V. & Alfredsson, P.H. 1983, Effects of im-
perfect spatial resolution on measurements of wall-
bounded turbulent shear flows. Journal of Fluid Me-
chanics, 187, 409-421.

Johnson, D.A. 1989. Laser Doppler anemometry. Chagpter
6, AGARDograph 315.

Johnson, D.A. & Rose, W.C. 1975. Laser velocimeter
and hot-wire anemometer comparison in a super-
sonic boundary layer. AJAA Journal, 18, 512-515.

Karlsson, R.I. & Johansson, T.G. 1988. LDV measure-
ments of higher order moments of velocity fluctu-
ations in a turbulent boundary layer. In: Laser
Anemometry in Fluid Mechanics. Instituto Superior
Técnico, Lisbon. No. 1096,

Kemp, J.H. & Owen, F.K. 1972. Nozzle wall boundary
layers at Mach numbers 20 to 47. AIAA Journal,
10, 872-879.

Kim, H.T., Kline, 8.J. & Reynolds, W.C. 1971, The pro-
duction of turbulence near a smooth wall in a tur-
bulent boundary layer. Journal of Fluid Mechanics,
50, 133-160.

Kim, J. & Spalart, P.R. 1987. Scaling of the bursting fre-
quency in turbulent boundary layers at low Reynolds
numbers. Physics of Fluids, 30.

Kim, K.5., Lee, Y. & Settles, G.S. 1991. Laser inter-
ferometry /Preston tube skin-friction comparison in
a shock/boundary layer interaction. AIAA Journal,
29, 1007-1009.

Kistler, A.L. 1959. Fluctuation measurements in a super-
sonic turbulent boundary layer. Physics of Fluids,
2., 290-296,

Klebanoff, P.S. 1955. Characteristics of turbulence in a
boundary layer with zero pressure gradient. NACA
Report 1247,

Klewicki, J.C. & Falco, R.E. 1990. On accurately mea-
suring statistics associated with small-scale structure
in turbulent boundary layers using hot-wire probes.
Journal of Fluid Mechanics, 219, 119-142,

Kline, S.J., Reynolds, W.C., Schraub, F.A. & Runstadler,
P.W. 1967. The structure of turbulent boundary lay-
ers. Journal of Fluid Mechanics, 80, T41-773.

Kolmogorov, A.N. 1961. The local structure of turbu-
lence in incompressible viscous fluid for very large
Reynolds numbers. In: Friedlander, 8.K. & Toppet,
L. (eds), Turbulence: Classic Papers on Statistical
Theory. Interscience.

Konrad, W, 1993. A three-dimensional supersonic turbu-
lent boundary layer generated by an isentropic com-
pression. Ph.D. Thesis, Princeton University, Prince-
ton, NJ.

Kovasznay, L.8.G., Kibbens, V. & Blackwelder, R.F.
1970. Large-scale motion in the intermittent region
of a turbulent boundary layer. Journal of Fluid Me-
chanics, 41, 283-325.

Kussoy, M.I.,, Horstman, C.C. & Acharya, M. 1978.
An experimental documentation of pressure gradient

and Reynoclds number effects on compressible turbu-
lent boundary layers. NASA TM 76488.

Laderman, A.J. & Demetriades, A. 1974. Mean and fluc-
tuating flow measurements in the hypersonic bound-
ary layer over a cooled wall. Journal of Fluid Me-
chanics, 68, 121-144.

Laufer, J. 1961. Aerodynamic noise in supersonic wind
tunnels. Journal of the Aerospace Sciences, 28, 685—
692.

Lele, S.K. 1994. Compressibility effects on turbulence.
Annual Review of Fluid Mechanics, 26, 211-254.

Lewis, J.E., Gran, R.L. & Kubota, T. 1972. An experi-
ment on the adiabatic compressible turbulent bound-
ary layer in adverse and favourable pressure gradi-
ents. Journal of Fluid Mechanics, 51, 657-672.

Li, J.D. 1989. The turbulence structure of wall shear flow.
Ph.D. Thesis, University of Melbourne.

Li, J.D. & Perry, A.E. 1989. Shear stress profiles in zero-
pressure-gradient turbulent boundary layers. In:
Proceedings of the Tenth Australasian Fluid Mechan-
ics Conference.

Libby, P.A., & Visich, M. 1959. The law of the wake in
compresgible turbulent boundary layers. Journal of
the Aeronaulical Sciences, 26, 541-542,

Ligrani, P.M. & Bradshaw, P. 1987. Spatial resolution and
measurement of turbulence in the viscous sublayer
using subminiature hot-wire probes. Experiments in
Fluids, 5, 407-417.

Liu, Z2.-C., Adrian, R.J. & Hanratty, T.J. 1992, Structure
of turbulent channel flow: Reynolds number effects.
In: Bulletin of the American Physical Society, 37
(8). APS. Paper AA3.

