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Turbulent Boundary Layers 
in Subsonic and Supersonic Flow 

(AGARD AG-335) 

Executive Summary 

The aim of this work is to determine the state of the art of experimental knowledge in this field, by 
gathering and analysing the most recent data on subsonic and supersonic turbulent boundary layers and 
focussing on scaling laws with respect to Reynolds number and Mach number effects. Hypersonic 
flows are not considered in depth, mainly because of the lack of comprehensive data. A major 
drawback of the current knowledge of Reynolds number and Mach number effects is that the data have 
been collected from many different sources, using different data acquisition and analysis procedures. 
These differences have resulted in large variations among the published results. Nevertheless, some 
definite conclusions are made. Given the diversity of the data, participation was called for from 
research workers in 4 different NATO nations. This report provides the latest developments in this field 
to the scientific and technical community. 

The most important parameter in the description of incompressible turbulent boundary layer behavior 
is, of course, the Reynolds number. Engineering applications cover an extremely wide range and values 
based on the streamwise distance can vary from lo5 to lo9. Most laboratory experiments are performed 
at the lower end of this range, and to be able to predict the behavior at very high Reynolds numbers, as 
found in the flows over aircraft and ships, it is therefore important to understand how turbulent 
boundary layers scale with Reynolds number. For compressible flows, the Mach number becomes an 
additional scaling parameter. 

What is more, we know that friction and heat transfer are directly related to the structure of these layers. 
In particular, in the case of turbulent boundary layers, the various transfers are mainly governed by 
large scale eddies (or "organised structures"), whose size is of the order of the thickness of the layer. 
Knowledge of the properties of these eddies is crucial to the control and manipulation of turbulence; in 
particular it conditions drag reduction, which in turn enables a reduction in specific fuel consumption. 

For subsonic flows, Reynolds number can have a significant effect on the level of the maximum 
turbulence stresses, and the location of that maximum in the boundary layer. The properties of the 
organised structures are dependent on the Reynolds number. In particular, in the outer part of the layers, 
the space scale which characterises the size of structures in the longitudinal direction is especially 
sensitive to this, and increases with the Reynolds number. For supersonic flows at moderate Mach 
numbers, it appears that the direct effects of compressibility on wall turbulence are rather small. It is 
noted that certain characteristics cannot be collapsed by simple density scaling, and that the existing 
data indicates that longitudinal space scales fall sharply with Mach number. There appears to be an 
urgent requirement for detailed experimental data on turbulence with more pronounced compressibility 
effects, these effects being produced either by increasing the Mach number with Reynolds number 
constant, or by increasing the Mach number and decreasing the Reynolds number. 



Les couches limites turbulentes 
dans les 6coulements subsoniques et supersoniques 

(AGARD AG-335) 

L'objectif de ce travail est de faire le point sur I'ktat des connaissances expkrimentales dans ce 
domaine, en rassemblant et analysant les donnkes les plus rkcentes sur les couches limites turbulentes 
subsoniques et supersoniques et en mettant I'accent sur les effets d'kchelle en ce qui conceme les lois 
de similitude par rapport au nombre de Reynolds et au nombre de Mach. Les kcoulements 
hypersoniques ne sont pas traitks en dktail, principalement B cause du manque d'un ensemble complet 
de donnkes. L'un des points faibles des connaissances actuelles des effets du nombre de Reynolds et du 
nombre de Mach n5sulte du fait que les donnkes obtenues proviennent de sources multiples, issues de 
prockdures d'acquisition et d'analyse de donnkes diffkrentes. Ces diffkrences expliquent les kcarts 
importants dans les rksultats publiks. Certaines conclusions prkcises en sont nkanmoins tirkes. Compte 
tenu de la diversitk des donnkes, il a nkcessitk la participation de chercheurs de quatre pays de I'OTAN. 
Ce rapport met B la disposition de la communautk scientifique et technique les demiers dkveloppements 
des connaissances dam ce domaine. 

Le paramhe le plus important pour la description du comportement de la couche limite turbulente 
incompressible est, bien entendu, le nombre de Reynolds. Les applications techniques sont 
extrimement diverses et les valeurs, baskes sur la distance le long de l'kcoulement, varient entre lo5 et 
lo9. La plupart des expkriences rkaliskes en laboratoire concement la partie infkrieure de cette gamme. 
Pour &tre capable de prkdire le comportement de l'environnement des nombres de Reynolds tr&s 
klevks tels qu'ils existent dans les kcoulements autour des navires et des akronefs, il est trks important 
de comprendre comment les couches limites turbulentes kvoluent avec le nombre de Reynolds. Dans le 
cas des kcoulements compressibles, I'influence du nombre de Mach devient un paramhe additionnel 
important. 

On sait de plus que le frottement et le transfert de chaleur dkpendent directement de la structure de ces 
couches. En particulier, pour les couches limites turbulentes, ces diffkrents transferts sont gouvemks 
principalement par les tourbillons B grande kchelle (ou "structures organiskes"), dont la taille est de 
I'ordre de I'kpaisseur de la couche. La connaissance des propriktks de ces tourbillons est trks importante 
pour le contri3le et la manipulation de la turbulence; cela conditionne notamment la rkduction de la 
trainke, dont on peut attendre une rkduction de la consommation spkcifique des avions. 

Pour ce qui conceme les kcoulements subsoniques, le nombre de Reynolds peut avoir un effet 
significatif sur le niveau de contrainte de turbulence maximale, ainsi que sur la localisation de ce 
maximum dans la couche limite. Les structures organiskes ant des propriktks qui dkpendent du nombre 
de Reynolds. En particulier, dans la partie exteme des couches, I'kchelle d'espace caractirisant la taille 
des structures dans la direction longitudinale y est particuli&rement sensible, et est une fonction 
croissante du nombre de Reynolds. 

Pour les kcoulements supersoniques aux nombres de Reynolds modkrks, il semblerait que les effets 
directs de la compressibilitk sur la turbulence de paroi soient assez faibles. I1 est B noter que certaines 
caractkristiques ne peuvent pas &tre kliminkes par un simple calcul de densitk et que les donnkes 
existantes indiquent que les kchelles spatiales longitudinales diminuent fortement avec le nombre de 
Mach. I1 apparait qu'il existe un besoin urgent de disposer de donnkes expkrimentales dktaillkes sur la 
turbulence avec des effets de compressibilitk plus klevks, ces effets pouvant &tre produits soit en 
augmentant le nombre de Mach B nombre de Reynolds constant, soit en augmentant le nombre de Mach 
et en diminuant le nombre de Reynolds. 
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Turbulent Boundary Layers 
in Subsonic and Supersonic Flow 

1 Introduction 

The m a t  important parameter in the description of in- 
compressible turbulent boundary layer behavior is, of 
course, the Reynolds number. Engineering applications 
cover an extremely wide range and value6 based on the 
streamwise distance can vary from 10' to 10'. Most l a b  
oratory experiments are performed at the lower end of 
this range, and to be able to predict the behavior at very 
high Reynolds numbers, as found in the flow over aircraft 
and ship, it is therefore important to understand how 
turbulent boundary layers scale with Reynolds number. 

For compressible flows, the Mach number becomes an ad- 
ditional scaling parameter. Because of the no-slip con- 
dition, however, a subennic region persists near the wall, 
although the sonic line is located very close to the wall 
at high Mach number. Furthermore, a significant tem- 
perature gradient develop ac rm the boundary layer at 
supersonic speeds due to the high levels of viscous dissipa- 
tion near the wall. In fact, the static-temperature varik 
tion can be very large even in an adiabatic flow, resulting 
in a low-density, high-viscosity regian near the wall. In 
turn, this leads to a skewed maskflux profile, a thicker 
boundary layer, and a region in which viscous effects are 
somewhat pore important than at an equivalent Reynolds 
number in subsonic flow. 

Figure 1 shows two sets of air boundary hyer profiles at 
about the same Reynolds number, one set measured on an 
adiabatic wall, the other measured on an isothermal wall. 
The momentum thickness Reynolds number Re is approx- 
imately 2200 when based on the freeatream velocity u., 
and the kinematic viscosity evaluated at the freestream 
temperature v., in accord with usual practice. That is, 
Re = BuJv.. The temperature of the air increases near 
the wall, even for the adiabatic wall case, eince the diasi- 
pation of kinetic energy by friction is an important source 
of heat in supersonic shear layers. Somewhat surprisingly, 
the velocity, temperature and maskflux profiles for these 
two flows appear very much the same, even though the 
boundary conditions, Mach numbers and heat transfer pa- 
rameters differ considerably. The velocity profiles in the 
outer region, in fact, follow a 117th powet law distribu- 
tion quite well, just as a subsonic velocity profile would 
at this Reynolds number. With increasing Mach num- 
ber, however, the elevated temperature near the the wall 
means that the bulk of the mass flux is increasingly found 
toward the outer edge of the boundary layer. This effect 
is strongly evident in the boundary-layer profiles shown in 
figure 2, where the freestream Mach number was 10 for a 
helium flow on an adiabatic wall. For this case, the ten,. 
perature ratio between the wall and the boundary layer 
edge was about 30. 

If the total temperature To was constant across the layer, 

then from the definition of the total temperature, To = 
T+U1/2C,., we see that there is a very simple relationship 
between the temperature T and the velocity u. Since 
there is never an exact balance between Rictional heating 
and conduction (unless the Prandtl number equals one), 
the total temperature is not quite constant, even in sn 
adiabatic flow, and the wall temperature depends on the 
recovery factor r. Hence: 

where M is the Mach number, the subecript w denotes 
conditions at the wall, and the subscript e denotes con- 
ditions at the edge of the boundary layer, that is, in the 
local freeatream. Since r = 0.9 for a turbulent boundary 
layer, the temperature at the wall in an adiabatic flow 
is nearly equal to the freeatream tntal temperature. For 
example, at a freeatream Mach number of 3, the ratio 
T,/To = 0.93. 

As a result of these large variations of temperature 
through the layer, the fluid properties are far from con- 
stant. To the boundary layer approximation, the static 
pressure variation across the layer is constant, as in s u b  
sonic flow, and therefore for the examples shown in fig- 
ure 1 the density varies by about a factor of 5. The vis- 
cosity varies by pmewhat less than that: if we assume 
some form of Sutherland's law to express the temperature 
dependence of viscosity, for instance (p/pe) = 
where w = 0.765, then the viscosity varies by a factor 
of 3.4. Since the density increases and the viscosity de- 
creases with distance from the wall, the kinematic viscok 
ity decreases by a factor of about 17 across the layer. It 
is therefore difficult to assign a single Reynolds number 
to describe the state of the boundary layer. Of course, 
even in a subsonic boundary layer the Reynolds num- 
ber varies through the layer since the length scale de- 
pends (in a general sense) on the distance from the wall. 
But here the variation is more complex in that the non- 
dimensionalizing fluid properties also change with wall 
distance. One consequence is that the relative thicknm 
of the viscous sublayer depends not only on the Reynolds 
number, but also on the Mach number and heat transfer 
rate since these will inhence the distribution of the fluid 
properties. At very high Mach numbers, most of the layer 
may become viscoukdominated. Now the boundary lay- 
ers at the lower Mach numbers shown in figure 1 are cer- 
tainly turbulent, but the Mach 10 boundary layer shown 
in figure 2 may well be transitional. For that case, the 
Reynolds number based on freestream fluid properties (for 
example, 5 = p.U.B/p. suggests a fully turbulent flow, 
but when the Reynolds number is based on fluid proper- 
ties evaluated at the wall temperature (%a = p.UeB/p,) 
it suggests a laminar flow. The difference between Ree 
and Raa increases steadily with Mach number and heat 



Figure 1: Turbulent boundary layer profiles in air (Ts = T.). From Fernholz & Finley (1980), where catalog numbers 
are referenced. 

Prohlr \ T,/T, Reb R% 
OSOL 10 3l 1.0 1519 U6C4 helium 

Figure 2: 'hrbulent boundary layer profiles in helium (Ts = T.). Figure from Fernholz & Finley (1980), where catalog 
numbers are referenced. Original data from Watson et d. (1973). 



transfer, and can become very significant at high Mach 
number (for a full discussion, see Fernholz & Finley, 1976). 

We can see that any comparisons we try to make between 
subeonic and supersonic boundary layers must take into 
account the variations in fluid properties, which may be 
strong enough to lead to unexpected physical phenom- 
ena, as well as the gradients in Mach number. Intuitively, 
one would expect to see significant dynamical differences 
between subsonic and supersonic boundary layers. How- 
ever, it appears that many of these differences can be ex- 
plained by simply accounting for the fluid-property varia- 
tions that accompany the temperature variation, as would 
be the c a e  in a heated incompressible boundary layer. 
This suggeats a rather passive role for the density differ- 
ences in these flows, most clearly expressed by Morkovin's 
hypothesis (Morkovin, 1962): the dynamics of a com- 
pressible boundary layer follow the incompressible pattern 
closely, as long as the Mach number associated with the 
fluctuations remains small. That is, the fluctuating Mach 
number, M', must remain small, where Mi is the r.m.8. 
perturbation of the instantaneous Mach number from i t s  
mean value, taking into account the variations in velocity 
and mund speed with time. If M' approaches unity at any 
point, we would expect direct compressibility effects such 
as local "shocklets" and pressure fluctuations to become 
important. If we take M' = 0.3 as the point where com- 
pressibility effects become important for the turbulence 
behavior, we find that for zer-pressure-gradient adiabatic 
boundary layers at moderately high Reynolds numbers 
this point will be reached with a freestream Mach num- 
ber of about 4 or 5 (see figure 3). 

Recently, some measurements in moderately supersonic 
boundary layers (M, < 5) have indicated subtle differ- 
ences in the instantaneous behavior of certain quantities 
and parameters as compared to subsonic flow. These dif- 
ferences do not seem to be due simply to fluid-property 
variations. In particular, differences in turbulence length 
and velocity scales, the intermittency of the outer layer, 
and the structure of the largescale shear-stress containing 
motions may indicate that the turbulence dynamics are 
affected at a lower fluctuating Mach number than pre- 
viously believed. It is dm possible that some of these 
changes in the turbulence structure are due to Reynolds 
number effects. As pointed out earlier, the characteris- 
tic Reynolds numbers encountered in high-speed flow can 
cover a very large range, extending well beyond values of 
the Reynolds number typically found in the laboratory. 
Furthermore, the temperature gradients which are found 
in the boundary layer in supersonic flow lead to variations 
in Reynolds number acmss the layer which must be con- 
sidered along with the usual variations in the streamwise 
direction. 

We begin this report by reviewing the boundary layer 
equations in Section 2. In Section 3, we discuss the hehav- 
ior of boundary layers in subsonic flow, and in Section 4 
we consider their behavior in supersonic flow. A summary 
is given in the final section, Section 5. We will focus on 
scaling laws with respect to Reynolds number and Mach 
number effects. Hypersonic flows will not be considered 
in depth, mainly because of the lack of comprehensive 
data. Similarly, we do not consider transonic flows, so 
that the term "subsonic" will be taken to be equivalent 
to "incompressible." The preparation of this AGARDO- 

Figure 3: Fluctuating Mach number distributions. Flow 
1: Me = 2.32, R e e  = 4,700, adiabatic wall (Elbna & 
Lacharme; 1988); Flow 2: M. = 2.87, R e e  = 80,000, adi- 
abatic wall (Spina & Smits, 1987); Flow 3: Me = 7.2, 
Re0 = 7,100, TWIT, = 0.2 (Owen & Horstman, 1972); 
Flow 4: Me = 9.4, R e e  = 40,000, TWIT, = 0.4 (La- 
derman & Demetriades, 1974). Figure from Spina et d. 
(1994). 

graph was greatly helped by the availability of the recent 
reviews and commentaries on subsonic boundary layers 
by Smith (1994), Gadel-Hak & Bandyopadhyay (1994) 
and Fernholz & Finley (1995), and the reviews of super- 
sonic boundary layers by Smits el d. (1989). Spina et d. 
(1994), as well as the catalogs of supersonic turbulence 
data compiled by Fernholz & Finley (1976), Fernholz & 
Finley (1980), Fernholz & Finley (1981), Fernholz el d. 
(1989)), and by Settles & Dodson (1991). 

2 Boundary-Layer Equations 

Derivations of the incompressible boundary layer equa- 
tions can be found in many places, and they will not be 
repeated here. In any case, since we will need both the 
compressible and incompressible forms, it is expedient to 
concentrate on the former, and treat the latter as a special 
case. 

Detailed derivations of the equations for compressible 
turbulent boundary layers have been provided in kine- 
matic variables by van Driest (1951), Schubauer & Tchen 
(1959), Cebeci & Smith (1974) and Fernholz & Finley 
(1980). While it is well-known that the inclusion of den- 
sity as an instantaneous variable is to add t e r n  other 
than -mT to the Reynolds-averaged boundary layer 
equations, the interpretation of these t e r n  and their 
significance is not universally agreed upon. One of the 
reasons is that these terms do not appear in the mass 



averaged (Favre-averaged) equations, as shown by, for ex- 
ample, Morkovin (1962), Favre (1965), and Rubesin & 
Roee (1973). A critical review of the equations of com- 
pressible turbulent flow and a discussion of the relative 
merits of the maskaveraged form is given by Lele (1994). 

2.1 Continuity 

The Reynoldkaveraged, stationary, two-dimensional con- 
tinuity equation for compressihle flow is: 

The additional terms in this equation, & ( p )  and 
g(p'u'), act as apparent sources/sinks to the mean flow 
({chubauer & Tchen, 1959). To the boundary-layer a p  
proximation, &@Z) is negligible, and a simple mixing- 
length argument indicates that i37 is negative. The a& 
lute magnitudes of p' and v' increase with y near the wall 
before decreasing with y in the outer part of the boundary 
layer, and therefore &(p'v') acts as a maskflux source in 
the inner layer and as a sink in the outer region of the 
boundary layer. The presence of a source term in the 
continuity equation may indicate that the physics of the 
flowfield are not well represented. 