Logan, P. 1987, Studies of supersonic turbulence and hot
wire response using laser-induced fluorescence. Ph.D.
Thesis, Stanford University. 154 pp.

Lu, S.8. & Willmarth, W.W. 1973, Measurements of
the structure of the Reynolds stress in a turbulent
boundary layer. Journal of Fluid Mechanics, 60,
481-511.

Luchik, T.S. & Tiederman, W.G. 1987. Timescale and
structure of ejections and bursts in turbulent channel
flows. Journal of Fluid Mechanics, 174, 529-552.

Mabey, D.G., Meier, HU. & Sawyer, W.G. 1974. Ex-
perimental and theoretical studies of the boundary
layer on a flat plate at Mach numbers from 2.5 to
4.5. RAE TR 7{127.

MacAulay, P. & Gartshore, [.P. 1991, A tentative model of
outer-region structure in a turbulent boundary-layer
developing on a smooth-wall. In: Keffer, J.F., Shah,
R.K. & Ganié, E.N. (eds), Experimental Heat Trans-
fer, Fluid Mechanics, and Thermodynamics 1991,
Elsevier Science.

Maise, G. & McDonald, H. 1968. Mixing length and
kinematic eddy viscosity in a compressible bound-
ary layer. AJAA Journal, 8, 73-80.

Mathews, D.C., Childs, M.E. & Paynter, G.C. 1970. Use
of Coles’ universal wake function for compressible
turbulent boundary layers. Journal of Aircraft, 7,
137-140.

McGinley, C.B., Spina, E.F. & Sheplak, M. 1994. Turbu-
lence measurements in a Mach 11 helium boundary
layer. ATAA Paper 94-2364.

Meier, H.U. & Rotta, J.C. 1971. Temperature distribu-
tions in supersonic turbulent boundary layers. ATAA



Journal, 8, 2149-2156.

Mikulla, V. & Horstman, C.C. 1975. Turbulence stress
measurements in a non-adiabatic hypersonic bound-
ary layer. ATAA Journaol, 18, 1607-1613.

Miles, R.B. & Nosenchuck, D.M. 1989. Three-dimensional
quantitative flow diagnostics. Pages 33-107 of: Gad-
el-Hak, M. (ed), Lecture Notes in Engineering, Ad-
vances in Fluid Mechanics Measurements, vol. 45.
Springer-Verlag.

Millikan, C.B.A. 1938. A critical discussion of turbulent
flows in channels and circular tubes. Pages 386-392
of: Proceedings of the Fifth International Congress
of Applied Mechanics.

Moin, P. & Spalart, P.R. 1987. Contributions of numerical
simulation data base to the physics, modeling, and
measurement of turbulence. NASA TM 100022.

Morkovin, M.V. 1962. Effects of compressibility on tur-
bulent flows. Pages 367-380 of: Favre, A.J. (ed),
Mécanique de la Turbulence. CNRS,

Morkovin, M.V. 1992. Mach number effects on free
and wall turbulent structures in light of instability
flow interactions. Pages 269-284 of: Gatski, T.B.,
Sarkar, S. & Speziale, C.G. (eds), Studies in Turbu-
lence. Springer Verlag.

Morkovin, M.V. & Phinney, R.E. 1958. Extended appli-
cations of hot wire anemometry to high-speed tur-
bulent boundary layers. Johns Hopkins University,
Baltimore, MD, Report AFOSR TN-58-469.

Morrison, J.F., Subramanian, C.S. & Bradshaw, P. 1992,
Bursts and the law of the wall in turbulent boundary
layers. Journal of Fluid Mechanics, 241, 75-108.

Murlis, J., Tsai, H.M. & Bradshaw, P. 1982. The struc-
ture of turbulent boundary layers at low Reynolds
numbers. Journal of Fluid Mechanics, 122, 13-56.

Naguib, A*M. & Wark, C.E. 1992, An investigation of
wall-layer dynamics using a combined temporal fil-
tering and correlation technique. Journal of Fluid
Mechanics, 243.

Nakayama, A. & Westphal, R.V. 1986. The effects of
sensor length and spacing on X-wire measurements
in a boundary layer. NASA TM 88352

Narasimha, R. & Kailas, S.V. 1987. Energy events in
the atmospheric boundary layer. In: Meier, HU. &
P.Bradshaw (eds), Perspectives in Turbulence Stud-
ies. Springer-Verlag.

Nikuradse, J. 1932. GesetzméBigkeit der turbulenten
Stromiing in glatten Rohren. Forsch. Arb. Ing.- Wes.
No. 356. English translation NACA TT F-10, 359.

Nikuradse, J. 1933. Stromiingsgesetze in rauhen Rohren.
Forsch. Arb. Ing.-Wes. No. 361.

Nockemann, M., Abstiens, R., Schober, M., Bruns, J. &
Eckert, D. 1994. Vermessung der Wandgrenzschicht
im Deutsch-Niederlindischen Windkanal bei hohen
Reynolds-zahlen. Institutsreport DNW 1994, Aero-
dynamisches Institut RWTH Aachen.