An alternative approach uses "Favre-averaging", where 
the instantaneous variable is decompceed into the sum of 
a maskweighted average, 6, and a fluctuation, a" (Favre, 
1965). The use of maskaveraged variables leaves the 
continuity equation devoid of turbulent mass transport 
terms: 

a a -. &4 + -(p) = 0. 
&I (2) 

2.2 Momentum 

For two-dimensional compressible flow, the y-component 
(wall-normal) momentum equation contains many terms 
aseociated with density and velocity fluctuations. For 
zero-pressure-gradient boundary layers in a steady su- 
personic flow, however, the usual orderdmagnitude ar- 
guments show that the pressure acravl the layer can be 
taken as constant, a8 for subsonic flows. The pressure is 
then a function only of streamwisedistance, so that @/82 
may be replaced by dp/& in the z-momentum equation. 
Hence, the mean pressure is considered to be 'imposed" 
on the boundary layer in that it appears as a boundary 
condition rather than as an independent variable. 

If the continuity equation is multiplied by the stream- 
wise velocity, added to the boundary-layer approximation 
of the z-momentum equation, and the resulting equation 
Reynolds-averaged, we obtain: 

Equation 3 is the most general form of the compressible 
houndary layer equation. The triple-product term may 
be neglected since it is one order of magnitude smaller 
than the other terms, and Vm can he neglected since 

it is smaller than U p  (p'u' and ~ u m e d  to be 
the same order and V << U). The resulting equation is: 

, -1 

Alternatively, the boundary-layer form of the compress- 
ible z-momentum equation can be written: 

w h e r e p r r = ~ r ( l + - a n d p = p ~ + f l , a n d w c a n  
usually he neglected. When the Favre-averaged form of 
the z-momentum equation is considered, that is, 

it is clear that three different forms of the equation ex- 
ist, and some physical insight regarding the differences is 
necessary. 

In Equation 4 the traditional Reynolds stress and another 
'apparent" stress, - U p ,  comprise the turbulent shear 
stress. Now, U r n  is not a "true" Reynolds stress, hut 
simply a consequence of the type of averaging used. Nev- 
ertheless, itscontribution to the totalst-cannot bedis  
counted. The correlations and U r n  are both n e m  - 
tive (as evident from a mixing-length argument), and thus 
U W  acts in addition to the 'incompressible" Reynolds 
shear stress. Assuming small pressure fluctuations and 
using the Strong Reynolds Analogy (SRA) (Morkovin, 
1962) (see Section 2.3), it is a simple matter to express 
the ratio of U r n  to p7 as (7 - 1 ) ~ '  ((see, for exam- 
ple, Spina et al. , 1991a). Of course, this expression is 
subject to the inaccuracies inherent in the SRA (see be- 
low), but it is a good approximation to at least M = 5, 
and provides an order-f-magnitude comparison even at 
higher Mach numbers. This relation indicates how quickly 
U P  becomes important in the houndary layer. For a 
Mach 3 adiabatic-wallboundary layer with R e e  = 80, WO, 
(y - l)MZ rises to a value of 1.0 a t  approximately 0.056 
(N 5GiJy+), and asymptotes to a value of 3.5 at the hound- 
ary layer edge (Spina, 1988). Since the Mach number is 
small across much of the constant-stress layer, Schubauer 
& Tchen (1959) neglected the 'second-order term" when 
developing a skin-friction theory, but this should not be 
considered a general result. 

The correlation U p  also appears in the turbulent ki- 
netic energy (TKE) equation for a compressible boundary 
layer. This equation is much more complex than the in- 
compressible TKE equation, with eight production terms, 
including one due to the Reynolds shear stress, -p-E, 
and one due to the "fictitious" stress, 4J-g. A com- 
parison between these two tern indicates that the pro- 
duction of turbulent kinetic energy due to the Reynolds 
shear stress is two orders-of-magnitude greater than that 
due to the term in question (in fact, there are three 
other terms that are an order-of-magnitude larger than 
- C J p g ) .  This indicates that U p  is less important 
than the other terms in determining the energy flow in a 
compressible houndary layer because it interacts with a 
considerably smaller mean strain. 

If the convective terms are written as the product of 
the average instantaneous mass flux and a strain (as in 



Equation 5), the only additional term (in addition to 
those found in laminar flow) is the traditional Reynolds 
stress, m'u'. This form of the equation was advocated 
by Morkovin (1962) to isolate the turbulent momentum 
transport, and the new parts of the convective terms r ep  
resent the fact that there is no mean mass transfer be- 
tween mean streamlines. Since U r n  may be thought of 
as a turbulent masktransport term, it is not surprising 
that this form of the equation is free from this term, and 
the interpretation of the equation is physically and intu- 
itively attractive. 

The major drawback to writing the z-momentum equk 
tion in Favre-averaged variables (Equation 6) is that r,, 
is more complex than for incompressible boundary layers 
(Rubesin & Rase, 1973). Expressing the instantaneous 
stress tensor in maskweighted variables, expanding, and 
time-averaging results in: 

7, = ps., + j,S;;ij 

where Sij = [(u;,, +uj,;)- $%,uk,k]. This expression con- 
tains additional t e r n  that are not amenable to a simple 
physical interpretation, hut the similarity of the Favre- 
averaged representation of the compressible momentum 
equation to that of the incompressible equation makes its 
use nevertheless attractive, especially in computations. 

2.3 Energy and the Strong Reynolds 
Analogy 

The mean energy equation was developed in terms of 
the stagnation enthalpy by Young (1951) (see Howarth, 
1953, Gaviglio, 1987) in the forms corresponding to the 
Reynolds-averaged and Favre-averaged variables, respec-- 
tively. In 'Reynolds-averaged variables, the boundary- 
layer approximation for the equation is: 

. . 
where, neglecting higher+rder terms, R = ii + +U1 , 
and H' = h' + Uu' . As in the development of the 
mean z-momentum equation (Equation 5), there are no 
additional tern beyond those found in incompressible 
flow, although the convective terms are slightly altered, 
as noted by Morkovin. 

A uaeful relation for the reduction of experimental data 
and the comparison of compressible to incompressible re- 
sults is the Strong Reynolds Analogy [first identified as 
such by Morkovin (1962), but primarily due to Young 
(1951)l. This analogy, leading to simplified solutions of 
the energy equation, is based upon the similarity between 
Equations 5 and 7 when Pr = 1 (or when molecular ef- 
fects are negligible compared to turbulent processes) and 
the similarity of the boundary conditions for % and U, 
and and u'. For zero-pressure-gradient flow of a perfect 
gas with heat transfer, the equations admit the solutions: 

where the heat-transfer rate and shear stress at the wall 
enter through the boundary conditions. For adiabatic 
flows, it follows that 

The solution given by TO = T, and Equation 10 satisfies 
the energy equation independently, and therefore may be 
applied for any pressure gradient (Gaviglio, 1987). 

Gaviglio notes that these relations (Equations 8 - 12) are 
so strict (that is, they apply in an instantaneous =nee) 
that they cannot be expected to hold exactly. Morkovin 
(1962) gives a "milder" fonn of the SRA that relatea the 
r.m.6. of the static temperature fluctuations to that of 
the velocity fluctuations (also see Spina et ol , 19918)). 
Morkovin (1962) and Gaviglio (1987) tested the time- 
averaged form of the SRA and found that &T is not 
-1.0 but is closer to -0.8 or -0.9. Still, this high corre- 
lation level indicates that l a r g ~ c a l e  eddies moving away 
from the wall in a supersonic flow almmt always con- 
tain warmer, lower-speed fluid than the average values 
found at that distance from the wall. As for the instanta- 
neous form of the SRA (Equation lo), Morkovin & Phin- 
ney (1958), Kistler (1959), Dusrrauge & Gaviglio (1987), 
and Smith & Smits (1993a) have shorn that G is not 
negligible, but that the results derived from such an as 
sumption still represent very good approximations. The 
instantaneous form of the SRA has been validated to a 
freestream Mach number of 3 (Smith & Smits, 1993a), but 
the only limit to its first-order approximation at higher 
Mach number may be the increasing importance of low- 
Reynolda-number effects near the wall at  higher hyper- 
sonic Mach nwnbem (Morkovin, 1962). There is also the 
fact that l"/? is bounded, which means there exists an 
upper Mach number limit on the SRA unless u' /u a p  
proaches very small values at the same time. 

3 Subsonic Flows 

We will now consider the behavior of turbulent bound- 
ary layem in subsonic flows, starting with the mean flow. 
Unless otherwise indicated this discussion follows Smith 
(1994) closely. 

3.1 Mean flow behavior 

The boundary-layer equations for subsonic flows may be 
derived from the general equations given in Section 2 in 
a straightforward manner. The mean continuity and z- 
momentum equations are, respectively: 

The energy equation is now redundant, as long as the flow 
is adiabatic and fluid properties are constant. 



The turbulent boundary-layer equations differ from the 
laminar equations only in the additional turbulent shear 
stress term -rn-. One immediate result is that a turbu- 
lent boundary layer has two characteristic length scales, 
rather than one. A measure of the boundary layer thick- 
ness, such as 6, is the appropriate length scale in the outer 
part of the layer, away from the wall, and is thus termed 
the outer length scale. The viscous length, vlu,  (u, is 
defined in Equation 17), is the appropriate length scale 
near the wall, and is termed the inner length scale. In 
contrast, a laminar boundary layer in zero pressure r% 
dient is characterized by a single length scale, &. 
This is why it is possible to obtain full similarity mlu- 
tiona for laminar boundary layers, but not for turbulent 
boundary layers. For turbulent boundary layers, sepa- 
rate similarity laws for the inner and outer flows must be 
sought. The ratio of the outer and inner length scales, 
6+ (= 6u,/u), increases with increasing Reynolds num- 
ber and therefore the shape of the mean velocity profile 
must also be Reynoldknumber dependent. 

3.1.1 The viscous sublayer 
Figure 4: Example of a measured mean velocity p m  
file at Ree = 5,100 from Purtell et al. (1981) scaled 
on inner variables, and compared to theoretical and 
empirical scaling-laws: 0 data; ----- the lin- 
ear sublayer; ------ the buffer region according to 
Spalding (1961); --------- the logarithmic overlap re 
gion (equation 24); ------- Coles' law-of-the-wake 
(equation 27). Figure from Smith (1994). 

For the flow very near the wall, the "no-dip" condition - - 
at the wall requires that U, V, u' and v' must approach 
zero as the wall is approached. Thus, for a zerc-pressure- 
gradient flow, for the region very near the wall, E q w  
tion 14 reduces to 

a=V 
p y  = 0. 
ay (15) 

Equation 15 may be integrated to give: 

that the velocity defect, U.-V, should have the following 
functional dependence 

U= - u = g(v,6,rw,p). (20) 

Dimensional analysis of Equations 19 and 20 leads to 

where u, is the friction velocity and is defined as 

where C, is the skin friction coefficient defined as 
and 

Equation 21 is known as the law-of-the-wall, and is valid 
only in the inner layer. Equation 22 is known as the 
defeet-law, and is valid only in the outer layer. Rotta 
(1950), Rotta (1962) suggested that the defect law should 
be written as: 

Equation 16 may also be written as u+ = yt, where 
the superscript (+) denotes normalization with inner vari- 
ables (u, for velocity, and vlu, for length). That is, very 
near the wall, the velocity varies linearly with distance 
from the wall. 

3.1.2 The law-of-thewall and the defect-law 
where u,/U. indicates a weakor vanishing Reynolds num- 
ber dependence. Millikan (1938) proposed that at large 
enough Reynolds numbers (where the w / U .  dependence 
is assumed to vanish), in a region where v lu ,  6: y 6: 6, 
there may be a region of overlap where both the inner and 
outer similarity laws are simultaneously valid. Matching 
the velocity, and velocity gradients, given by Eguations 21 
and 22 yields the following forms for the law-of-the-wall 
and the defect-law in the overlap region: 

For the inner, near-wall flow (including the linear part 
of the sublayer), Prandtl (1933) argued that the viscok 
ity and wall shear stress are the important parameters. 
and thus the velocity must have the following functional 
dependence: - 

fJ = f ( % ~ W > ~ > l l ) .  (19) 

In the outer layer, viscosity is less important, but the 
presence of the wall is still felt through the magnitude of 
the wall shear stress. Thus, von Kdrmh (1930) suggested 
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where C, C', and n (called von KbrmBn's constant) may 
or may not be Reynoldknumber dependent. Thus, the 
velocity profile in the overlap region is logarithmic, and 
the overlap region is often referred to as the logarithmic 
&on. 

The preceding discussion has outlined the "orthodox" 
view of mean-flow scaling. An alternative scheme, pro- 
posed by George et d. (1992) is discussed in Section 3.1.4. 
Also, the @physical" boundary layer thickness, 6, is exper- 
imentally illdefined [this is especially true in supemnic 
flows - see Fernholz & Finley (1980) and Section 41, and 
it ought to be replaced by a well-defined integral thick- 
ness, such as the Clauser or Rotta (Rotta, 1950) thickness: 

where 6' is the usual (incompressible) displacement thick- 
ness. 

It should be pointed out that the similarity scaling of 
the mean incompressible boundary layer velocity profile 
is most usefully expressed in terms of the scaling for the 
mean velocity gradient W/&. That is, XI/& in the 
near-wall region scales with a length scale v/ur and in 
the outer region the length scale is 6. In the overlap re- 
gion, the length scale becomes the wall-normal distance, 
y. The velocity scale for the inner and outer regions of 
the boundary layer is the same, and it is, of course, u,. 

3.1.3 The Law-of-thewake 

Coles (1956) compiled and analysed all of the data avail- 
able at that time for velocity profiles in turbulent bound- 
ary layers and proposed a scaling law to include the outer 

layer as well as the overlap region. He found that the por- 
tion of the velocity profile which deviated from the log- 
arithmic formula in all c- shared a similar form that 
reaembled the velocity profile in a wake. Coles thus ex- 
pressed the departure as a wake function and added it to 
Equation 24 obtaining 

Here, Il is equivalent to the maximum deviation of the 
velocity profile from the log-law of Equation 24 and it in- 
dicate the strength of the wake; w(y/6) is Coles's wake 
function (= 2sina(f i j )  such that Ji(y/6)dw = 1 and 
w(1) = 2). This combined law-of-thewall and law+f-the- 
wake describes the velocity profile from the inner edge 
of the log region all the way to the edge of the bound- 
ary Inyer. Figure 4 shows a typical velocity profile scaled 
with inner variables. The figure also shows the thmreti- 
cal linear profile dwp in the viscous sublayer, a line cor- 
responding to the logarithmic overlap region, and Coles's 
wake function w .  The curve which is used to interpo- 
late the velocity profile between the sublayer and the 
log region was derived by Spalding (1961), and this re- 
gion is called the buffer layer. Figure 5 shows how these 
semi-empirical expressions for the mean velocity profile 
change with Reynolds number. In figure 58, the profiles 
are plotted using inner scaling, and figure 5b shows the 
same profiles plotted using outer scaling. When using in- 
ner scaling, only the wake component (the outer layer) is 
Reynolds-number dependent. When using outer scaling, 
only the inner layer is Reynoldknumber dependent. This 
is the expected behavior. However, what may be unex- 
pected is that the logarithmic overlap region, when scaled 
with outer variablea, is also weakly Reynolds number de- 
pendent, at least for the lowest-Reynoldknumber profile. 
This point is discussed further below. 

A local friction law is obtained from Equation 27 by using 
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A (O/u,) = 2nln. From Coles (1962). 

the boundary condition U = U. at y = 6, giving 

where R e 6  = 6U./v. Equation 28 provides an implicit 
expression for determining C,, if R e s ,  n ,  and C are all 
known. 

In 1962, Coles again surveyed the available data. He 
assumed that 6 and C were constant, independent of 
Reynolds number. By fitting measured velocity profiles 
to the logarithmic overlap region, he determined u, for 
each profile, and then determined Il by measuring the 
maximum deviation from the log-law. He found that, for 
Ree < 6 , W ,  n is a strong function of Reynolds number, 
as shown in figure 6. 

In 1968, Coles further re-analysed the data. This time, 
he fit the data to the logarithmic overlap region and part 
of the wake to determine u, and 6 simultaneously. He 
again assumed that n = 0.41 and C = 5.0. In this new 
analysis, Coles found the asymptotic value of n to be 
about 0.6 ( E m  et d. , 1985), as opposed to 0.55 in the 
earlier study, although the difference may be due to the 
different fitting process used to determine u,. 

3.1.4 An alternative outer-flow scaling 

So far, we have only considered the law-of-the-wall and 
the defect-law in the forms of Equations 21 and 22, which 
give rise to a logarithmic overlap region. These similarity 
laws are generally accepted by most researchers. Recently, 
however, George et d. (1992) have raised serious ohjec- 
tions to the form of the defect-law given in Equation 22. 
Based on the asymptotic behavior of the logarithmic laws 
(see below), George el d. argue that u, is not the correct 

velocity scale for the outer flow. Instead, they favor using 
U.. Thus the defect-law takes the new form 

Matching this to the law-of-the-wall in Equation 21 re- 
sults in an overlap region having a power-law form, and 
the law-of-the-wall and the defect-law take the following 
forms, respectively, in the overlap region: 

and 
u. -U 
- = I - C ,  u. (i)' - 60, (31) 

where Ci, C,, and y are all Reynolds number dependent. 
The hmctional forms for C., C., 7 must all be found em- 
pirically from data. It is also not possible to determine 
u, by fitting the data to some predetermined curve be- 
cause of the Reynolds number dependence of Equations 30 
and 31. Instead, u, must be measured by some indepen- 
dent means. George et d. analysed several data sets for 
which the values of u, were known, and empirically found 
the corresponding values for Ci, C,, and 7. They argue 
that the power-law similarity laws collapse the data better 
than the logarithmic similarity laws. As evidence, figure 7 
shows one of PurteU et d. (1981) velocity profiles plotted 
using George et d 's inner scaling compared with Eqw 
tion 30. One drawback of the power-law similarity laws is 
that they have not yet been extended to account for the 
wake. However, George et d derive a local friction law 
by matching the mean velocity given by Equations 30 and 
31, which are simultaneously valid in the overlap region. 