Owen, F.K. 1990. Turbulence and shear stress measure-
ments in hypersonic flow. AIAA Paper 90-1394.
Owen, F.K. & Horstman, C.C. 1972. On the structure
of hypersonic turbulent boundary layers. Journal of

Fluid Mechanics, 53, 611-636.

Owen, F.X., Horstman, C.C. & Kussoy, M.I. 1975.
Mean and fluctuating flow measurements of a
fully-developed, non-adiabatic, hypersonic boundary
layer. Journal of Fluid Mechanics, 70, 393-413.

69

Pao, Y.-H. 1965. Structure of turbulent velocity and
scalar fields at large wavenumbers. The Physics of
Fluids, 8, 1063.

Park, 5.-R. & Wallace, J.M. 1893. The Influence of In-
stantaneous Velocity Gradients on Turbulence Prop-
erties Measured with Multi-Sensor Hot-Wire Probes.
Ezxperiments in Fluids, 18, 17-26.

Patel, V.C. 1965. Calibration of the Preston tube and
limitations on its use in pressure gradients. Journal
of Fluid Mechanics, 23, 185-208.

Perry, A.E. & Abell, C.J. 1975. Scaling laws for pipe-flow
turbulence. Journal of Fluid Mechanics, 87, 257-
271.

Perry, A.E. & Abell, C.J. 1977, Asymptotic similarity of
turbulence structures in smooth- and rough-walled
pipes. Journal of Fluid Mechanics, 78, 785-799.

Perry, A.E. & Chong, M.S. 1982. On the mechanism of
wall turbulence. Journal of Fluid Mechanics, 119,
173-219.

Perry, A.E. & Li, J.D. 1990. Experimental support for the
attached-eddy hypothesis in zero-pressure-gradient
turbulent boundary layers. Journal of Fluid Mechan-
ics, 218, 405-438.

Perry, A.E., Smits, A.J. & Chong, M.S. 1979. The effects
of certain low frequency phenomena on the calibra-
tion of hot wires. Journal of Fluid Mechanics, 80,
415-431.

Perry, A.E., Lim, K.L. & Henbest, S.M. 1985. A spec-
tral analysis of smooth flat-plate boundary layers.
In: Proceedings of the Fifth Symposium on Turbu-
lent Shear Flows. Cornell University.

Perry, A.E., Henbest, S. & Chong, M.S. 1986, A the-
oretical and experimental study of wall turbulence.
Journal of Fluid Mechanics, 185, 163-199.

Perry, A.E., Li, J.D. & Marusi¢, I. 199]1. Towards a clo-
sure scheme for turbulent boundary layers using the
attached eddy hypothesis. In: Walker, J.D.A. (ed),
Turbulent Flow Structure Near Walls. The Royal So-
ciety. First published in Phil. Trans. R. Soc. London
A. 336, 1991.

Perry, A.E., Uddin, A.K.M. & Marusié, [. 1992. An exper-
imental and computational study on the orientation
of attached eddies in turbulent boundary layers. In:
Proceedings of the Eleventh Australasian Fluid Me-
chanics Conference,

Petrie, H.L., Fontaine, A.A., Sommer, S.T. & Brungart,
T.A. 1990. Large flat plate turbulent boundary layer
evaluation. TM 89-207, Pennsylvania State Univer-
sity Applied Research Laboratory.

Prandt], L. 1933. Recent results of turbulence research.
Zeitschrift des Vereines Deutscher Ingenieure, TT.
English translation NACA TM 720 (1933).

Praskovsky, A. 1993. The sweeping decorrelation hy-
pothesis and energy-inertial scale interaction in high
Reynolds number flows. Journal of Fluid Mechanics,
248, 493-511.

Preston, J.H. 1958. The minimum Reynolds number for
a turbulent boundary layer and the selection of a
transition device. Journal of Fluid Mechanics, 3,
373-384.

Purtell, L.P., Klebanoff, P.S. & Buckley, F.T. 1981, Tur-
bulent boundary layer at low Reynolds number.
Physics of Fluids, 24, 802-811.

Rao, K.N., Narasimha, R. & Narayanan, M.A. 1971. The



70

bursting phenomenon in a turbulent boundary layer.
Journal of Fluid Mechanics, 48, 339-352.

Roach, P.E. & Brierley, D.H. 1989. The influence of a
turbulent freestream on zero pressure gradient tran-
sitional boundary layer developement including the
condition test cases T3A and T3B. In: O. Pironneau,
et al. (ed), Numerical Simulation of Unsteady Flows
and Transition to Turbulence. Cambridge University
Press, 1992.

Robinson, S.K. 1983. Hot-wire and laser Doppler
anemometer measurements in & supersonic bound-
ary layer. AJAA Paper 83-1723.

Robinson, S.K. 1986. Space-time correlation measure-
ments in a compressible turbulent boundary layer.
ATAA Paper 86-1130.

Robinson, 5.K. 1991a. Coherent motions in the turbulent
boundary layer. Annual Review of Fluid Mechanics,
23, 601-639.

Robinson, S.K. 1991b. The kinematics of turbulent
boundary layer structure. NASA TM 103859.
Rose, W.C. & Johnson, D.A. 1975. Turbulence in a shock-
wave boundary-layer interaction. AIAA Journal, 18,

884-8R9.

Rotta, J.C. 1950. Uber die Theorie der turbulenten
Grenzschichten. Mitteilung Mox- Planck Institut fir
Strémungs Forschung, No. 1. English translation
NACA T™M 1344,

Rotta, J.C. 1962. Turbulent boundary layers in incom-
pressible flow. Pages 5-219 of: Kiichemann, D. (ed),
Progress in Aeronautical Science, vol. 2. Pergamon
Press.

Rubesin, M.W. & Rose, W.C. 1973. The turbulent
mean-flow, Reynolds-stress, and heat-flux equations
in mass- averaged dependent variables. NASA TM
X-62248.

Runstadler, P.W., Kline, S.J. & Reynolds, W.C. 1963. An
experimental investigation of flow structure of the
turbulent boundary layer. Mechanical Engineering
Department, Stanford University Report MD-8.

Saddoughi, S.G. & Veeravalli, S.V. 1994. Local isotropy
in turbulent boundary layers at high Reynolds num-
bers. Journal of Fiuid Mechanics, 268, 333-372.

Sandborn, V.A. 1974. A review of turbulence measure-
ments in compressible flow. NASA TR X-62337.

Schlichting, H. 1979. Boundary-Layer Theory. Tth edn.
McGraw-Hill.

Schubauer, G.B. & Tchen, C.M. 1959. Turbulent flow,
Pages 75-195 of: Lin, C.C. (ed), Turbulent Flows
and Heat Transfer. High-Speed Aerodynamics and
Jet Propulsion, vol. V. Princeton University Press.

Settles, G.S. & Dodson, L.J. 1991, Hypersonic shock-
boundary layer interaction database. NASA CR
177577,

Shah, D.A. & Antonia, R.A. 1989. Scaling of the bursting
period in turbulent boundary layer and duct flows.
Physics of Fluids A, 1, 318-325.

Simpson, R.L. 1970. Characteristics of turbulent bound-
ary layers at low Reynolds numbers with and without
transpiration. Journal of Fluid Mechanics, 42.

Smith, C.R. & Metzler, S.P. 1983. The characteristics of
low-speed streaks in the near-wall region of a tur-
bulent boundary layer. Journal of Fluid Mechanics,
129, 27-54.

Smith, D.R. & Smits, A.J. 1993a. The simultaneous mea-

surement of velocity and temperature fluctuations in
the boundary layer of a supersonic flow. Experimen-
tal Thermal and Fluid Science, T, 221-220.

Smith, D.R., Fernando, E.M., Donovan, J.F. & Smits,
A.J. 1992. Conventional skin friction measurement
techniques for strongly perturbed supersonic turbu-
lent boundary layers. European Journal of Mechan-
tcs, B/Fluids, 11, 719-740.

Smith, M.W. & Smits, A.J. 1988. Cinematic visualiza-
tion of coherent density structures in a supersonic
turbulent boundary layer. AJIAA Paper 88-0500.

Smith, R.W. 1994, Effect of Reynolds number on the
structure of turbulent boundary layers. Ph.D. Thesis,
Princeton University.

Smith, R.W. & Smits, A.J. 1991. Effect of Reynolds num-
ber on the large structure of turbulent boundary lay-
ers. AIAA Paper 91-0526.

Smits, A.J. & Dussauge, J.-P. 1989. Hot-wire anemometry
in supersonic flow. Chapter 5, AGARDograph 315.

Smits, A.J. & Muck, K.-C. 1984. Constant-temperature
hot-wire anemometer practice in supersonic flows.
Part 2: The inclined wire. Experiments in Fluids,
2, 33-41.

Smits, A.J., Matheson, N. & Joubert, P.N. 1983b. Low-
Reynolds-number turbulent boundary layers in zero
and favorable pressure gradients. Journal of Ship
Research, 27, 147-157.

Smits, A.J., Spina, E.F., Alving, A.E., Smith., R.W_, Fer-
nando, E.M. & Donovan, J.F. 1989. A comparison of
the turbulence structure of subsonic and supersonic
boundary layers. Physics of Fluids A, 1, 1865-1875.

Spalart, P.R. 1988. Direct simulation of a turbulent
boundary layer up to Ry = 1410. Journal of Fluid
Mechanics, 187, 61-98.

Spalding, D.B. 1961. A single formula for the law of the
wall. Transactions of the ASME, Series E: Journal
of Applied Mechanics, 28, 455-458.