A power-law overlap region provides significant theoret- 
ical and practical advantages over the traditional log* 
rithmic form. George et d. (1992) discuss the fact that 



Figure 7: Example of a measured mean velocity profile 
at R e e  = 5,100 (from Purtell et d. , 1981) compared to 
the scaling laws progosed by George et d. (1992), George 
& Caetillo (1993): linear sublayer; - -- the power-law overlap region (Eguation 30). Figure 

from Smith (1994). 

the lag-law form indicates that, in the limit of infinite 
Reynolds number, 1) the velocity profile essentially dia- 
appeass (that is, lif1.Y. -. l ) ;  2) the ratio of 6 to ei- 
ther of the integral scales, 6' or 8 ,  asymptotes to infinity, 
and 3) the shape factor, H, asymptotes to a value of 1. 
The first point poses a theoretical problem, in that if the 
Reynolds number is increased towards infinity by simply 
moving downstream on an infinitely long surface, there 
should always exist a boundary layer. In addition, veloc- 
ity profile data collapse equally well using either 6' or 8, 
as a length scale, as with using 6 ,  which confficts with 
the second point. Finally, shape factors below 1.25 have 
never been measured in zero-pressure-gradient turbulent 
boundary layers (see, for example, figure 18), which con- 
flicts with the third point. In contrast, the power-law 
forms predict that 1) a velocity profile will always exist, 
even in the limit of infinite Reynolds number, 2) the ra- 
tios 6/6* and 6 / 8  asymptote to finite values, and 3) the 
asymptotic value of the shape factor is greater than unity. 

It is difficult to judge whether the traditional logarithmic 
f o m  or the power-law forms are correct. In practice, 
the two f o m  are not very different. This can be seen 
by comparing figures 4 and 7, which show the same data 
plotted using both types of scaling. 

However, the difference may be important when extrap 
olating results to very high Reynolds numbers, and the 
issue needs to be resolved. As shown by Smith (1994), a 
full similarity analysis supports the use of U. as the outer- 
layer velocity scale. His mean-flow measurements in the 
range 4,600 j R e e  j 13,200 also appear to support the 
view that the outer region scales using the freeatream ve- 
locity as the velocity scale. Although these results tend 
to give some confidence in power-law similarity laws, the 
log-law is well-entrenched and unlikely to be replaced by 

alternative scaling8 unlesa the practical consequences be- 
come compelling. Certainly the data presented in this re- 
port (see section 3.1.5) is consistent with the traditional 
log-law over a very wide Reynolds number range, and sug- 
gests that the log-law will continue to be widely used. 

In contrast to the case for boundary-layer flows, George 
et d. (1992) concluded that for fullydeveloped pipe 
and channel flows ur is indeed the correct velocity scale 
throughout the flow. The wall shear stress and the prek 
sure drop are intimately connected through the equations 
of motion for these flows, and thus u, influences the entire 
flow. This connection is abeent in boundary-layer flows. 
Since there are fundamental differences between devel- 
oping boundary-layer flows and fully-developed internal 
flows, it may not be appropriate to compare results from 
internal flows with results from boundary-layer flows. 

3.1.5 The data 

Table 1 gives an over-view of the principal sources of data 
discussed in this section. The discussion follows Fernholz 
& Finley (1995) closely, and fixther details may be found 
there. The table indicates the symbols used for plotting 
the data in later sections for overall comparison purposes, 
the range of Reynolds number based on momentum de- 
fect thickness and the shape factor, the experimental tech- 
niques and the measurements made, the experimental sit- 
uation and potentially important secondary factors such 
as tripping devices, freestream turbulence and pressure 
history. The survey not only shows that relevant data ex- 
ist in a Reynolds number range 3x10' < R e e  5 2.2x106, 
but indicates several gap ,  especially in the case of tur- 
bulence data in the medium-to-high range. The re- 
cently published measurements by Saddoughi & Veer- 
avalli (1994) reach a peak Reynolds number of 3.2x10', 
but were obtained on a rough wall. 

The turbulence data shown in Table 1 were obtained 
largely by using hot-wire probes, which can give rise 
to problems with spatial resolution, especially at high 
Reynolds numbers. This problem will be discussed in 
Section 3.2.1 below. The only laser Doppler anemome- 
ter data listed in Table 1 are those of Petrie et d. (1990) 
although there are two further investigations (Table 2) at 
low Reynolds numbers ( j  2100) ( K a r h n  & Johansson, 
1988, Bisset & Antonia, 1991, Djenidi & Antonia, 1993). 

We begin the discussion of Reynolds number effects by 
considering the value of the minimum Reynolds number 
for a fully-developed turbulent layer. At low Reynolds 
numbers, the transition trip, the upstream history, or 
boundary conditions such as freestream turbulence, can 
all inhence the development of the boundary layer, and 
therefore the Reynolds number alone is thus not s a -  
cient to determine whether a zero presure gradient bound- 
ary layer fulfills all the conditions for a W l y  developed" 
state. The shape parameter H, skin friction coefficient C, 
and the strength of the wake component ll should also be 
used as criteria, as well as the Reynolds stress maxima 
and the shape of the spectra. 

Preston (1958) compared measurements made on a flat 
plate by Dutton (1955) with a reworking of Nikursdse's 
(Nikuradse, 1932, Nikuradse, 1933) pipe flow measure- 
ments, and "the rather limited experimental information" 



Table 1: Sources for subsonic mean flow and turbulence data. Table from Fernholz & Finley (1995). 



Table 2: Additional sources for subsonic mean flow and turbulence data. Table from Femholz & Finley (1995). 

available at the time led him to place the lower limit 
at Ree zs 320 for a boundary layer tripped by a tran- 
sition wire. Table 2 lists some more recent investigations, 
together with relevant characteristic information, and it 
would appear that a logarithmic profile can be identified 
down to Ree values of the order of 350. 

Murlis et al. (1982) suggested "that the main changes 
in mean velocity profiles at low Reynolds number arise 
because of a reduction in the wake component and not 
through a failure of the inner logarithmic law". This is 
clearly seen in figure 8 where a range of fully turbulent 
low Reynolds number profiles are shown. The appearance 
of a log-law with a greater slope is also noted by White 
(1981) in the range 4W < RQ < 600. 

Figure 9 shows some skin-friction data compared to a lam- 
inar correlation due to Walz (1966) and a turbulent corre- 
lation, extended to low Reynolds number, due to Fernholz 
(1971). The dependence of the transition process on the 
freeatream turbulence level is clearly demonstrated, and 
the shear stress level reached after transition is closely 
related to the turbulent correlation, which agrees well 
with the data of Purtell et al. (1981) and Smita et ol. 
(1983b). In contrast, it is possible for strong tripping de- 
vices to over-stimulate the boundary layer and c a w  an 
over-shoot, with Cf values above the turbulent Cf curve 
(see Dhawan & Narasimha, 1958). 

As indicated earlier, the development of a low Reynolds 
number boundary layer is also indicated by the strength 
of the wake component (see figure 6). Figure 10 shows 
data for more recent data, as listed in Tables 1 and 2, in- 
cluding some very high Reynolds number results. There is 
some question regarding the trend to zero strength wake 
at RQ = 500, as suggested by Coles (see also Smita et al. 
, 1983b). In figure 10, the trend at low values of Ree is 
principally given by the data affected by high levels of 
freeatream turbulence. Coles proposed that "except pok 
sibly at very low Reynolds number the effect of increased 

stream turbulence is to decrease the strength of the wake 
component and that the akin-h.iction value is higher than 
for comparable experimental data!' The data indicate 
that the wake factor may decrease with freeatream tur- 
bulence level even at very low Reynolds number, whereas 
the skin-friction coefficient does not show any particular 
trend (see figure 9). At high Reynolds numbers, the data 
also suggest that the value of the wake strength may lie 
below that suggested by Coles. 

In preparing figure 10, the strength of the wake compo- 
nent was found using the constants K = 0.40 and C = 5.10 
in the log law. As Smith (1994) and Fernholz & Finley 
(1995) indicate, choosing different values can have a sig- 
nificant effect, since the strength of the wake component 
is always found as the difference between two relatively 
large quantities. Spalart (1988), in evaluating his own low 
Reynolds number computational data, found "intolerably 
large discrepancies between wake-strength values conse- 
quent upon small variations in the log-law constanta", 
and concluded that "very accurate measurements or aim- 
ulations over a wide Ree range, as well as a strong con- 
sensus on the value of 6 (at least two significant digits) 
will be needed before definitive results can he obtained 
for A (U/u,)". At very high Reynolds numbers, where 
U/u, near the edge of the layer takes large values, this 
problem becomes even more serious, so a high-Reynold& 
number asymptotic value (if one exists) is very difficult 
to establish. 

Velocity profiles for a wide range of Reynolds numbers 
are shown in inner-layer scaling in figures 11 - 13. Over 
the entire Reynolds-number range, the agreement with 
Equation 24 is excellent. Small departures are evident 
but appear to relate more to differences between invek 
tigators than to variation with Reynolds number. The 
data in figure 12 were measured using the same hot-wire 
probes and electronic equipment in two different wind- 
tunnels (HFI at TU Berlin and the DNW in Holland). 
The measurements by Winter & Gaudet (1973) cover the 
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Figure 8: Development of the mean velocity in inner-law waling in a zero pressure gradient low-Fbynolds-number 
incompressible boundary layer. Figure from Fernholz & Finley (1995). 

Figure 9: Comparison of measured skin-friction coefficients with skin-friction relationships from Welz (1966) and 
Fernholz (1971). Data born Roach & Brierley (1989). Wall stress from Preston tube or momentum balance in a 
laminar-transitional-turbulent boundary layer. Figure from Fernholz & Finley (1995). 
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Figure 10: More recent data on the Reynolds-number dependence of the wake strength in subsonic boundary layers 
(for symbols see Table 1). Figure from Fernholz & Finley (1995). 

Figure 11: Development of the mean velocity in inner-layer scaling at low to medium Reynolds numbers. The line is 
equation 24 with 6 = 0.40 and C = 5.1. Figure from Fernholz & Finley (1995). 



Figure 12: Development of the mean velocity in inner-layer scaling for medium Reynolds numbers. Data kom Bruna 
et al. (1992) and Nockemann et al. (1994). The line is equation 24 with K = 0.40 and C = 5.1. Figure from Fernholz 
& Finley (1995). 

Figure 13: Mean velocity profiles in inner-layer scaling at high Reynolds numbers. Data from Winter & Gaudet (1973) 
( M e  = 0.20). The line is equation 24 with n = 0.40 and C = 5.1. Figure from Fernholz & Finley (1995). 





oL1260 1.28 DNW 
-57720 1.26 (199L) O 20920 I 

Figure 15: Mean velocity profiles in outer-layer scaling for rned~un~ Reynolds numbers. Data horn Brune el d. (1992) 
and Nockernann e l  al (1994). The h e  is equatlon 69. Figure from Fernholz & Finley (1995). 



Figure 16: Development of the mean velocity in outer-layer scaling at high Reynolds numbers. Data from Winter dc 
Gaudet (1973) (Me = 0.20). The Line is equation 69. Figure from Fernholz & Finley (1995). 

Figure 17: Skin-friction coefficient variation with Reynolds number. --------- , Gals (1962); . Femholz 
(1971) (for symbols see Table I ) .  Figure from Fernholz & Finley (1995). 



Figure 18: Variation of shape parameter H with Reynolds number (for symbols see Table 1). Figure from Fernholz & 
Finley (1995). 

3.2 Turbulence statistics 

Despite the discussion given above, the mean flow in- 
ner/outer scaling scheme as expressed by Equations 21 
and 22 (or better in terms of the velocity gradient XI/& 
appears to be very successful in practice. A similar in- 
ner/outer scaling is therefore expected to apply to the 
time-averaged turbulence statistics. That is, for the inner 
region, 

and for the outer region, 

(these statements imply that the mean velocity and tur- 
bulence intensities scale with the same set of velocity and 
length scales: more precisely, they imply that the veloc- 
ity gradient and the turbulence intensities scale similarly). 
However, matching the turbulence intensity in the over- 
lap region leads to the conclusion that p / u :  is constant 
in the log-law region (see, for example, Townsend, 1976). 
This is not observed (see figures 29 and 30. One explank 
tion of this (Bradshaw, 1967, Bradshaw, 1994)) is that the 
"true" or 'activen turbulent motion isoverlaid by an irro. 
tational Uinactive" motion imposed by the pressure field 
of the large eddies in the outer part of the layer. Motions 
of this nature have large wavelengths, of order 6, and so 
are large as compared to the scale of motions in the inner 
layer. However, as the wall is approached the v' compo- 
nent of the inactive motion must become small due to the 

wall constraint (the "splat" effect) so that its influence 
on the shear stress is minor, and the mean velocity log- 
law is preserved. The question remains as to what extent 
the turbulence profiles are similar in the sense that they 
collapse onto a Reynolds-independent curve. 

Unfortunately, the methods available for measuring tur- 
bulence quantities are less accurate than the relatively 
simple methods used to measure the mean flow. Will- 
marth (1975) states that in 1960 he attempted to col- 
lect all the available data for turbulence intensity pro- 
files and show them on a single plot. The data did 
not agree to within f50%. Willmarth attributed the 
large scatter to fiemtream disturbances and differences in 
tripping devices among the various investigations consid- 
ered. Difficulties and uncertainties associated with hot- 
wire anemometry, such as differences in calibration meth- 
ods, calibration drift, and spatial averaging and atten- 
uation due to finite probe size also contributed to the 
uncertainty. It is important to take these measurement 
difficulties into accouk, before we conclude that the tur- 
bulence statistics are Reynolds-number dependent. 

3.2.1 Spatial resolution effects 

Before analyzing the existing turbulence data, we present 
the following discussion by Smith (1994) on the effecta 
of spatial averaging on turbulence measurements. The 
velocity measured by a probe such as a hot wire is a 
spatial average along the sensor length, and, according 
to Johansson & Alfredeaon (1983) a weighted average ow- 



ing to the effects of non-uniform temperature distribution 
along the wire. If the velocity variation along the sen- 
sor is large, the averaging is also likely to be influenced 
by the non-linearity of the probe calibration. Thus ed- 
dies which have scales smaller than the length of the wire 
will not be accurately resolved. Not all components of 
the three-dimensional spectrum are filtered equally: for 
example, the attenuation of the turbulence intensity as 
measured by a single-wire probe is determined by the rel- 
ative magnitude of the wave-number parallel to the probe. 
The spatial filtering of the wire is applied to the three- 
dimensional spectrum, and it will not remove all the die- 
turbances with a wavelength smaller than the wire length 
(seeBlackwelder & Harito~dis, 1983, Ewing et d. , 1995). 

Uberoi & Kovasznay (1953) first developed a technique 
for calculating the effect of spatial averaging on measured 
energy spectra. Wyngaard (1968), Wyngasrd (1969) ex- 
tended this work and developed a framework for correct- 
ing measured energy spectra to account for the attenua- 
tion at high frequencies (or high wavenumbers) due to 
spatial averaging. Wyngaard showed thst when wing 
normal wire probes, measurements of the energy spec- 
tra begin to show significant attenuation at wavenumbers 
k ~ l  > 1 for wires of length l/t) = 1 (1 is the wire length, kl 
is the longitudinal wavenumber, and t) is the Kolmogorov 
length scale defined in Equation 39). For longer wiren, 
the effects are more severe and begin at lower wavenum- 
bers. For crossed-wires, the issue is even more compli- 
cated, becaw the spacing of the two wires and the cross- 
talk between them are further sources of error. Wyn- 
gaard's correction method assumes that the small scales 
are isotropic and that Pao's (Pao, 1965) formulation for 
the three-dimensional energy spectrum is correct. 

LigraN & Bradshaw (1987) studied wire-length effects on 
turbulence measurements in the near-wall region (yf % 

17) of turbulent boundary layers. They found that ad- 
equate resolution (f4%) of turbulence statistics ( m a n  
squared values and higher-order moments) requires probe 
dimensions of l/d > 200, and 1+ = lu,/v < 20. They 
also found that adequate resolution of the high wavenum- 
ber end of the energy spectra appears to require L t  < 5 
(in their study. t)+ = 2 at yf = 17). Browne et al. 
(1988) proposed much more stringent criteria: they sug- 
gested that for accurate measurements (f 4%) of turbu- 
lence statistics, croased-wire probes should have dimen- 
sions l/t) < 5 and d, /q  < 3 (d, is the distance between 
the two wires of the crossed-wire probe). These criteria 
are difficult to meet in a typical laboratory experiment: 
such small probes are very difficult to manufacture, and 
with such small distances between wires, crcsstalk will 
be a major problem. 

Perry et d. (1986) found that probe dimensions can dra- 
matically affect measured energy spectra and turbulence 
statistics and thereby alter the apparent scaling behav- 
ior of the data. Klewicki & Falco (1990) compiled data 
from several investigations in boundary layers and chan- 
nel flows, along with their o m  measurements in a bound- 
ary layer. Although they do not give any specific rec- 
ommendations for the probe dimensions, they show that 
wire length effects can easily obscure Reynolds-number 
effects, leading to incorrect conclusions about the scal- 
ing behavior of the turbulence. They also studied the 
effect of wire spacing on measurements of velocity derivk 

tives (both spatial and temporal) and suggest that wires 
should be spaced only a few Kolmogorov lengths apart at 
most. 

For high-Reynoldknumber laboratory flows, t) is very 
small, and these restrictions are extremely difficult to 
meet in a laboratory flow, particularly when it is nec- 
essary to maintain l/d > 200 to minimize end-conduction 
effects, as discussed by Perry et d (1979) and Hinae 
(1975). Fernholz & Finley (1995) point out that high 
Reynolds number experiments wing hot wires therefore 
need to be made in large wind tunnels where the Reynolds 
number is a consequence of large physical scale and de- 
velopment length rather than high velocity, ao as to take 
advantage of the smallest wires available, with minimum 
diameters of about 0.6j~m. Thia requirement argue8 for 
the development of new techniques to study small-scale 
turbulence. For example, cryogenic tunnels achieve high 
Reynolds numbers with very small viscosities. In such 
cases the phyaical length scales are even smaller than 
that of the equivalent flight environment, and hot-wire 
anemometry is only of limited use. 

To illustrate the effects of spatial filtering on turbulence 
levels, figure 19 is reproduced from Fernholz & Finley 
(1995). Here, the maximum value of F l u ?  is clearly 
seen to decrease M the dimensionless wire length if in- 
creases. This trend is shown even more clearly by the re- 
sults of Ligrani & Bradshaw (1987) (see figure 20), where 
the maximum value of increases from 2 to 2.8 as 
If decrease from 60 to 3. (These results are discussed 
further in Section 3.2.3.) 

Westphal (1990) presented a method for estimating spa- 
tial resolution errors in which the error is assumed to 
depend on the ratio of probe dimension to the Taylor 
microscale. Westphal's analysis is an extension of work 
by Renkiel (1954) and includes corrections for normal 
wires, croased-wire probes, and dual wire V-configuration 
probes. Nakayarna & Westphal (1986) studied the effects 
of sensor length and spacing on turbulence statistics mea- 
sured wing a crossed-wire probe in a turbulent bound- 
ary layer (Ree = 8,300). Their results showed that the 
Reynolds normal stresses suffer more severe errors than 
the Reynolds shear stress. However, the shear correle - 
tion coefficient, -u'v'/u',.v:,., was quite insensitive to 
probe dimensions, because increaeed sensor spacing acted 
to overestimate 7 but underestimate F. Overall, 
showed the greatest sensitivity to sensor length, while u" 
was most influenced by sensor spacing. 

The effect of sensor-wire separation of one viscous length 
on the synthetic response of an X-wire probe was in- 
vestigated by Moin & Spalart (1987). They found that 
even this small separation led to an overestimation of the 

component of more than 10% near the wall. Park 
& Wallace (1993) have computed the influence on an X- 

array, and found that for L+ = 9 at yf = 30 the 0 
value was about40% high, while was about 3% low. 
With L+ = 2.3 the corresponding values were 3% and 
5%. These calculations do not provide the final answer, 

but indicate that we can expect the error in 0 will be 
larger than the error in 3 and will increase with L+. 
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Figure 19: The iniluence of the characteristic dimensionless hot-wire length wale if on the maximum value of G / u ,  
in subsonic boundary layem. Ree > 700 and 116 > 180. For additional symbols see Table 1. Figure from Fernholz & 
Finley (1995). 
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Figure 20: The iniluence of if and Reynolds number on the maximum value of G / u , .  Data from 13 experiments. 

Figure from Fernholz & Finley (1995). 
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Fimre 21 : Sketch of thestrenmline pattern and svatial influence of attached eddies at three different scales (reproduced 
from Perry et d .  , 1986). 

3.2.2 Sealing laws for turbulence 

To find the scaling l a w  for the turbulent stresses, it is 
useful to begin by considering the scaling of the turbu- 
lence spectra. The most consistent and buccessful scal- 
ing laws for the turbulence energy spectra were first sug- 
gested by Tomsend and developed extensively by Perry 
and his co-workers. Based upon Townsend's (Townsend, 
1976) "attached eddy" hypothesis and the flow visualizs 
tion results of Head & Bandyopadhyay (1981) (see Sec- 
tion 3.3.2), Perry & Chong (1982) developed a physical 
model for near-wall turbulence. They wumed that a 
turbulent boundary layer may be modelled as a forest of 
hairpin or A-shaped vortices, which originate at the wall 
and grow ofitward. Figure 21 shows three A-shaped vor- 
tices of different scales, and indicates their influence on 
the velocity field sensed by a probe at a position y. The 
probe will sense contributions to u' and w' from all eddies 
of scale y and larger. However, only eddiea of scale y will 
contribute to v'. Therefore, u' and w' should follow simi- 
lar scaling laws, while v' may follow a somewhat different 
scaling law. Using these ideas in conjunction with dimen- 
sional analysis, Perry et al. (1985), Perry et al. (1986) 
derived scaling laws for the energy spectrs in the turbu- 
lent wall region, defined ss ulu, < y < 6. In general, it is 
the region beginning far enough from the wall such that 
direct wall effects, such as the damping of the velocity 
components, are unimportant, and extending to a point 
far enough inward from the boundary layer edge such that 
the direct influence of the large scale flow geometry and 
outer boundary conditions are also unimwrtant. Thus, 
at sufficiently high Reynolds numbers, any wall-bounded 
turbulent shear flow should have a turbulent wall region, 
where the following analysis will apply. 

First consider the u' component of the turbulence fluctu- 
ations. Eddies of scale 6 will contribute only to the large- 
scale, low-wavenumber (low-frequency) region of the en- 
ergy spectrum, QII. For the large-scale eddies, viscosity is 
less important, and the spectrum in the low-wavenumber 
region should depend only on u,, k ~ ,  y and 6, where 
ki is the streamwisecomponent of the three-dimensional 
wavenumber vector k. Thus, from dimenaional analysis, 
the spectrum of u' at low wavenumbers should have the 

-. 
Throughout this section, the argument of @ii will denote 
the unit quantity over which the energy spectral density 
is measured, following Perry et al. (1986). Peny et d. 
call Equation 36 an "outer-flow" scaling, since it describes 
the effects of the large scale eddies. 

Eddies of scale y will contribute to the intermediate 
wavenumber range of the spectrum, while eddies of scale 
6 will not contribute to this range. Thus, in this range the 
spectrum should have the following 4nner-flow" scaling 

The smallest-scale motions, which contribute to the hiih- 
wavenumber range of the spectrum, are dependent on 
viscosity. Kolmogorov (1961) assumed that these small- 
scale motions are locally isotropic, and that their energy 
content will depend only on the local rate of turbulence 
energy dissipation, 6, and the kinematic viscosity, u. Di- 
mensional analysis leads to 

where 7 and v are the Kolmogorov length and velocity 
scales respectively, and are defined as 

Equation 38 is valid in the high wavenumber region of 
the spectrum and is commonly referred to as Kolmogorov 
scaling. The region in which Equation 38 is valid is called 
the inertid sirbmnge. 

Just as the mean flow exhibited an inner and outer scaling 
with a region of overlap, it is expected that Equations 36 
and 37 will have a region of overlap (overlap region I), and 
that Equations 37 and 38 will also have a region of overlap 
(overlap region 11). Perry et al. (1986) have shown that 
in overlap region I, the spectrum must have the form 



where AI is a universal constant. 

In overlap region 11, the spectrum follows the same form 
derived by Kolmogorov (1961), 

where KO is the universal Kolmogorov constant. Follow- 
ing the suggestion of Townsend (1976), Perry et al. (1986) 
assumed that in the turbulent wall region dissipation is 
equal to production, thus 

They also assumed that in the turbulent wall region 1) 
the velocity profile is logarithmic as given by Equation 24, 
and 2) -&7 = uj .  These assumptions can he used with 
Equations 39 and 40 to show that, in the turbulent wall 
region, 

Substitution of Equations 45 and 46 into Equation 38 and 
forcing it to match with Equation 37 yields 

Figure 22 shows an example energy spectrum plotted w 
ing Kolmogorov scaling. The spectrum shown was o b  
tained in a tidal channel by Grant et d. (1962). The 
extremely high Reynolds number results in a very long 
-513 range in the spectrum. 

According to these arguments, the spectra of w', @33, will 
follow similar scaling law8 with A1 replaced by Al. Fig- 
ure 238 summarizes the spectral scaling laws for @II and 
@33. The boundaries of the overlap regions are denoted by 
P, N, M, and F. P, N, and M are universal constants, 
and F is a large scale characteristic constant, and is thus 
likely to be Reynolds number dependent. Figures 23b and 
2% illustrate the deduced formof a11 and a33 using inner 
and outer flow scaling. 

For v', figure 21 suggests that there will be no contri- 
butions from 6-scale eddies, and thus there will be no 
outer-flow scaling for @22. There will only be inner-flow 
and Kolmogorov scaling, with one region of overlap. @ a 1  

is deacribed by Equations 37, 38, and 43. Figure 248 
summarizes the scaling laws for @22, and figures 24b and 
24c illustrate the expected form of the spectrum using in- 
ner and outer flow scaling. Energy spectra measured by 
Perry & Abell (1975), Perry & Abell (1977), Perry et al. 
(1986), Perry et d. (1985), Li (1989), Perry & Li (1990), 
E m  (1988), E m  et al. (1985) and Smith (1994) have all 
shown encouraging agreement with these spectral scaling 
laws (see also Section 4.7). 

-61 - 2 -I 0 I 

log t 

Figure 22: Longitudinal energy spectrum, @ I I ( ~ I ) ,  me* 
s u r d  in a tidal channel at Re % I@. The straight line 
has a slope of -513. Figure from Grant et al. (1962). 

By integrating these spectral forms, Li (1989) and Perry 
& Li (1990) derived the following expressions for the tur- 
bulence normal stresses: 

where BI and B2 are large-scale characteristic constants, 
particular to the flow geometry, and AI, A2, and A3 are 
expected to be universal constants. V(y+) is a Reynolds 
number-dependent viscous correction term, which ac- 
counts for the dissipation region of the spectrum at finite 
Reynolds numbers. Equations 4%50 are valid only in the 
turbulent wall region, defined as  vlu, q: y q: 6 (corre- 
sponding roughly to the logarithmic overlap region of the 
mean velocity profile). 

By comparison, Equations 34 and 35 neglect the mixed 
scaling in that the inner and outer regions have a contri- 
bution from inner and outer scales at all finite Reynolds 
numbers. Note, however, that by matching the gradients 
of the turbulence intensity in the inner and outer regions, 
Equations 34 and 35 will yield a logarithmic term in y/6. 
This may represent an infinite Reynolds number limit. 

To extend these scaling laws to regions outside the overlap 
region in the mean velocity profile, Uddin (1994) consid- 
ered the distribution of the turbulence intensities for the 
entire region outside the viscous sublayer. He noted that 
the broadband turbulence intensities for the streamwiee 
and spanwiee velocity fluctuations follow a logarithmic 
distribution at sufficiently high Reynolds numbers. As 
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Figure 23: Behavior of the energy spectra of the longitudinal and spanwise velocity fluctuations, h ( k l ) ,  according 
to Perry et aL (see text). @33(kl) is expected to behave similarly. a) Chart showing the different scaling regions, b) 
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Figure 24: Behavior of the energy spectra of the wall-normal velocity Ructuatiom, %l(kl), according to Perry et d. 
(see text). a) Chart showing the different scaling regions, b) inner scaling behavior, and c) outer scaling behavior. Note 
that in Perry et d. 's notation, z is distance from the wall, and AE is a boundary layer thickness, similar to 6. Figure 
from Perry et al. (1986). 



Figure 25: Theoretical Reynolds shear-stress profiles, - 
-ulv'/ul, derived by Li & Perry (1989), form which this 
figure is taken. In their notation, z is the distance from 
the wall, and 6" (=AE) is a boundary layer thickness 
similar to 6. 

with the mean flow, the deviation from the logarithmic 
profile near the wall is attributed to viscous effects, and 
the deviation in the outer part of the layer is due to wake 
effects. He suggested that a wall-wake type of distribution 
where, for example, 

Here V,I is called the viseoua deviation, and W,I is called 
the wake deviation. Uddin gave empirical forms for V,I 
and Wgl which agreed well with data over the range 
6,570 5 R e e  5 35,100. 

Li (1989) (see also Perry et al. , 1991, Li & Perry, 
1989)) also derived an expression for the total stress, 
r = @ - p'v'u. If the mean velocity profile is assumed 
known, then the boundary-layer equations may be used 
to solve for the total streas. For the derivation, Li used 
the traditional logarithmic law and Coles' law-of-the-wake 
(Equations 24 and 27) for the mean velocity profile. Li 
also assumed that the logarithmic law is valid down to the 
wall, thus introducing a small error by ignoring the buffer 
layer and viscous sublayer. He then subtracted the vis- 
cous stress, &, to obtain an equation for the Reynolds 
shear stress. hgure 25 shows several Reynolds shear- 
stress profiles calculated from Li's equation. Note that 
the variation of the Reynolds shear stress with Reynolds 
number is not monotonic. 

Klewicki k Falco (1990), Falco (1991) proposed a differ- 
ent scaling for the streamwise turbulence intensity and 
Reynolds shear stresses. Instead of starting with argu- 
ments on spectral scaling, they used Falco's concept of 
"typical eddies" (discussed in Section 3.3.2). They first 
obtained empirical correlations for the length and veloc- 
ity scales of the typical eddies aa functions of Reynolds 
number. They then scaled the longitudinal turbulence in- 
tensity and Reynolds shear stress using these typical eddy 
scales. Data were collected from several sources spanning 

the Reynolds number range 1,010 < R e  < 39,000, and 
plotted in the form of ut-./UTE vs. Y/~TE, and ~ / U + E  

vs. y / l ~ g .  As shown in figure 26, the data collapsed very 
well for Y/ITE < 30, and followed a power law in the range 
corresponding to the logarithmic region of the mean ve- 
locity. It would be interesting to nee how well Falco's 
typical eddy scales correlate the mean flow data over the 
same wide range of Reynolds numbers but such a study 
is outside the scope of this AGARDograph. 

3.2.3 Reynolds-stress data 

The discussion in this section was adapted Irom that first 
given by Fernholz & Finley (1995) where further details 
of the analysis may be found. 

Figures 27 and 28 show the distributions of nonnalised 
with wall variables. Even at very low Reynolds numbers, 
similarity can be observed in the range 3 5 yf 5 50, 
even for the cases with high freeatream turbulence lev- 
els. However, the maximum value of da/u: tends to in- 
crease slightly with Reynolds number. The data shown 
in figure 20 clearly suggest that if all results are extrap 
olated to zero sensor length the peak value of ul,./u, 
increases with Reynolds number, ranging from a b u t  2.8 
at R e 0  = 1,000 to about 3.2 at R e e  = 10,000. The pc- 
sition where this maximum occurs seems to be, however, 
at y+ zz 15 (see also Sreenivasan, 1988). 

The highest Reynolds number case [DNW 577201 shows 
some deviations from similarity, but the value of 1' is un- 
acceptably high. The data are all from single normal wire 
observations excepting those for R e  = 41,260, where 
an X-wire was used, so that the data do not approach 
the wall so closely. For values of yf > 100 large de- 
partures are observed in inner scaling, with a tendency 
for the intensity to form a second maximum in region 
corresponding to the mean-profile log-law-region, which 
becomes more pronounced as R e e  increases. Such sec- 
ond peaks are often observed in high Reynolds number 
compressible boundary layers (figures 3.1.1 and 3.1.2 in 
Fernholz & Finley, 1981), although generally not so prc- 
nounced. 

The data plotted using the Rotta thickness as the 
outer length scale are shown in figures 29 and 30. It can 
be seen that with this scaling the data collapse well for 
y/A > 0.4 (y/6 > 0.1) for R e e  > 5,000 in the same way 
as the mean velocity profile (figures 14 to 16). The second 
maximum shown in figure 28 can be seen to represent a 
further extension of outer similarity towards t h e 9 1  as 
Ree rises. Figure 29 shows the convergence of the u" prc- 
files towards this universal behaviour at lower Reynolds 
numbers. 

We conclude, therefore that at high enough R e e ,  the - 
u'l profiles display similarity in the viscous sublayer and 
buffer layer in inner scaling, while similarity in outer scal- 
ing is observed in the logarithmic layer and the outer re- 
gion. 

Smith (1994) found that all three non-dimensional - 1 - i i  a Reynolds normal stresses ull/u,, v /u, and x / u l  were 
found to increase with Reynolds number throughout the 
boundary layer. Comparisons with the predictions by 
Perry et al. (Equations 48 - 50) in the overlap region 



Figure 26: Turbulence stresses scaled on "typical" eddy velocity and length scales, UTE and C,, respectively: a) u',, 
for 1,010 < Ree 5 39,000. b) -m for 1,010 5 Ree 5 14,500. See Falco (1991) for data sources (reproduced from 
Falco, 1991). 

Figure 27: Development of O / u ,  in a zero pressure gradient laminar-transitional-tubdent boundary layer. Tus 

is the freeatream turbulence level. Figure from Femholz & Finley (1995). 



Figure 28: Distribution of the longitudinal Reynolds stress in inner-layer scaling at medium to high Reynolds numbers. 
Data from Bruna et al. (1992) and Nockemann et al (1994). , equation 48 for Re62 = 5,023; -------- 
- , R e 6 2  = 57,720. Figure adapted from Fernholz & Finley (1995). 