Spina, E.F. 1988. Organized structures in a supersonic
turbulent boundary layer. Ph.D. Thesis, Princeton
University.

Spina, E.F. & Smits, A.J. 1987. Organized structures in
a compressible turbulent boundary layer. Journal of
Fluid Mechanics, 182, 85-109.

Spina, E.F., Donovan, J.F. & Smits, A.J. 1991a. On the
structure of high-Reynolds-number supersonic tur-
bulent boundary layers. Journal of Fluid Mechanics,
222, 293-327.

Spina, E.F., Donovan, J.F. & Smits, A.J. 1991b. Convec-
tion velocity in supersonic turbulent boundary lay-
ers. Physics of Fluids A, 8, 3124-3126.

Spina, E.F., Smits, A.J. & Robinson, S.K. 1994. The
physics of supersonic turbulent boundary layers. An-
nual Review of Fluid Mechanics, 26, 287-319.

Sreenivasan, K.R. 1988. A unified view of the origin
and morphology of the turbulent boundary-layer
structure. In: Liepmann, H. & Narasimha, R.
(eds), Turbulence Management and Relaminariza-
tion. Springer Verlag Berlin.

Sreenivasan, K.R. 1989. The turbulent boundary layer.
Pages 159-210 of: Gad-el-Hak, M. (ed), Frontiers
in Experimental Fluid Mechanics. Springer-Verlag.

Stalmach, C.J. 1958. Experimental investigation of the
surface impact probe method of measuring local skin
friction at supersonic speed. Univ. of Texas Report



DRL-410, CF 2675.

Sternberg, J. 1967. On the interpretation of space-time
correlation measurements in shear flow. The Physics
of Fluids, 10, S146-5152.

Sun, C.C. & Childs, M.E. 1973. A modified wall-wake
velocity profile for turbulent compressible boundary
layers. Journal of Aircraft, 10, 381-383.

Sun, C.C. & Childs, M.E. 1976. A wall-wake velocity
profile for compressible non-adiabatic flows. AIAA
Journal, 14, 820-822.

Tennekes, H. & Lumley, J.L. 1972, A First Course in
Turbulence. MIT Press.

Theodorsen, T. 1955. The structure of turbulence. In:
Gortler, H. & Tollmien, W. (eds), 50 Jahre Gren-
zschichiforschung. Friedr. Vieweg and Sohn.

Tinh, N. van. 1982. A study of the intermittent phases
in the wall region of a turbulent flow. In: Zarié,
Z.P. (ed), Structure of Turbulence in Heat and Mass
Transfer. Hemisphere.

Townsend, A.A. 1961. Equilibrium layers and wall turbu-
lence. Journal of Fluid Mechanics, 11.

Townsend, A.A. 1976. The Structure of Turbulent Shear
Flow. 2 edn. Cambridge University Press.

Tritton, D.J. 1967. Some new correlation measurements
in a turbulent boundary layer. Journal of Fluid Me-
chanics, 28.

Tu, B.-J. & Willmarth, W.W. 1966. An experimental
study of the structure of turbulence near the wall
through correlation measurements in a thick turbu-
lent boundary layer. University of Michigan ORA
02920-3-T.

Uberoi, M.S. & Kovasznay, L.S.G. 1953. On mapping and
measurement of random fields. Quarterly of Applied
Mathematics, 10,

Uddin, A.K.M. 1994, The structure of a turbulent bound-
ary layer. Ph.D. Thesis, University of Melbourne.

Ueda, H. & Hinze, J.0. 1975. Fine-structure turbulence in
the wall region of a turbulent boundary layer. Jour-
nal of Fluid Mechanics; 87, 125-143.

van Driest, E.R. 1951. Turbulent boundary layer in com-
pressible fiuids. Journal of the Aeronautical Sciences,
18, 145-160.

van Driest, E.R. 1956. On turbulent flow near a wall.
Journal of the Aeronautical Sciences, 23, 1007-1011
and 1036.

Van Dyke, M. 1982, An Album of Fluid Motion. Parabolic
Press.

von Kérmén, T. 1930. Mechanische Ahnlichkeit und
Turbulenz. Nachrichten der Akademie der Wis-
senschaften Gdottingen, Math. Phys. Kiasse, 58.
Proc. 3rd Int. Congr. Appl. Mech., Stockholm, Pt.
1, 1930, p. 85; English trans. NACA TM 611 (1931).

Wallace, J.E. 1869. Hypersonic turbulent boundary-layer
measurements using an electron beam. AJAA Jour-
nal, T, 757-759.

Wallace, J.M., Eckelmann, H. & Brodkey, R.S. 1972, The
wall region in turbulent shear flow. Journal of Fluid
Mechanics, 54, 39-48,

Walz, A. 1966. Stromungs- und Temperaturgren-
zschichten. Braun Verlag, Karlsruhe. English trans-
lation Boundary Layers of Flow and Temperature,
MIT Press, 1969.