Figure 29: Distribution of the longitudinal Reynolds stress in outer-layer scaling at low to medium Reynolds num- 
bers. , equation 48 for Re62 = 5,023. Figure adapted from Fernholz & Finley (1995). 



Figure 30: Distribution of the longitudinal Reynolds stress in outer-layer scaling at medium to high Reynolds numbers. 
Data from Bruns et al. (19921 and Nockemann el d. (1994). . eauation 48 for Rem = 5.023: -------- > ,  . , , . -- , , - Resl = 57,720. Figure adapted from Fernholz & Finley (1995). 

indicated that their additive "constants" are, in fact, 
Reynolds number dependent. The profiles of F l u :  and 
z / u ?  plotted against y+ for the studies Listed in Table 
1 show little or no sign of similarity. Now, v' and w' mea- 
surements using an X-wire probe are subject to errors 
due to spatial averaging errors caused by the separation 
L of the two wires. The dimensionless distance L+ is 
likely to have as great an influence as 1+, and as a result 
v' and w' measurements are usually less precise than u' 
measurements (see dm Section 3.2.1). 

Figures 31 and 32 show t h e  data plotted against y/A. 
As with the u' and v' profiles, an orderly similarity behav- 
ior is found, though again the peak values are functions 
of Ree. The value of F l u :  increases from about 1 to 1.6 
as Ree increases from about 600 to 60,000 (for details see 
Fernholz & Finley, 1995). Similarly, the value of z / u :  
increases from about 2 to 3 as Ree increases from about 
700 to 40,000. In contrast, Perry & Li (1990) and Erm 
(1988) found that the peak value of * was almost in- 
dependent of Reynolds number, although they agreed on 
the trend observed here for F. The yf location of the 
peak for 7 moves away from the wall as Ree increases, 
in agreement with the findings of Sreenivasan (1988), a p  
proximately as y:.. = 0.071Ree. For the location of 
the peak can not be determined with sufficient precision 
to make any meaningful conclusions. 

As far as the Reynolds shear stress is concerned, Sreeni- 
vasan (1988) suggested "that the location of the peak 
Reynolds stress in a zero pressure gradient boundary layer 

is something like a critical layer for the flow and that 
it shares some of the properties of the transitional crit- 
ical layer". One of these properties is that the veloc- 
ity of the mean flow in the transitional critical layer a p  
pears to be a constant fraction of the freestream velocity. 
For several wall-bounded shear flows Sreenivasan found 
U.,it = 0.65Ue, so that the position of thie 'critical" layer 
is in the logarithmic region of the boundary layer. Since 
the convection velocity of the large-scale motions is al- 
most the enme as the local mean velocity (see figure 67), 
this proposition is promising. Now, the errors in mea- 
surements of the Reynolds shear stress in boundary layers 
are related to the size of the X-wire probe (which maken 
measurements close to the wall difficult), spatial averag- 
ing effects, the separation L+ of the two wires, gradient 
effects near the wall and variations in the approach angle 
of the instantaneous velocity vector relative to the sensor 
wires. 

The shear stress in inner-layer scaling show a plateau in 
the vicinity of the peak value where the scaled Reynolds 
shear stress lies approximately between 0.92 and 0.95 (for 
details see Fernholz & Finley, 1995). The near wall o b  
serrations are, however, not precise enough to confirm 
Spalart (1988) suggestion that the total shear stress a p  
proaches the wall with a finite slope of approximately - 
0.6, with the slope falling to zero only in the buffer layer. 
Figure 33 shows the data in outer layer scaling. The data 
collapse for y/A > 0.09. Li &Perry (1989) also found this 
to hold for Ree up to 11,000. The peak value of the shear 
stress shows almost no dependence on Reynolds number, 



Figure 31: Distribution of the wall-normal Reynolds stress in outer-layer scaling at medium to high Reynolds numbers. 
, equation 50 for Re62 = 5,023; --------- , Res2 = 57,720. Figure adapted from Fernholz & Finley 

(1995). For sy&bols aee Table 1. 

Figure 32: Distribution of the spanwiae Reynolds stress in outer-layer scaling at medium to high Reynolds numbers. 
Data from Brum et al. (1992) and Nockemann et aL (1994). ,equation 49 for R e a l  = 5,023; -------- 
- , Resa = 57,720. Figure adapted from Fernholz & Finley (1995). 



Figure 33: Distribution of the Reynolds shear-stress in outer-layer scaling at medium to high Reynolds numbers. Data 
from Bruns el d. (1992) and Nockemam el d. (1994). Figure from Femholz & Finley (1995). 

but the location of the peak is described approximately 
by = Re;'', showing that the peak location of 27 
is a weaker function of Reynolds number than that of 3. 
This is in qualitative agreement with the results collected 
by Sreenivasan (1988), who also noted that the peak in 
the Reynolds shear stress moves inwards in tern of outer 
scaling as Ree increases (see figure 33) and that the part 
of the dynamics contributing to the Reynolds shear stress 
does not reside either at constant y+ or at constant y/A. 

It is interesting to note that Direct Numerical Simula- 
tions (DNS) of turhulent boundary layers give shear stress 
values near the wall which are generally in good agree- 
ment with the experimental values obtained at the same 
Reynolds number. For example, at Ree = 670 Spalart 
(1988) finds a maximum value of =/u: of about 0.95 
(compared with the value of 0.87 found by E m  & Jou- 
bert, 1991), and Yeung et d. (1993) finds a maximum 
value of about 0.89. The position of the maximum value 
also agrees well with the experiment (for further details 
see Fernholz & Finley, 1995). In all other respects, as for 
example in the turhulent stress and skewness and flat- 
ness distributions, the DNS results also agree well with 
experiment (see E m  et d. , 1994). 
Some particular stress ratios are also of interest, in par- 
ticular the "structure parameter" a l ,  the correlation cc- 

efficient &, and the anisotropy ratios @ / o  and 

. The parameter a1 is the ratio of the 
Reynolds shear stress to the turbulent kinetic energy ?/2, 
and Klebanoff (1955) found it to be approximately con- 
stant in a range 0.1 < y/6 < 0.8, at a Reynolds number 
Ree = 7,660. E m  (1988) found similar results in the 
range 697 < Ree < 2,788, with al taking values between 
0.14 and 0.16. Higher Reynolds number data are shown 
in figure 34 in outer law scaling. The location of the peak 
value is approximately constant, and the magnitude of the 

peak value lies between 0.14 and 0.17, increasing slightly 
with Ree. 

As for the other stress ratios, the correlation coefficient &. increases from about 0.3 near the wall to about 0.45 
in the outer part of the layer (see, for example Klebanoff 
(1955)'s results in figure 61), and there is a weak tendency 
for these values to decrease with Reynolds number. The 

anisotropy ratio -/@ increases across the hound- 
ary layer from a value of about 0.4 to about 0.8, and shows 
little Reynolds number dependence (see also Smith, 1994), 

and is nearly constant at a value of between 
0.6 and 0.7 at all placations and Reynolds numbers. 

The Reynolds number dependence of the higher moments 
of the fluctuating quantities was also studied by Fernholz 
& Finley (1995). In summary, the skewness and flatness 

of u1 ( 31 (3 and F/W" respectively) appear 

to he independent of Reynolds number when scaled ua- 
ing the appropriate scaling parameters for each region, as 
found by Smith (1994). The behavior of the triple corre- 
lations and production t e r n  is discussed by Murlis et d. 
(1982), E m  (1988), Femholz & Finley (1995) and Mom- 
son et d. (1992). Note also that Johansson & Alfredseon 
(1983) investigated the influence of 1+ on the skewne88 
and flatness factors of u' in the range 1.4 < 1+ < 33. 
They found little effect on the flatness, hut subetantial 
differences in the skewness factor which varied from - 0.20 
to 0 as 1+ varied from 14 to 33. They also found that the 
skewness was sensitive to the value of 1+ at much greater 
distances from the wall than for the moments of u'. 

Although the distribution of the shear streas among 
the four quadrants in the u1-v' plane did not vary 
with Reynolds number, the shear correlation coeffi- 
cient R.," and the non-dimensional shear rate S' = 
( q l / ~ )  (aU/%) = -qalll'V' indicated that the large- 



Figure 34: Distribution of the structure parameter a1 = -7X/g1 in outer-layer scaling at medium to high Reynolds 
numbers. Data from Bruns et d. (1992) and Nockemann et d. (1994). F i r e  from Fernholz & Finley (1995). 

scale structure plays a less active role in near-wall tur- 
bulence production as the Reynolds number increases 
(Smith, 1994): with increasing scale disparity the large- 
scale motions have a decreasing influence on near-wall 
events. This is not unexpected, but what is surprising 
is that the large-scale motions continue to have an influ- 
ence at Reynolds numbers where the boundary layer is 
often thought to be fully-turbulent. 

If the Reynolds number dependence can he empirically 
quantified by examining available data over a wide range 
of Reynolds numbers (for example, if the peak value of 
can be expressed as a function of Reynolds number), then, 
in principle, it is paseible to suggest velocity and length 
scales which will also have the same Reynolds number 
dependence. Thus, when the turbulence quantities are 
nondimensioualized using these new scales, the Reynolds 
number dependence will cancel out, and all of the data 
will collapse onto a single curve. This is, in effect, what 
Falco's typical eddy scales do. Falco obtained a correla, 
tion for UTE; for a fixed value of yf, U T E / U ~  a Re0.150. 
Thus, if the value of U:,,/UTE at a fixed yC is inde- 
pendent of Reynolds number, the value of u:,./u, will 
increase with Reynolds number, which agrees with the 
majority of available data (see figure 26). Note that UTE 

and ~ T E  were obtained from combined flow visualization 
and hot-wire measurements. 

3.3 Organized motions in turbulent 
boundary layers 

This section is concerned with the structure of turbulent 
boundary layers, in the sense of organized, spatially cor- 

related motions. it was adapted from the review given by 
Smith (1994), and further details are given there. There 
are several additional reviews of turbulent flow structure 
in the Literature, including Willmarth (1975), Cantwell 
(1981), and Robinson (1991)a. More personal interpre- 
tations are offered by a l e s  (1987), Hueanin (1983), and 
Sreenivasan (1989). The emphasis here is on Reynolds 
number effects and scaling laws. 

In turbulence research, the term 'structure" has been 
used to denote two different idem. First, it is used to 
describe the behavior of the mean flow and Reynolds 
stresses. The scaling of the mean flow and Reynolds 
stresses, the composition of Reynolds stresses (e.g. as 
deduced from quadrant analysis), anisotropy ratice, the 
shear correlation coefficient, the structure parameter, and 
intermittency profiles, can all be viewed as describing the 
"structure" of a turbulent boundmy layer. Second, the 
term "structure" is used to describe coherent, organized 
motions occurring in the flow. Robinson (1991)a defines 
a coherent motion, or structure, as 

"a three-dimensional region of the flow over 
which at least one fundamental flow vsri- 
able (velocity component, density, temperature, 
etc.) exhibits significant correlation with itself 
or with another flow variable over a range of 
space and/or time that is significantly larger 
than the smallest local scales of the flow." 

This definition is quite general. More specific definitions 
have been p r o p d  (e.g. Hussain, 1983), but in essence 
they are just restricted forma of Robinson's definition. 
Both definitions of structure are used here, but the dis- 
tinction should be clear from the context. 



3.3.1 Inner-layer structure 

Klebanoff (1955) showed that in a turbulent boundary 
layer about 75% of the total turbulence production in the 
entire layer occurs in the inner region, y/6 < 0.2. There- 
fore, most investigations of turbulent boundary layer 
structure have focussed on the near wall region, primarily 
the viscous sublayer and buffer layer. Because of practi- 
cal considerations, such as the small scales involved, and 
the need for adequate resolution, these studies have been 
limited predominantly to low Reynolds numbers, that is, 
Ree < 5, 000. 

In 1967, Kline et al. (1967), in a culmination of work ini- 
tiated by Runstadler et d. (1963), reported the resultsof 
a study of the near-wall structure of a turbulent boundary 
layer in the range 545 < Ree < 1,680. Using hydrogen 
bubble flow-visualization in a water channel, Kline et d 
found that the viecous sublayer is occupied by alternating 
streaks of hieh- and low-soeed (relative to the mean) fluid. - . \ 

The spanwise spacing of the streaks was found to scale on 
inner variables and to have a non-dimensional mean value 
of A: = 100. The streaks were presumed to be the re- 
sult of elongated streamwise vortices very near the wall. 
H.P. & Lumley (1967), using correlation measurements 
in a pipe flow (Re = gd/v = 8700, d = pipe diameter) 
together with the technique of proper orthogonal decom- 
position, also concluded that the dominant structures in 
the sublayer are pairs of counter-rotating vortices with an 
average spanwise wavelength of A t  = 90 - 100. Kline d 
d. observed that the low-speed streaks would gradually 
lift up from the wall, oscillate, and then break up vi* 
lently, ejecting fluid away from the wall and into the outer 
Iayer. They coined the term "bursting" to describe this se- 
quence of events. Kline et d. concluded that all the events 
comprising the bursting process were consistent with a 
stretched and l i M  vortex. Later, Kim et d. (1971) per- 
formed further investigations in the same facility. They 
determined that in the wall region, 0 < yf < 100, nearly 
all of the turbulence production occurs during bursting, 
thus establishing the dynamical significance of the near- 
wall region and the bursting proceas. 

Corino & Brodkey (1969) performed a visual study of 
the near-wall region of fully developed pipe flow. They 
seeded the flow with a suspension of colloidal particles, 
illuminated the flow field, and photographed the flow 
with a high-speed camera moving with the flow velocity. 
Thus, they were able to follow the development of inter- 
esting events. Corino & Brcdkey observed a recurring 
sequence of events which closely resembled the bursting 
process observed by Kline et d . They found that a 
large scale disturbance would frequently impinge upon a 
near-wall region of low-speed fluid. This would be fol- 
lowed by one or more ejections of low-speed fluid up into 
the large scale disturbance, resulting in violent, chaotic 
interaction. Once the ejection(s) had subsided, a large 
region of high-speed fluid would cleanse the area of the 
debris of the interaction. Corino & Brodkey called this 
latter event a "sweep". They further found that, as the 
Reynolds number was increased, the frequency and inten- 
sity of the ejection events increased. At high Reynolds 
numbers (Re = 52, WO), it was difficult to distinguish 
between individual events. 

Since these initial studies, many other researchers have in- 

vestigated the near-wall flow structure. Two of the mart 
widely studied aspects of the near-wall structure are the 
mean spanwiae streak spacing, A*, and the mean bursting 
period, Tb (or mean bursting frequency, fs - l/T*). Kim 
et d. collected the results of several independent measure- 
ments of streak spacing, and the resulta generally agreed 
with Kline et d. 's value of A t  = 100. Smith & Met- 
zler (1983) showed that A t  is independent of Reynolds 
number over the range 740 < Ree < 5,830. The value of 
A: = 100 is now widely accepted. 

In contrast, the scaling of the bursting period is W i l y  
controversial. Initially, Kline et d. suggeted that, since 
the bursting process is a wall layer phenomenon, Tb should 
scale with inner variables. Subsequent research has p r e  
vided many conllicting results. Rao et d. (1971), work- 
ing in a turbulent boundary layer in the range 600 < 
Ree < 9,000, concluded that outer scaling is appropri- 
ate, and that TbUe/6 = 5 (or TbUJ6' = 30), inde- 
pendent of Reynolds number. Alfredsson et d. (1988), 
working in a fully developed channel flow in the range 
13,800 < Re. < 123,000 (Re, brsd on channel height 
and centerline velocity), found that Tb was independent of 
Re when nondimensionalized by a mixed time scale equal 
to the geometric mean of the inner and outer time scales. 
Thus, three different scalingn for Tb (and thus fb) have 
been proposed, and each has i t s  own proponents. Tbare 
who obtained results in favor of outer scaling include Raa 
et d. (1971), Kim et d. (1971), Lu & Willmarth (1973) 
(turbulent boundary layer, Ree = 4,230 and 38,000), 
Blackwelder & Kaplan (1976) (turbulent boundary layer, 
Ree = 2,550), Brodkey d d. (1974) (fully developed 
channel flow, Re = 7,700, equivalent to Ree e 434, 
and Narasimha & Kailas (1987) (atmospheric bound- 
ary layer). Proponents of inner scaling include Black- 
welder & Haritonidis (1983) (turbulent boundary layer, 
lo3 < Ree < I@), Luchik & Tiederman (1987) (fully de- 
veloped channel flow 9,400 < Re, < 17,800, Re. based 
on maskaveraged velocity and channel height), Kim & 
Spalart (1987) (numerically simulated turbulent bound- 
ary layer, Ree = 300,670, and 1,410), and Willmarth & 
Sharma (1984) (turbulent boundary layer, Ree = 6,480 
and 9,840). 

There are many reasons for the discrepancy among the 
various results. First, in order to measure the bursting pe- 
riod, it is necessary to devise a criterion for detecting the 
bursting process. Visual methods, as used by Kline et d. , 
Corino & Brodkey, and Kim et aL , are limited to very low 
Reynolds numbers. Therefore, several researchers have 
developed methods based upon measurements of fluctu- 
ating velocities. Lu & Willmarth (1973) introduced the 
u-level method, in which low values of u, relative to the 
mean, were used to detect ejections, and high levels of u 
were used to detect sweep. Wallace et d. (1972) and 
Lu & Willmarth (1973) proposed splitting the u'-d ve- 
locity plane into four quadrants, as shown in figure 35. 
Instantaneous values of u'd can then be associated with a 
certain quadrant and a corresponding event. Blackwelder 
& Kaplan (1976) developed the variable interval time av- 
eraging (VITA) technique, whereby the variance of the 
velocity, u', is computed over ashort time interval. If the 
short time variance exceeds a preset threshold level, then 
an event is detected. The goal of these detection schemes 
is to identify segments of the velocity signal which corre- 



Figure 35: The four quadrants of the u'-v' plane, and 
the common t e r m  for the events corresponding to each 
quadrant (from Robinson, 1991b). 
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spond to events of interest (e.g. ejections and sweeps), and 
to analyse these segments separately from the remaining 
signal, that is, by conditional sampling and averaging. All 
detection methods are quite subjective, requiring the user 
to choose threshold levels and/or averaging times. Will- 
marth & Sharma (1984) state that the bursting period 
determined using the VITA technique is highly sensitive 
to the threshold level and the averaging time. They found 
that when the threshold level was changed by 5%, the 
measured bursting frequency changed by 40%, and a 20% 
change in the averaging time resulted in a 15% change 
in measured bursting frequency. More disturbing is the 
fact that it is not even certain what relation the detected 
events have-with the actual events of the bursting process. 
Bogard & Tiederman (1986), Bogard & Tiederman (1987) 
evaluated several detection methods and found that dif- 
ferent methods could yield values of Tb which differed by 
an order of magnitude. They also found that different 
techniques detected different phases of the bursting pr* 
cess. Corino & Brodkey (1969) had observed earlier that 
more than one ejection may occur during a single burst. 
Luchik & Tiederman (1987) introduced the idea of group 
ing multiple ejections into a single burst, but mart other 
researchers did not do this, resulting in further variation 
among reported results. 

4 
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A further difficulty in measuring bursting frequency is 
related to spatial averaging effects, as discussed in Sec- 
tion 3.2.1 For example, Blackwelder & Haritonidis (1983) 
showed that the measured value of fs d r o p  sharply for 
wire lengths l f  > 20. 

Another difficulty arises from the fact that it is possi- 
ble that the structure of fullydeveloped internal Rows 
and that of turbulent boundary layers are different. As 
d i d  in Section 3.1.4, it is possible that the mean 
flow can follow different scaling laws in the outer region 
of different flow geometries. In fully-developed internal 
flows, the inner and outer layers are intimately connected 
through the relation between the pressure drop and the 
wall shear stress. Luchik & Tiederman (1987) accounted 
for thisconnection when they concluded that inner scaling 
of Tb is more appropriate than either mixed or outer scal- 
ing. However, the outer layer of an internal flow does not 

have the same highly intermittent character as do bound- 
ary layers. Therefore, a comparison of results obtained in 
fully developed internal flows and in turbulent boundary 
layers may not be valid. 

Finally, Reynolds number effects are quite possibly caus 
ing some of the disagreement among the data. Shah & 
Antonia (1989) specifically a d d r e d  this hue.  They 
measured Tb in fully developed channel flow for 3,300 < 
Re < 33,000, and in a turbulent boundary layer for 
650 < RQ < 13,000, using both the VITA and the u- 
level techniques. They found that inner scaling is effective 
for Re < 20,000 in the channel flow, and Ree < 6,000 
in the boundary layer. It is interesting to note that 
Reg = 6,000 is the value above which Coles' wake pa- 
rameter, n, is constant. Shah & Antonia conclude that 
above t h w  Reynolds numbers, mixed scaling is more a p  
propriate for both Rows. However, they emphasize that 
their data do not preclude the validity of outer scaling at 
Reynolds numbers greater than Ree F;: 10,000. 

Another interesting issue, indirectly raised by Shah k An- 
tonia (1989), is related to the work of Luchik & Tieder- 
man (1987). Luchik & Tiederman measured u, in their 
flow using two techniques: 1) by measuring the veloc- 
ity gradient in the viscous (linear) sublayer, and 2) using 
the Clauser method. They found that the second method 
yielded values typically 15% higher than the first method. 
When they concluded that Tb scales on inner variables up 
to R e g  = lo4, they had used u, determined from the 
first method. Shah & Antonia reanalyaed Luchik & Tie- 
derman's results using u, from the C l a w r  method, and 
found that the data scaled better with mixed or outer 
variables for Ree > 6,000, in support of their own con- 
clusions. 

Tinh (1982) used hot-wire anemometry to study the near- 
wall structure in a channel flow for 43,200 < Re < 
177,100 (Re based on channel height and centerline ve- 
locity). He found that, for yf < 50, the skewness and 
flatneg of the streamwise velocity fluctuations exhibited 
some Reynolds number dependence. Using conditional 
sampling techniques, he also showed that the relative im- 
portance of the ejection and sweep motions changed with 
Reynolds number. At RE = 43,200, ejections contributed 
more than sweep to the total for yf > 10, while for 
y+ < 10, sweep dominated. At Re = 177,100, sweep8 
contributed more than ejections to 3 over the entire 
range 0 < y+ < 50. The nondimensional hot-wire lengths 
for van Tinh's experiments varied from 1+ = 12 to i f  F;: 42 
over the range of Reynolds numbers investigated. There- 
fore, spatial averaging effects may have created an arti- 
ficial Reynolds number dependence in the data. Similar 
results were obtained by Andreopoulce et d. (1984), in 
a boundary layer with 3,642 < Ree < 15,406, also found 
that sweep become stronger relative to ejections with in- 
creasing Reynolds number, but, as noted in Section 3.2.2, 
their data also suffer from severe spatial averaging effects. 

In summary, the spanwise spacing of the near-wall streaks 
has been established to be A t  i;: 100 for low to medium 
Reynolds numbers, but with a standard deviation of a p  
proximately 50 (Smith & Metzler, 1983). The scaling . 
of the bursting period remains unresolved, and may be 
Reynolds number dependent. Remlution of the issue may 
come when we have a better understanding of the turbu- 



Figure 36: Flow visualization by Falco (1977), of a boundary layer at Ree a 4,000, obtained by eeeding the flow with 
a fog of oil droplets, and illuminating the flow with a planar laser sheet. Flow is from left to right. Figure from Van 
Dyke (1982). 

lence production cycle, and better techniques to study it. 
A knowledge of the scaling of Tb is important to an under- 
standing of the overall dynamics of the turbulent bound- 
ary layer. If 7b scales on inner variables, this suggests 
that the inner layer controls the dynamics of the bound- 
ary layer, and the outer layer structure may be merely 
the debris of the bursting process. Alternatively, if Tb fol- 
lows outer scaling, this implies that the bursting process 
is controlled or modulated by (and may be responding 
passively to) the outer layer structure. In between thee  
two extremes, if T b  scales on mixed variables, this implies 
an important mutual interaction between the inner and 
outer structure. 

3.3.2 Outer-layer structure 

There is also considerable controversy regarding the m- 
ture of the outer-layer structure. Nevertheless, a general 
picture has emerged. A specific characteristic component 
of the outer layer is believed to be the large scale turbulent 
"bulge", also referred to as a "large scale motion" (LSM). 
The large scale motions evolve and decay slowly as they 
convect downstream, and, on average, they are inclined 
to the wall a t  an acute angle, leaning in the downstream 
direction. Between neighboring bulges, the flow is irrota- 
tional, resulting in the intermittent character of the outer 
layer. Figure 36 shows several LSM's. The structures 
are seen to vary greatly in size and inclination angle. The 
properties of the large scale motions, such as length scales, 
time scales, convection velocity, and stucture angle, as 
well their internal structure, such as velocity, vorticity, 
and pressure fields, remain the subject of controversy and 
active research. firthennore, the Reynolds number de- 
pendence, if any, of the LSM's is not known. 

Part of the difficulty in experimental studies of the outer- 
layer structure, as it is in s tudi i  of the inner-layer struc- 
ture, is finding an unambiguous criterion for ensemble- 
averaging. One method is based on discriminating be- 
tween "turbulent" and "non-turbulent" fluid, and using 
the intermittency function (a box-car logic function) to 

Figure 37: Comparison of flatness distributions: Q 
Owen et al. (1975) (Rep = 8,500, M = 7), based on 
mass flux; 0, Robinson (1986) (Ree = 15,000, M = 3.0, 
based on mass flow; A, Klebanoff (1955) (Re = 7,100, 
M a 0), based on velocity. Figure from Robinson (1986). 
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sort the data. The most basic output is the intermit- 
tency itself, y, which is the fraction of the time the flow 
is judged to be turbulent. One definition of y is 3/F, 

where the flatness F = T/(U")". The distribution of F 
is shown in figure 37 for a number of different freeatream 
Mach numbers. The results imply that the intermittency 
in the outer part of the layer decreases with Mach num- 
ber. Another method uses the VITA technique originally 
developed by Blackwelder & Kaplan (1976) for studies 
of the near-wall bursting process. A variety of similar 
techniques have been developed (for example, VISA by 
Kim & Spalart (1987), WAG by Antonia et d. (IQQOa), 
Antonia et d. (199Ob)), but they are all subject to am- 
biguities related to the uncertainties in setting threshold 
levels. Nevertheless, they may still give useful insights if 
carefully used. 

0 0 PRESENT OATA M, - 3.0 
0 OWEN. a1 11. M, - 7 2  
A KLEBANOFF M.10 0 

Before the advent of conditional sampling methods, sev- 



Figure 38: The horseshoe vortex proposed by 
Theodorsen (1955) as the basic structure in wall-bounded 
turbulent flow. Figure from Spina (1988). 

eral fundamental observations were made regarding the 
nature of the LSM's in turbulent boundary layers. The 
first physical model of the large scale structure of tur- 
bulent boundary layers was p r o d  as early as 1955 by 
Theodorsen (1955). He hypothesized that the basic struc- 
ture of all turbulent shear flows is the inclined horseshoe 
vortex, as shown in figure 38. Using the vorticity trarvc 
port equation, Theodorsen attempted to prove that the 
only vortical structures which can sustain a non-decaying 
turbulent field must have a horseshoe shape. As seen in 
figure 38, the model can certainly account for the gen- 
eration of Reynolds stress. Between the legs of the vor- 
tex, the induced velocity ejects low-speed fluid up, away 
from the wall, into a region of higher mean velocity, hence 
u' < O,ul > 0 (a Quadrant I1 event). On the outboard 
sides of the legs, high speed fluid ia swept toward the wall, 
hence u' > 0, v' < 0 (a Quadrant IV event). 

Townsend (1976) did not regard the LSM's as having any 
particular shape, but he made two important hypothe- 
ses about the large scale motions based upon theoretical 
considerations. First, he concluded that 

". . .the main eddies of the flow have diame- 
ters proportional to the distance of their centers 
from the wall, because the motion is directly 
influenced by its presence. In other words, the 
velocity fields of the main eddies, regarded as 
persistent, organized flow patterns, extend to 
the wall and, in a sense they are attached to 
the wall." 

Thia ia commonly known as Townsend's attached eddy h y  
pothesu. Second he assumed that the interaction between 
a large eddy and a smaller, viscowdominated eddy oc- 
curs over several intermediate s tep.  Due to this highly in- 
direct interaction, Townsend proposed that the large-scale 
motion is essentially inviscid, and thus independent of 
Reynolds number. This is known as Townsend's Reynolds 
number similarity hypothesis. It should be noted that the 
idea that eddies of largely dissimilar scale do not directly 

interact is currently being challenged (see, for example, 
Bra~seur, 1991, Praskovsky, 1993). 

Despite the extensive literature on the subject of the 
large-scale structure of turbulent boundary layers, only 
a few studies have specifically addressed the issue of 
Reynoldknumber effects. This is primarily due to the 
general acceptance of Townsend's Reynolds number sim- 
ilarity hypotheais. 

The flow visualization work of Head & Bandyopadhyay 
(1981) provided strong support for the concept that at 
least some of the LSM's are loopshaped vortical struc- 
tures. Head and Bandyopadhyay showed that the aspect 
ratio of these vortical structures is Reynoldknumber de- 
pendent. Figure 39 show that at Re = 600, the struc- 
tures have the proposed horseshoe shape, with a low ak 
pect ratio. As Ree increases, the structures are elon- 
gated, and at Ree = 9,400, they appear more as hairpins, 
with a large aspect ratio. At all Reynolds numbers, the 
spacing between the legs of the structures is similar to 
the spacing between the near-wall streaks (FZ 100vlts). 
The structures appear to extend to the wall, in support 
of the attached eddy hypothesis. Head and Bandyopad- 
hyay a h  suggested that, at low Reynolds numbers, the 
LSM's were merely single horseshoe elements. At higher 
Reynolds numbers, the LSMs were actually agglomerk 
tions of many elongated hairpin vortices. At low Reynolds 
numbers, the LSM's exhibited a "brisk" overturning mo- 
tion, while at higher Reynolds numbers, they overturned 
slowly. This suggests that entrainment decreases with in- 
creasing Reynolds number, which is in agreement with the 
observation that the boundary layer grows more slowly 
with increasing Reynolds number. 

Other visualizations of turbulent boundary layers reveal 
that, as Reynolds number increases, the outer-layer bulges 
appear to be comprised of, or contain, a wider range of 
scales (Falco, 1977, Fiedler & Head, 1966). This ia in 
accord with the fact that the ratio of the outer to inner 
length scale, 6+, increases with increasing Reynolds num- 
ber. 

Another useful method for investigating the large scale 
structure is multiple-point measurements of one or more 
flow variables, typically velocity, wall pressure, and wall 
shear stress. The data are then analyaed in the context of 
space-time correlations. The correlation of two variables 
measured at two points in the flow field is given by 

where a and b are the two flow variables being correlated, 
E., E v ,  and are the separations between the two points 
in the three coordinate directions z, y ,  and z, respectively, 
and T is the time delay applied to the signal of variable 
b. For the case when both a and b are velocities, Q b  is 
typically denoted by Qj, where i and j are the indices of 
the velocity components (R11 = L,, R I ~  = Q., etc.. . ). 
When any of 5. are nonzero in Equation 52, &b is called a 
space-time correlation. Space-time correlations generally 
have a single well-defined peak, which occurs at r = T,.., 

the optimum time delay, which may be nonzero. 



Figure 39: Flow visualizations by Head & Bandyopadhyay (1981), showing the Reynolds number dependence of vortex 
loop structures in a turbulent boundary layer. The visualizations were obtained by filling the boundary layer with 
smoke, and illuminating the flow with a laser sheet inclined 45" downstream. a) Ree = 600, b) Res = 1,700; c) 
Ree = 9,400. Figure from Head & Bandyopadhyay (1981). 



Favre et d. (1957), Favre el d. (1958) pioneered the 
use of velocity space-time correlations. Their results, for 
Ree % 1,400 and 2,700, showed that the fluctuating ve- 
locities in the outer layer are correlated over distances 
comparable to the boundary layer thickness, 6, in the 
spanwise and wall-normal directions, and over several 6 in 
the streamwise direction. Favre et d 's space-time cor- 
relations at optimum time delay clearly showed that in 
the outer-layer flow structures are convected downstream 
several (O(10)) 6 before decaying. Nearer the wall, the 
structures decay more rapidly than farther from the wall. 
Stemberg (1967) noted that Favre et d. '8 results also 
indicated that the large eddies are inclined to the wall in 
the downstream direction. 

In a later paper, Favre et d. (1967) used space-time corre 
lations to measure convection velocities of the large scale 
motions in a turbulent boundary layer with Ree = 8,700. 
To complement their broadband results, they band-pass 
filtered the data to measure the convection velocities of 
structures within a narrow range of scales. Their re- 
sults are reproduced in figure 40, which shows that the 
smallest scales convect at about the local mean velocity 
throughout the boundary layer. For y/6 > 0.2, large scale 
structures convect at speeds less than the local mean ve- 
locity, and the convection velocity decreases with scale. 
For y/6 < 0.2, the oppasite behavior is okrved .  At 
y/6 = 0.2, all scales convect at the local mean veloc- 
ity. This behavior could be explained as follows. A large 
structure will extend across a significant fraction of the 
boundary layer, and will convect at a speed which is a 
weighted average of the local mean velocity acting over 
the vertical span of the structure. This convection veloc- 
ity will be greater than the local mean near the wall, and 
less than the local mean in the outer layer. The greater 
the verticlll extent of the structure, the greater will be 
this effect. Based upon space-time correlations of wall 
pressure fluctuations, 'h & Willmarth (1966) and Corcm 
(1963) reached similar conclusions regarding the differ- 
ence in convection velocity between large and small scale 
structures. Spina et d. (199lb) obtained similar results 
in a compressible flow, and their results are discussed in 
greater detail later in Section 4.9. 

Grant (1958) measured all nine components of the cor- 
relation tensor Qj in a turbulent boundary layer at 
Ree m 2,200. His results, shown in figure 41, indicate 
that the correlation tensor is quite complex. Grant stated 
that such complex behavior could only occur if the large 
eddy structure of the flow was highly organized. Grant 
attempted to deduce a simple model of the large scale ed- 
dies which was consistent with the measured correlations, 
but was not entirely euccessful. However, through a de- 
tailed and insightful interpretation of his data, he postu- 
lated the existence of "stress relieving motions originating 
very near the wall, perhaps involving the boundary of the 
laminar sublayer (sic). The motion would be in the na- 
ture of an outward eruption originating near the wall." 
Grant's paper is in remarkable agreement with the later 
flow visualization results of Kline et d. (1967). Tritton 
(1967) extended the measurements of Grant, but did not 
deduce a simple eddy model to explain the features of the 
correlations. 

Townsend (1961) also suggested that the large-eddy struc- 
ture is likely to be simple, but added that the structures 

undergo a cycle of growth, decay and renewal. He warned 
that time averaging will superpose contributions from ed- 
dies at all stages of this cycle, and thus the results will 
appear to suggest a more complicated structure than is 
actually present in the flow. 