Wark, C.E., Naguib, A.M. & Robinson, S.K. 1991. Scaling
of spanwise length scales in a turbulent boundary

71

layer. AIAA Paper 91-0235.

Watson, R.D. 1977. Wall cooling effects on hyper-
sonic transitional/turbulent boundary layers at high
Reynolds numbers. AIAA Journal, 15, 1455-1461.

Watson, R.D. 1978. Characteristics of Mach 10 transi-
tional and turbulent boundary layers. NASA TP-
1243.

Watson, R.D., Harris, J.E. & Anders, J.B. 1973. Measure-
ments in a transitional/ turbulent Mach 10 boundary
layer at high Reynolds number. AIAA Paper 73-165.

Westphal, R.V. 1990. Near-wall measurement errors for
hot-wire probes with finite spatial resolution. In:
Stock, D.E., Sheriff, S.A. & Smits, A.J. {eds), The
Heuristics of Thermal Anemomelry, FED-Vol. 97.
ASME Fluids Engineering Division.

White, B.R. 1981. Low-Reynolds-number turbulent
boundary layers. ASME Fluids Engineering Trans-
actions, 108, 624-630.

Willmarth, W. W, 1975. Structure of turbulence in bound-
ary layers. Advances in Applied Mechanics, 15, 159—
254,

Willmarth, W.W. & Sharma, L.K. 1984. Study of turbu-
lent structure with hot wires smaller than the viscous
length. Journal of Fluid Mechanics, 142, 121-149.

Winter, K.G. & Gaudet, L. 1973. Turbulent boundary-
layer studies at high Reynolds numbers and Mach
numbers between 0.2 and 2.8. ARC Reports and
Memoranda No. 3712

Wyngaard, J.C. 1968. Measurement of small-scale turbu-
lence structure with hot wires. Journal of Scientific
Instruments: Journal of Physics E, 1 (Series 2),
1105-1108.

Wyngaard, J.C. 1969. Spatial resolution of the vorticity
meter and other hot-wire arrays. Journal of Scien-
tific Instruments: Journal of Physics E, 2 (Series
2), 983-987.

Yanta, W.J. & Crapo, B.J. 1976. Applicaticns of the
laser Doppler velocimeter to measure subsonic and
supersonic flows. AGARD CP No. 195.

Yeung, P.K., Brasseur, J.G. & Bell, D.M. 1993. Evolution
of passive scalar sources in a numerically simulated
boundary layer. In: So, R.M.C., Speziale, CG. &
Launder, B.E. (eds), Near-Wall Turbulent Flows. El-
sevier.

Young, A.D. 1651. The equations of motion and energy
and the velocity profile of a turbulent boundary layer
in a compressible fluid. Report No. {2, College of
Aeronautics, Cranfield.



REPORT DOCUMENTATION PAGE

1. Recipient’s Reference 2. Originator’s Reference | 3. Further Reference 4. Security Classification
of Document
AGARD-AG-335 ISBN 92-836-1040-7 UNCLASSIFIED/
UNLIMITED
5. Originator  Advisory Group for Aerospace Research and Development
North Atlantic Treaty Organization
7 rue Ancelle, 92200 Neuilly-sur-Seine, France
6. Title
Turbulent Boundary Layers in Subsonic and Supersonic Flow
7. Presented at/sponsored by
8. Author(syEditor(s) 9. Date
Multiple July 1996
10. Author’s/Editor’s Address 11. Pages
Multiple 80
12, Distribution Statement There are no restrictions on the distribution of this document.
Information about the availability of this and other AGARD
unclassified publications is given on the back cover.
13. Keywords/Descriptors
Turbulent boundary layer Supersonic flow
Experimentation Mach number
Reynolds number Research projects
Subsonic flow
14. Abstract

Current research on the structure of zero pressure gradient, flat plate turbulent boundary layers is
reviewed. The behavior of boundary layers in subsonic and supersonic flow is discussed, with a
particular emphasis on scaling laws with respect to Reynolds number and Mach number. For
subsonic flows, it is shown that for the mean flow the classic arguments on inner and outer
layer similarity hold extremely well over a large range of Reynolds numbers (approximately

350 £ R, 2 210,000), and the overlap region is well established over the same region. In
contrast, the Reynolds number can have a significant effect on the level of the maximum
turbulence stresses, and the location of that maximum in the boundary layer. In particular, the
streamwise scaling of the outer-layer is rather sensitive, where the scale increases with the
Reynolds number. For supersonic flows with moderate Mach number, it appears that the direct
effects of compressibility on wall turbulence are rather small: the most notable differences
between subsonic and supersonic boundary layers may be attributed to the variation in fluid
properties across the layer. However, certain characteristics cannot be collapsed by simple
scaling. Among other observations, there exists strong evidence to indicate that the streamwise
length scales are reduced significantly by increasing Mach number.