Kovasznay et d. (1970) and Blackwelder & Kovasznay 
(1972) obtained space-time correlation measurements of 
velocity in the outer region of a turbulent boundary layer 
at Ree = 2,970. Using conditional-averaging techniques 
based on the intermittency, their measurements revealed 
the presence of a stagnation point on the back (upstream) 
side of the turbulent bulges. Because the large bulgee 
convect at a speed less than the frestream velocity (see 
figure fig:favreuc), the high-speed, fieeatream fluid in the 
regions between the bulges will impinge on the becks of 
the bulges, resulting in a stagnation point in the con- 
vected frame of reference, as shown in figure 42. Similar 
to the results of Favre et al. (1957), Favre et d. (1958), 
Kovasznay et d. found that isocontours of the space-time 
correlations of the streamwise velocity, shown in figure 43, 
were elongated in the streamwise direction and spanned 
the entire boundary-layer thickness, and that the large 
eddies lean downstream. The contours were generated by 
correlating the velocity measured by a probe at a fixed 
point in the middle of the boundary layer with the veloc- 
ity measured by a probe which was traversed in both the 
y and z directions while maintaining a constant longitudi- 
nal probe separation of 3.M. The kcorrelation contours 
shown in figure 43 indicate that the large eddies are in- 
clined with an average angle of approximately 16". At 
the location of the fixed point, the streamwise extent of 
the correlations is about 0.46 (based on a minimum cor- 
relation value of 0.5). 

Additional examples of such boundary layer data do not 
exist, but Liu et d. (1992) recently constructed kco r -  
relation contours of the large scale structure in a fully 
developed turbulent channel flow for Re = 2,872, 5,378, 
and 29,935 (Re based on channel half-height and bulk ve- 
locity). They used particle image velocimetry to obtain 
several realizations of the instantaneous velocity field in 
the x-y plane. The isocorrelation contours were computed 
by mapping the correlation of the velocity at each point 
in the plane with the velocity of a fixed point located 
at y/H sz 0.40 (H is the channel half-height), and en- 
semble averaging the results for all realizations. Liu et 
d. 's results were very similar to those af Kovasznay et 
d. . For the two highest Reynolds numbers, the stream- 
wise extent of the correlations at the position of the fixed 
point (based on a minimum correlation value of 0.5) in- 
creased from approximately O.9H at Re = 5,378 to about 
1.4H at Re = 29,935. Note that these length scales are 
larger than those obtained by Kovasznay et d. probably 
because the large streamwise probe separation used by 
Kovasznay et aL reduced the measured correlation val- 
ues. Liu et d. 's contoura a h  indicated that the struc- 
tures leaned downstream, and that the angle of inclina- 
tion, which did not differ appreciably between the two 
highest Reynolds numbers. was about 10". 

Brown & Thomas (1977) used space-time correlations and 
conditional sampling techniques to investigate the rela- 
tionship between the large-scale motion and the wall shear 
stress in a boundary layer at Ree = 4,940 and 10,160. 
They found that largescale motions were inclined at an 



Figure 40: Scale-dependent convection velocity profiles measured by Favre et d. (1967) in a turbulent boundary 
layer a t  Re % 8,700. In Favre et d. 's notation, is the local mean velocity, k,5n.. is the freestream velocity, is 
the scale dependent convection velocity, and L is a length scale corresponding to the center frequency of the standard 
third-octave band filters used to filter the velocity time series before calculating convection velocity. Figure from Favre 
et d. (1967). 

Figure 41: Space-time correlations measured by Grant (1958) in a turbulent boundary layer at Reo % 2,200. In 
Grant's notation, r is the probe separation, and 6. is the boundary layer thicknw. Figure from Grant (1958). 



Figure 42: Schematic of the flowfield within and surrounding a large scale motion in a turbulent boundary layer, 
according to Blackwelder & Kovasznay (1972). Figure from Spina et al. (1991a). 

Figure 43: Imcorrelation contours of space-time correlations of the streamwise velocity component measured by 
Kovasznay et al. (1970). a) x-z plane, b) x-y plane, and c) y-z plane. The position of one probe was fixed at y/6 = 0.5. 
Figure from Smita et al. (1989). 



angle of 18' to the wall and extended % 26 in the stream- 
wise direction. As the structures passed over the wall, 
they created a characteristic wall-shear-stress signature. 
Brown & Thomas concluded that this wall-shear-stress 
pattern was related to the bursting process, and hence 
that the large scale, outer-layer structure influenced the 
near-wall structure and dynamics. Although they only 
reported results for Ree = 10,160 in Brown & Thomas 
(1977), they stated that the results were the same at 
Ree = 4,940 when scaled on outer variables (U. and 6). 

Falco (1977) used combined flow visualization and hot- 
wire measurements to study the large-scale motions over 
a range of Reynolds numbers. His flow visualizations 
showed two distinct scales of motions in the outer layer - 
LSM's and "typical eddies." Falco found that the typical 
eddies are small scale motions, which scale on wall vari- 
ables and are responsible for a significant fraction of the 
total Reynolds shear stress in the outer layer. Falco de- 
termined that the average streamwise extent of the LSM's 
was about 1.66 at Ree % 1,000. The streamwise length 
scale of the typical eddies was a constant value of 200v/u, 
for 1,000 < Ree < 10,000. The vertical length scale 
varied nearly linearly from 100v/u, at Ree = 1,000, to 
150v/u, at Ree = 10,000. Falco found that the typical 
eddies generally appear on the backs of the LSM's, and 
propagate toward the wall, thus acting as sweep very 
near the wall. 

Falco (1977) claimed that the typical eddies may be an 
intermediate link between the inner and outer layers; how- 
ever, this is difficult to justify. As discussed by Smith & 
Smits (1991), if the typical eddies scale on wall variables, 
then at very high Reynolds number, when 6+ is very large, 
the typical eddies will become vanishingly small compared 
to the boundary layer thickness, and are unlikely to be dy- 
namically significant (i.e. they will not carry significant 
levels of shear stress). Furthermore, flow visualizations at 
very high Reynolds numbers, as shown in figure 44, show 
features which appear to be very similar to the typical 
eddies observed by Falco at lower Reynolds numbers, but 
which are at least an order of magnitude larger (in t e r n  
of inner variables), even taking into account the variations 
in fluid properties, as  e x p r d  by the difference between 
Ree and Rm. Nevertheleas, Falco (1991) has recently 
used measured typical eddy length and velocity scales to 
collapse turbulence intensities and Reynolds shear stress 
data over a very wide range of Reynolds number, as dia- 
cussed in Section 3.2.2. In light of the objections raised 
here, the success of the typical eddy scaling is somewhat 
surprising. 

Antonia et 01. (1982) and Chen & Blackwelder (1978) 
studied coherent structures using cold-wires in a turbu- 
lent boundary layer developing over a slightly heated wall. 
Chen & Blackwelder's experiments were performed at 
Ree = 2,800, and Antonia et aL examined three cases, 
Ree = 990, 3,100, and 7,100. Both studies used con- 
ditional sampling and found that the temperature traces 
showed characteristic features wherein a slow increase in 
temperature was followed by a rapid decrease. This sug- 
gests that the downstream side of the large structures 
is not as well defined as the upstream side. The u p  
stream side appears as a sharp interface between high 
temperature fluid inside the structure, and low temper- 
ature fluid behind the structure (note that this iuterpre- 

tation assumes that the Prandtl number is near unity). 
The interface was found to extend down to the wall, and 
the convection speed at any location along the interface 
was approximately equal to the local mean velocity. An- 
tonia et d. measured the average inclination angle of the 
interface to be about 3.5' for 0.2 < y/6 < 0.8. Above 
and below this range, the angle decreased. These an- 
gles are lower, by about 10 - 15', than those measured 
by Chen & Blackwelder, and higher, by about 15', than 
those measured by Brown & T h o m  (1977). Within the 
scatter of Antonia et aL '8 results, the average inclination 
angle appears to be independent of Reynolds number for 
the range they investigated. They also found that the 
ensemble averaged velocity and temperature signatures 
of the large-scale structures are independent of Reynolds 
number for Ree > 1,000. hthermore,  the contribution 
of the large-scale structures to the Reynolds shear stress 
seemed to increase with Reynolds number in the range 
0.1 < y/6 < 0.5. 

Antonia d al. (1990a), Antonia et al. (1990b) studied 
the effect of Reynolds number on the topology of the or- 
ganized motion over the range 1,360 < R e 0  < 9,630. 
Broadband isocorrelation contours of u' showed that the 
average structure extends in the wall-normal direction 
acrose most of the boundary layer, has a streamwise ex- 
tent on the order of 6, and is inclined to the wall, leaning 
in the downstream direction. Icwcorrelation contours for 
v' also extend across most of the boundary layer, but are 
narrower in the streamwise direction, and are oriented 
perpendicular to the wall. The contours show a slight 
Reynolds number dependence for Ree < 5,000, but are in- 
dependent of Reynolds number for Ree > 5,000, as shown 
in figure 45. Instantaneous streamline patterns showed 
no significant changes over the entire range of Reynolds 
numbers. 

Using what they called a "window average gradient" 
(WAG) detection scheme, Antonin et d. (199Oa), An- 
tonia et al. (1990b) found that the time period of oc- 
currence of detected events is independent of Reynolds 
number when scaled on outer variables and has a value 
of = 2.56/Ue. This value is similar to that obtained by 
Corrsin & Kistler (1955) and Ueda & Hinze (1975), as 
noted by Falco (1977). Conditionally averaged imvortic- 
ity contours were observed to extend further from the 
wall and have a larger inclination angle (1.e. were more 
upright) a t  lower Reynolds numbers. Antonia and his 
coworkers also found that the contribution of the orga- 
nized motion to the turbulence stresses decreases as Ree 
increases. This is in contrast to the earlier results of An- 
tonia et d. (1982) in which the conditional averages were 
based upon visual identification of characteristic temper- 
ature signatures. The difference is most likely due to the 
difference in detection method. 

Murlis et al. (1982) used hot-wire anemometry and 
temperature "tagging" methods to study the effect of 
Reynolds number on boundary-layer structure for 791 < 
Ree < 4,750. Using temperature signals to determine 
intermittency factors, assuming a Prandtl number near 
unity, they found that the intermittency profile is essen- 
tially independent of Reynolds number. However, the av- 
erage length of zones of turbulent motion was found to 
decrease with increasing Reynolds number up to Ree = 
5,000. Their data suggested that, beyond this Reynolds 



Figure 44: Double-pulsed Rayleigh images from a Mach 3 turbulent boundary layer (Re0 = 80,000, Ra = 35,OW); 
LeR: time = t ;  Right: time = t + 20p.  The flow is from right to left. Figure from Cogne el d. (1993). 

number, the turbulent zone length remained constant. 
Through a detailed analysis of the turbulence statistics, 
Murlis el d also concluded that there is a large varia- 

0.8 tion of eddy structure with Reynolds number, but that 
the basic transport mechanisms did not vary appreciably. 
This conclusion was based on the finding that the w n d -  
order statistics showed significant Reynolds-number d e  
pendence, while the triple products, which describe the 

0.2 turbulent transport of the turbulence streeaes, were a p  
proximately independent of Reynolds number. Murlis el 

0 
-4 -2 0 2 , d also suggested that the largescale motions carry more 

r U d 6  shear streas at higher Reynolds numbers, owing to the 
diminishing importance of the 'typical eddies." 

Figure 45: Reynolds number dependence of iencor- 
relation contours oE a) IIYY, b) RY. Re0 = 
1,360 . 9 2 , 180 9 ,  6 030 -------------.-. 
-; 9,630 ----. One probe was fixed at y/6 = 0.56. 
Two contour levels, 0.05 and 0.2, are shown for each 
Reynolds number. Figure from Antonia et d. (1990b). 

Alving & Smits (199Oa), Alving et d. (1990h) mea- 
sured the broad-band structure eagle of the LSM's by 
using two probes separated by a distance E, in the wall- 
normal direction. The structure angle was defined by 
0 = tan-' (&,/U,r,..), where U. is the convection VP 

locity (assumed to be equal to the local mean velocity) 
and U.r,.. is the time delay to the maximum in the 
space-time correlation. The results are ahown in figure 46 
and they indicate that 0 is a strong function of probe 
separation when (, is small. It appears, however, that 
0 reaches a limit as b increases, where it becomes inde- 
pendent of probe separation. The angles in the middle 
of the layer are about 30°, considerably higher than the 
values found by Brown & Thomas (1977) and Kovasznay 
el al. (1970). Perry et d. (1992) later measured struc- 
ture angle by fixing the wall-normal separation of two 
probes and varying the streamwise separation until the 
value of the crosscorrelation of the signals from the two 
probes attained a peak. This method has the advantage 
of not depending on the validity of Taylor's hypothesis. 
The results agreed well with the data of Alving el d. 
(1990b) , for which the probes were separated in only the 
wall-normal direction and Taylor's hypothesis was wed. 
Thus, Perry et d. concluded that the use of Taylor's hy- 
pothesis is an accurate approximation for measurements 
of turbulence structure in a boundary layer (at least for 
reasonable Reynolds numbers and large-scale features). 

MacAulay & Gartshore (1991) determined that the major 
contributions to the broadband crasscorrelations in a tur- 
bulent boundary layer at Ree = 8,390 came from 6-scale 
segments of the velocity signals, which encompass many 
aspects of the flow structure, rather than from individual 
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Figure 48: Conceptual model of the Reynolds number 
dependence of the structure of turbulent boundary layers. 
Figure from MacAulay & Gartshore (1991). 

on outer-layer variables (specifically U. and 6) were only 
weakly dependent on Reynolds number. However, i s  
correlation contours indicated that the streamwise length 
scales increased with Reynolds number, in agreement with 
the results by Liu et aL in a fullydeveloped channel flow. 
Furthermore, space-time correlations in the wall-normal 
direction revealed that the broadband structure angle de- 
e m e d  by about 10' over the same range in Ree. 

Isocorrelation contour maps (figures 49 and 50) showed an 
inerrare of between 30 and 60% in the streamwise length 
scale over the same Reynolds number range, and this he- 
havior may be related to the decreaae in the structure 
angle. The spanwise length scale showed comparatively 
little variation. 

Theae subsonic results provide an interesting contrast to 
the results obtained by Spina et d .  (199la) in a Mach 3 
boundary layer with Ree = 80,000 (see ligwea 51 and 52). 
In the supersonic flow, the streamwise length scales were 
two to three times smdler than in the subsonic flow, and 
the structure angles were about 10" laver. The span- 
wise scales were almmt independent of the Mach num- 
ber. Now, the smaller streamwise scales correlate well 
with the increased structure angle, hut the trend with 
Reynolds number seen in the subsonic data does not seem 
to hold for the supersonic flow. Therefore it m m s  that 
the streamwise length scale and the structure angle de- 
pend on the Mach number and the Reynolds number. 
These observations have important implications for d e  
veloping turbulence models for high speed flows, where it 
is commonly assumed that length scales follow the same 
scaling as in subsonic flow, and only fluid proerty varia- 
tions are important. The fact that some characteristics of 
the turbulence depend on Mach number in a more subtle 
way, even at supersonic speeds where these assumptions 
work reasonably well, indicate that at  higher Mach num- 
bers the scaling will need to include compressibility effects 
directly. 

4 Supersonic Flows 

4.1 Introduction 

At supersonic Mach numbers, viscous energy dissipation 
makes a significant contribution to the energy budget. As 
a result, the temperature rises and significant tempera- 
ture gradients occur within the boundary layer. In a tur- 
bulent boundary layer in supersonic flow, therefore, the 
mean temperature and velocity vary, and significant tem- 
perature and velocity fluctuations occur. Pressure fluc- 
tuations are usually small at supersonic speeds but may 
become important at Mach numbers exceeding 5. 

The increased influence of viscous dissipation is illustrated 
by the evolution of the maskflux profile with Mach num- 
her. The elevated static temperature at the wall creates 
a low-density region that shifts the majority of the mass 
flux toward the outer part of the boundary layer, and the 
profile becomes more skewed as the freeatream Mach num- 
ber becomes larger. In addition to affecting the density 
profile, the mean static temperature variation also creates 
fluid-property gradients across the boundary layer. For an 
adiahatic wall, the temperature at the wall To, depends 



Figure 49: Isocorrelation contour maps in the z-y plane, 
as measured by Smith (1994), in a turbulent boundary 
layer at Re0 = 4,981 and 13,052 using different wall- 
normal probe separations: a) E,/b % 0.1. Figure from 
Smith (1994). 

Figure 49 (cont.) c) <,/6 = 0.3. 

Figure 49 (cont.) b) Cv/6 = 0.2 

Figure 50: Isocorrelation contour maps in the z-z plane, 
as measure3 by Smith (1994), in a turbulent boundary 
layer at y/6  = 0.09,0.42,0.80. (a) Ree = 4,600. Figure 
from Smith (1994). 



Figure 50 (wnt . )  (b) Ree z 13,2W. 

on the recovery factor r and the freestream Mach number, 
but it is always within 10 to 12% of the freeatream total 
temperature. Typical wall-to-freestream ratios of some 
flow properties are provided in Table 3 for three differ- 
ent Mach numbem. Since the density of gasea decreases 
and the viscosity increases with temperature, the ratio of 
v,/v. can become very large. Of course, when the wall 
is heated or when the flow is perturbed so that normal 
pressure gradients exist, the gradients of p, p, and k may 
be even more severe. As a result of the fluid-property 
gradients, the low Reynolds number effects usually found 
only very near the wall will encompass a larger portion 
of the boundary layer as M ,  increases, and the influence 
of the viscous sublayer will increase. Such considerations 
indicate the physical basis for preferring the use of I& 

M, TWIT, PJP, P-IP- v - l b  

2.9 (air)' 3 0.33 1.4 4.2 
4.5 (air)b 5 0.2 2.9 14 

10.3 (Hc)' 33 0.03 9.6 320 

'Spina & Smils 1987 
'Mabey el a1 1974. 
' W a m n  CI a1 1973. 