\ : !
he gl et
e [T I

a4
NATO &5 OTAN
7 RUE ANCELLE « 92200 NEUILLY-SUR-SEINE DIFFUSION DES PUBLICATIONS

FRANCE AGARD NON CLASSIFIEES

Télécopia (1)47.38.57.99 e Télex 610 176

Aucun stock de publications n’a existé 8 AGARD. A partir de 1993, AGARD détiendra un stock limité des publications associées aux cycles
de conférences et cours spéciaux ainsi que les AGARDographies et les rapports des groupes de travail, organisés et publiés a partir de 1993
inclus. Les demandes de renseignements doivent étre adressées & AGARD par lettre ou par fax a I'adresse indiquée ci-dessus. Veuiliez ne
pas téléphoner. La diffusion initiale de toutes les publications de I'AGARD est effectuée auprés des pays membres de 'OTAN par
I'intermédiaire des centres de distribution nationaux indiqués ci-dessous. Des exemplaires supplémentaires peuvent parfois étre obtenus
aupres de ces centres (3 'exception des Etats-Unis). Si vous souhaitez recevoir toutes les publications de I' AGARD, ou simplement celles
qui concernent certains Panels, vous pouvez demander 4 étre inclu sur la liste d’envoi de 'un de ces centres. Les publications de I' AGARD
sont en vente auprés des agences indiquées ci-dessous, sous forme de photocopie ou de microfiche.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE ISLANDE
Fachinformationszentrum Karlsruhe Director of Aviation
D-76344 Eggenstein-Leopoldshafen 2 cfo Flugrad
BELGIQUE Reykjavik
Coordonnateur AGARD-VSL ITALIE
Etat-major de la Force aérienne Aeronautica Militare
Quartier Reine Elisabeth Ufficio del Delegato Nazionale ail’ AGARD
Rue d'Evere, 1140 Bruxelles Aeroporto Pratica di Mare
CANADA 00040 Pomezia (Roma)
Directeur, Services d'information scientifique LUXEMBOURG
Ministere de la Défense nationale Voir Belgique
Ottawa, Ontario K1A 0K2 NORVEGE
DANEMARK Norwegian Defence Research Establishment
Danish Defence Research Establishment Attn: Biblioteket
Ryvangs Allé 1 P.O. Box 25
P.O. Box 2715 N-2007 Kjeller
DK-2100 Copenhagen PAYS-BAS
ESPAGNE Netherlands Delegation to AGARD
INTA (AGARD Publications) National Aerospace Laboratory NLR
Carretera de Torrején a Ajalvir, Pk.4 P.O. Box 9050
28850 Torrején de Ardoz - Madrid 1006 BM Amsterdam
. PORTUGAL
ETA’II:]SAlSjRu%eadquanars Estado Maior da Forga Aérea
Code JOB-1 SDFA - Centro de Documentagio
Washington, D.C. 20546 Alfragide
NCE 2700 Amadora
O.N.ER.A. (Direction) ROYAUME-UNI
30, Avenue de la Division Leclerc Defence Research Information Centre
92322 Chatillon Cedex Kentigern House
65 Brown Street
GRECE Glasgow G2 8EX
Hellenic Air Force TURQUIE

Air War College . v
Scientific and Technical Library Milif Savunma Baskanligi (MSB)

Dekelia Air Force Base ARGE Daircsj Baskanliéi {MSB)
Dekelia, Athens TGA 1010 06650 Bakaniiklar-Ankara

Le centre de distribution national des Etats-Unis ne détient PAS de stocks des publications de 'AGARD.
[)’éventuelles demandes de photocopies doivent étre formulées directement auprés du NASA Center for AeroSpace Information (CASI)
a I'adresse ci-dessous. Toute notification de changement d'adresse doit étre fait également auprés de CASI.

AGENCES DE VENTE

NASA Center for ESA/Information Retrieval Service The British Library

AeroSpace Information (CASI) European Space Agency Document Supply Division
800 Elkridge Landing Road 10, rue Mario Nikis Boston Spa, Wetherby
Linthicum Heights, MD 21090-2934 75015 Paris West Yorkshire LS23 7BQ
Etats-Unis France Royaume-Uni

Les demandes de microfiches ou de photocopies de documents AGARD (y compris les demandes faites auprés du CASI) doivent
comporter la dénomination AGARD, ainsi que le numéro de séric ’AGARD (par exemple AGARD-AG-315). Des informations
analogues, telles que le titre et 1a date de publication sont souhaitables. Veuiller noter qu’il y a lieu de spécifier AGARD-R-nnn et
AGARD-AR-nnn lors de la commande des rapports AGARD et des rapports consultatifs AGARD respectivement. Des références
bibliographiques compl2tes ainsi que des résumés des publications AGARD figurent dans les journaux suivants:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements and Index {(GRA&I)
publié par la NASA Scientific and Technical publié par le National Technical Information Service
Information Division Springfield

NASA Headquarters (JTT) Virginia 22161

Washington D.C. 20546 Ertars-Unis

Etats-Unis (accessible également en mode interactif dans la base de

données bibliographiques en ligne du NTIS, et sur CD-ROM)

Imprimé par le Groupe Communication Canada
45, boul. Sacré-Ceeur, Hull (Québec), Canada KI1A 057



PANG NN
NATO -(})- OTAN
7 RUE ANCELLE e 92200 NEUILLY-SUR-SEINE
FRANCE

Telefax (1)47.38.57.99 » Telex 610 176

AGARD holds limited quantities of the publications that accompanied Lecture Series and Special Courses held in 1993 or later, and of
AGARDographs and Working Group reports published from 1993 onward. For details, write or send a telefax to the address given above.
Please do not telephone.

AGARD does not hold stocks of publications that accompanied earlier Lecture Series or Courses or of any other publications. Initial
distribution of all AGARD publications is made to NATO nations through the National Distribution Centres listed below. Further copies are
sometimes available from these centres (except in the United States). If you have a need to receive all AGARD publications, or just those
relating to one or more specific AGARD Panels, they may be willing to include you (or your organisation) on their distribution list.
AGARD publications may be purchased from the Sales Agencies listed below, in photocopy or micrefiche form.

NATIONAL DISTRIBUTION CENTRES

DISTRIBUTION OF UNCLASSIFIED
AGARD PUBLICATIONS

BELGIUM LUXEMBOURG
Coordonnateur AGARD — VSL See Belgium
Etat-major de la Force aérienne NETHERLANDS

Quartier Reine Elisabeth
Rue d’Evere, 1140 Bruxelles

CANADA
Director Scientific Information Services
Dept of National Defence
Ottawa, Ontario K1A 0K2

DENMARK
Danish Defence Research Establishment
Ryvangs Allé 1
P.O. Box 2715
DK-2100 Copenhagen @

FRANCE
O.N.ER.A. (Direction)
29 Avenue de la Division Leclerc
92322 Chitillon Cedex

GERMANY
Fachinformationszentrum Karlsruhe
D-76344 Eggenstein-Leopoldshafen 2

GREECE
Hellenic Air Force
Air War College
Scientific and Technical Library
Dekelia Air Force Base
Dekelia, Athens TGA 10610

ICELAND
Director of Aviation
c/o Flugrad
Reykjavik
ITALY
Aeronautica Militare
Ufficio del Delegato Nazionale all’ AGARD
Aeroporto Pratica di Mare
00040 Pomezia (Roma)

The United States National Distribution Centre

Netherlands Delegation to AGARD
National Acrosgace Laboratory, NLR
P.O. Box 9050

1006 BM Amsterdam

NORWAY
Norwegian Defence Research Establishment
Attn: Biblioteket
P.O. Box 25
N-2007 Kjeller

PORTUGAL
Estado Maior da Forga Aérea
SDFA - Centro de Documentagio
Alfragide
2700 Amadora

SPAIN
INTA (AGARD Publications)
Carretera de Torrején a Ajalvir, Pk.4
28850 Torrejon de Ardoz - Madrid

TURKEY
Milli Savunma Bagkanligi (MSB)
ARGE Dairesi Bagkanligi (MSB)
06650 Bakanliklar-Ankara

UNITED KINGDOM
Defence Research Information Centre
Kentigern House
65 Brown Street
Glasgow G2 8EX

UNITED STATES
NASA Headquarters
Code JOB-1
Washington, D.C. 20546

does NOT hold stocks of AGARD publications.

Applications for copies should be made direct to the NASA Center for AeroSpace Information (CASI) at the address below.
Change of address requests should also go to CASL

SALES AGENCIES

NASA Center for

AeroSpace Information (CASI)
800 Elkridge Landing Road
Linthicum Heights, MD 21090-2934 75015 Paris
United States France

ESA/Information Retrieval Service
European Space Agency
10, rue Mario Nikis

The British Library
Document Supply Centre
Boston Spa, Wetherby
West Yorkshire LS23 7BQ
United Kingdom

Requests for microfiches or photocopies of AGARD documents (including requests to CASI) should include the word ‘AGARD’
and the AGARD serial number (for example AGARD-AG-315). Collateral information such as title and publication date is
desirable. Note that AGARD Reports and Advisory Reports should be specified as AGARD-R-nnn and AGARD-AR-nnn,
tespectively. Full bibliographical references and abstracts of AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements and Index (GRA&I)

published by NASA Scientific and Technical published by the National Technical Information Service

Information Division Springfield

NASA Headquarters (JTT) Virginia 22161

Washington D.C. 20546 United States

United States (also available online in the NTIS Bibliographic

Database or on CD-ROM)

Printed by Canada Communication Group
45 Sacré-Ceeur Blvd., Hull (Québec), Canada KI1A 057

ISBN 92-836-1040-7