Table 3: The ratio of fluid properties across three bound- 
ary layem in supersonic flow on adiabatic walls . Table 
from Spina et 01. (1994). 

in the desription of supemonic boundary layem over the 
conventional Ree. 

4.2 Stagnation-Temperature 
Distribution 

The stagnation-temperature profile must be known to cal- 
culate the velocity distribution. Measurements and the- 
ory often seem to conflict, however, and a truly represen- 
tative stagnation-temperature profile is difficult to define, 
particularly at high Mach number. The measurement dif- 
ficulty stems from the compromise that must be made 
between spatial resolution and accuracy when selecting 
a stagnation-temperature probe (see, for example, Fern- 
holz & Finley, 1980). Since approximately onehalf of the 
decrease in To to the wall-recovery value occurs in the in- 
ner layer of near-unity Prandtl-number gases (Morkovin, 
1962). this compromise leads to a kind of uncertainty prin- 
ciple on the accuracy of the data. 

As for theoretical stagnation-temperature distributions, 
Fernholz & Finley (1980) preaent and d i u s a  many of 
the energy-equation solutions commonly applied to su- 
pemnic turbulent boundary layers. They note that mag, 
of the relations are applied beyond their range of valid- 
ity when used to benchmark experimental data. The two 
most widely discussed stagnation-temperature distribu- 
tions in the literature are the "linear" and "quadratic" 
solutions. It has been commonly assumed that (To - 
T,)/(To. - T,) z 8 = U/U. is the proper distribu- 
tion for flat-plate flows, while 8 = (uIU.)' is the appru  
priate tunnel/nozzle wall solution. It has been claimed 
that the quadratic nature of the measurements along 
tunnel walls is due to the upatream history of the flow 
(significant dT/dz and dp/dz) and the resultant local 
non-equilibrium. While Feller (1973), Bushnell et d. 
(1969), and Beckwith (1970) offer convincing arguments 
for flow-history effects, there is little experimental evi- 
dence that the linear profile is the equilibrium stagnation- 
temperature distribution in supersonic, turbulent bound- 
ary layem. 

The classic (linear) Crocco solution, 8 = UIU., is derived 
from the energy and momentum equations for laminar 
flow with Pr = 1, zero pressure gradient, and an isother- 
mal wall. The Ctocco solution is extended to turbulent 
flows under the same conditions with the additional as- 
sumption of unity turbulent Prandtl number (Prt). How- 
ever, it has been shown that Pr; is less than 1.0 across the 
outer layer for both near-adiabatic walls (Meier & Rotta, 
1971) and cold walls (Owen et al. , 1975). Fernholz & 
Finley (1980) show that the origins of a quadratic profile 
for turbulent flow lie in a solution by Walz (1966): 

where p = (Taw-T,)/(To- -T,). The 888umptions inher- 
ent in this mlution are zero pressure gradient, isothermal 
wall, and a constant "mixed" Prandtl number, PTM = 
~ ( f i  + p;)/(k + kt) between 0.7 and 1.0. The linear p r u  
file therefore holds only for p = 1, that  is, To. = T.,, and 
the purely quadratic profile holds only for a zerc-preseure 
gradient flow, with constrained PPM, and an isothermal 



Figure 51: Isocorrelation contour maps in the 2-y plane, 
as measured by Spina (1988), in a turbulent boundary 
layer at Ree = 81,000 and M = 2.9 using different wall- 
normal probe separations: a) Cv/6 = 0.09; b) Cv/6 = 0.30; 
C) Ey/6 = 0.51. Figure from Spina (1988). 

Figure 52: Isocorrelation contour maps in the z-z plane, 
as measured by Spina (1988), in a turbulent boundary 
layer at R e  = 81,000 and M = 2.9 at three positions 
in the boundary layer: a) y/6 = 0.20; b) y/6 = 0.51; c) 
y/6 = 0.82. Figure from Spina (1988). 



(also adiabatic) wall (P = 0). The range of validity of the 
quadratic relation is often extended improperly to flows 
with pressure gradients because of the similarity of the 
equation to one that is valid for laminar and turbulent adi- 
abatic flows with preesure gradients. Perhaps due to the 
relaxed constraint on the Prandtl number (as compared to 
the Linear solution), much of the stagnation-temperature 
data appeacs to be characterized by a quadratic trend 
(Bushnell et d. , 1969, Bertram & Neal, 1965, Wallace, 
1969, Hopkins & Keener, 1972). 

A critical shortcoming is the dearth of near-wall To mea- 
surements, which are critical for determination of the wall 
heat-transfer rate. The lack of data makes it impossi- 
ble to determine whether these temperature-velocity re- 
lations, or even those provided by Bradshaw (1977) to 
represent the inner layer, accurately describe the near- 
wall behavior of the stagnation temperature. For flows 
with non-isothermal walls and significant pressure gradi- 
ents the situation is much worse, however, as no t b  
retical temperature-velocity relations exist for these con- 
ditions. Much of the confusion surrounding stagnation- 
temperature distributions is due to comparison between 
data taken under these conditions and theoretical rela- 
tions that are applied beyond their range of validity. 

4.3 Mean-Velocity Scaling 

When the mean velocity in a supersonic boundary layer 
is plotted as UIU. us. y/6, the profile appem qualita- 
tively similar to that of an incompressible flow. When 
the velocity is replotted in classic innet- or outer-layer 
coordinates, however, the velocity does not follow the fa- 
miliar incompressible scaling laws for these regions. But 
a modified scaling that accounts for the fluid-property 
variations correlates much of the existing compressible 
mean-velocity data with the "universal" incompressible 
distribution. This velocity scaling was Rrst employed in 
the viscous sublayer and the logarithmic region by van 
Driest (1951), was extended to the wake region and to 
velocity-defect scaling by Maise & McDonald (1968), and 
to Coles' universal wall-wake scaling by Mathews et al 
(1970). The following outline of the scaling arguments 
for supersonic turbulent boundary layers is based largely 
on the discussion given by Fernholz & Finley (1980). 

The usual derivation of the velocity distribution in the 
inner region is based on the assumptions. 

(I) that the convective term a/& in the equation of 
motion is small compared with the viscous term, 

(2) that the pressure gradient term can be ignored so as 
to simplify the discussion, and 

(3) that the total stress rr = f i  (ao/%) - p i 7  is con- 
stant in the inner region and equal8 r,. 

(4) Morkovin's hypothesis holds, in that the structure 
of the turbulence does not change significantly due 
to compressibility effects up to about a fr&tream 
Mach number of about 5. 

"The dominating factor in the compressible 
turbulent-boundary layer problem is apparently 
then the effect of high temperature on the ve- 
locity profile near the wall and therefore on 

the shear stress. This latter observation was 
first advanced by von K h h  in 1935 but has 
been somewhat neglected in favour of interpola- 
tion formulae or of elaborate generalizations of 
the mixing length hypothesis" (Part I of Coles, 
1953). 

The increased didpation rate in the viecous sublayer has 
the effect that at a fixed Reynolds number the sublayer 
thickness increasa with increasing Mach number. The 
same effect is of course responsible for the observed in- 
crease in the thickness of the laminar boundary layer at 
high Mach numbers (see, for example, van Driest, 1951). 

If one assumes that in the viscous sublayer the molec- 
ular shear stress p (aCr/&) is large compared with the 
Reynolds shear stress -@-and equal to the skin friction 
T W ,  then one obtains for the velocity gradient 

in which the variation of the v h i t y  with temperature 
is taken to be given by 

Using Equation 53 for the temperature distribution (valid 
under the assumptions dp/& = 0 and T, = constant), 
Equation 54 yields: 

where the transformed mean velocity in the sublayers 
is defined by 

Hence, with w = 1: 

We see that the transformed velocity has a linear die- 
tribution similar to the linear velocity distribution in the 
viscous sublayer of an incompressible turbulent boundary 
layer, and to which it reduces for T = T, and Me = 0. 

Between the viscous sublayer and the outer layer there 
exist a region, defined by y+ >> 1 and 11 << 1, where 
the Reynolds shear stress - p i 7  is dominant and is a p  
proximately equal to the skin friction 7,. If it is ak 
sumed that Prandtl's mixing length theory is also valid 



for compressible turbulent boundary layers, then from - 
r, = -pu'vl = pel (BW/&)' we obtain: 

where K is von KBrmBn's constant and e is Prandtl's mix- 
ing length (assumed to be equal to KU, as in subsonic 
flows). This result is independent of Mach number. Since 
the pressure is constant in the wall-normal direction, we 
have, for a perfect gas: 

We can again use Equation 53 to substitute for the tem- 
perature ratio in Equation 57 and obtain (Fernholz, 1969): 

where 

and 

where a and b are given by Equations 59 and 60, and the 
sufiix 1 denotes a boundary condition at the lower end of 
the validity range of the log-law (which can in principle 
only be found by experiment). 

For an adiabatic wall, T, becomes the recovery temper- 
ature T,, and a = 0. In this case experiments show that - 
Ul/Lr, lies in the range 0.3 5 f f ; /~ .  5 0.6. With a value 
for Ul/U. = 0.5 one can show that arcsin can be replaced 
by its argument for Mach numbers up to 8 with a relative 
error of -4% or less. Then C' reduces to 

that is, the eame value as for the incompressible case. 
This result was also confirmed by the measurements dik 
cussed by Fernholz & Finley (1980) and by general com- 
putational experience (Bushnell et d. , 1976). 

Fernholz & Finley (1980) concluded that velocity pr* 
files in compressible turbulent boundary layers are well 
represented by Equation 63 within the limits set by the 
assumptions. A comparison between measurements in 
transformed and un-transformed coordinates is given in 
figure 53. 

The first approach to this type of transformation was sug- 
gested by van Driest (1951) who derived a relationship 

similar to Equation 63 also using the mixing length con- 
cept. He assumed Prandtl number unity and so a ncov- 
ery factor equal to one and determined the constant C 
so that for the limit M. + 0 and (TWIT.) + 1 the well- 
established relationship for the incompressible case should 
result. Van Driest's equation for the logarithmic law then 
reads the same as Equation 63, except that r = 1 in the 
definitions of a and b. 

The differences likely to appesr if the alternative trans- 
formation is used can he seen in figure 54. Here three sets 
of profile data are plotted using firstly Equation 65 with 
r = 0.896 and secondly Equation 65 with r = 1.0 which 
then reduces to van Driest's transformation. The differ- 
ences, although systematic, are small when compared to 
experimental error, particularly in the determination of 
CI .  Given the uncertainties in the transformation a p  
oroach. and the exoerimental difficulties in obtaininn ac- e 

curate h ~ e s  for c;, there is little that can be said for any 
given set of log-law constants and their possible variation 
with Reynolds number or Mach number. It is equally dif- 
ficult to say anything meaningful regarding the existence 
of power law similarity, rather than log-law similarity, as 
discussed in Section 3.1.5. 

The empirical validity of Morkovin's hypothesis offers 
some support for the concept behind the van Driest 
transform (and similarly that by Fernholz & Finley) by 
suggesting that multi-layer scaling holds in compressible 
boundary layers. And despite the assumptions inherent to 
the mixing-length hypothesis, the underlying dimensional 
argument is sound as long as the length-scale distributions 
in supersonic boundary layers follow the same behavior as 
in subsonic flow. In fact, experimental data taken over a 
wide Mach-number range, with various wall-heating con- 
ditions and modest pressure gradients, and transformed 
via van Driest show good agreement with incompressible 
data correlations (for example, Kemp & Owen, 1972, La- 
derman & Demetriades, 1974, Owen et d. , 1975, Wat- 
son, 1977). The systematic discussion given by Fernholz 
& Finley (1980) is particularly persuasive. 

It is important to note what the limits of applicability 
appear to be, however. Other than strong pressure gradi- 
ents, the primary constraint is imposed by the dependence 
of similarity on large values of the Reynolds number, 
implying universality and independence from upstream 
history. Fernholz & Finley (1980) obaerve that the low- 
Reynoldknumber region that begins to dominate the in- 
ner layer at high Mach number may eventdly cause the 
failure of the velocity scaling laws that the transformed 
data follow. Hopkins et 01. (1972) attribute the poor per- 
formance of van Driest at Me = 7.7 to the low Reynolds 
number of the flow, Re0 = 5,000. This can be compared 
to a successful application of van Driest at Me = 9.4 and 
Re0 = 37,000 by Laderman & Demetriades. It seem 
reasonable, however,that the transformation suggested by 
Fernholz & Finley offers a slightly more accurate variation 
of van Driest, since the temperature distribution is based 
on a Prandtl number assumption (0.7 5 P ~ M  5 1.0) 
that is more realistic than van Driest's assumption of 
Prt = Pr = 1. 

In the outer region, the similarity of the velocity pro- 
file can be verified by plotting the velocity defect 
(u: - p ) / u ,  versus yj6' where the transformation of 



Figure 53: Log-linear plots of the velocity profile for a compressible turbulent boundary layer. Natural and transformed 
velocities (p). From Fernholz & Finley (1980), where catalog numbers are referenced. 

Figure 54: Comparison of velocity profiles transformed by using recovery factors of 1 and 0.896 (Mabey et d. , 1974, 
Horstman & Owen, 1972). From Fernholz & Finley (1980), where catalog numbers are referenced. 



the velocities U:, and the characteristic length 6' have value. Though the basic elements of this 'amalgamated" 
yet to be determined. Since the mean velocity approaches velocity profile look promising, no sufficient comparisons 
the velocity U. asymptotically the boundary layer thick- with experiments are available as yet. lkansformed ve- 
ness is an ill-defined quantity, and it is sensible to use in- locities according to van Driest were also used by Lewis 
stead an integral length A as suggested by Rotta (1950) et al. (1972) for a semiempirical description of the ve- 
for incom~ressihle boundarv lavers (see Eauation 26). locitv distribution in the inner and outer region. 
The only difficulty in using the reference length A is that 
both the velocity profile and the skin friction must be 
known which, unfortunately, is not always the case for the 
published measurements. If both are available then the 
velocity defect distribution and the integral length scale 
can be transformed and applied to compressible turbulent 
boundary layers. It is then hoped that the dimensionlees 
velocitv defect will be described bv a function 

Finally, it should he pointed out (as we did for incom- 
pressible flows) that the similarity scaling of the compreek 
ible boundary layer mean velocity profile is most usefully 
expressed in t e r n  of the scaling for the mean velocity 
gradient aU/&. That is, all/& in the near-wall rn 
gion scales with a length scale v,/u, and a velocity scale 
u, (T,/T)"'. In the outer region the length scale is 6, 

and the velocity scale is u, In the overlap re- u: - 7 3  
= f  ($1 (67) gion, the length scale becomes y, but the velocity scale is 

still u,,m. So we nee that the mean velocity pro- 

(for zero pressure gradients), where file in akompressible bou@ary layer scalea with the same 
length scales used in scaling incompressible flows, hut the 

1 
velocity scale is modified by the variation in mean tem- 

(68) perature. 
0 

There is no justification for the simple relationship of 4.4 Skin Fkicti0n 
Equation 67 other than verification by experiment. How- 
ever, an evaluation of a large number of experiments in Skin-friction measurements are more difficult to make and 
zerupressure gradient boundary layers, mainly along adi- to inter~ret in su~ersonic flows lFemholz & Finlev, 1980. . . 
abatic walls & e a r s  to support this particular scaling Smith i t  al. , 1992). Flosting-el~ment gauges are snacep 
scheme. The data suggest the following semi-empirical tible to inaccuracies stemming from leakage, local v a r b  
relation (Fernholz. 1971): tions in heat transfer, flushness, and moments applied by 

- streamwise pressure gradients. Preston-tube data can be 
Y uf-v. = - M h - - , (69) analyzed using a variety of calibration schemes, leading to 

ur A. considerable uncertainty in the results. Mast schemes for 
reducing Preston-tube data rely on boundary-layer edge 

with M = 4.70 and N = 6.74 (1.5 x 10' < Ree < 4 X  10'). conditions (for examole. Ho~kins & Keener. 1966). and - ~- . .  . , . 
this can i n t h n c e  Bdditional errors, particuiarly in per- 

More elaborate semi-empirical relationships of the type: turhed flows where the edge properties are oRen unrelated 

u: -iF to the flow behavior near the wall. As Finley (1994) points 
- -- ,,. - ' ~n t Kg ( W )  

.c (70) out, calibration equations which involve an empirical "in- 

were suggested by Cola (1953), by Stalmsch (1958) and 
by Maine & McDonald (1968), the latter two authors us- 
ing van Driest's velocity transformation, that is, with 
Prandtl number one. Due to the different methods a p  
plied in specifying the boundary layer thickness 6, the 
authors of the semiempirical relations mentioned above 
do not agree with each other nor do they agree with me& 
surements if these are plotted using values as given by the 
experimentalists. 

Figure 55 shows this comparison. Since the figure is 
meant only to illustrate the problem, the reader is referred 
to Femholz (1969) for the identification of the experimen- 
tal data. 

Libby & Visich (1959), Mathews et al. (1970) and Sun & 
Childs (1973) extended the Coles (1956) wall-wake ve- 
locity profiles (Equation 27) to compressible turbulent 
boundary layers (a) for adiabatic flows with pressure gra- 
dient and (b) for isothermal wall and zero pressure gr& 
dient, using the van Driest transformation in the 1973 
paper. Sun & Childs (1976) modified Calm's relationship 
to avoid the shortcomings basic to this formulation that 
the velocity gradient at the boundary edge has a non-zero 

termediate temperature", and/or freestream properties 
are functionally incorrect, since the Preston tube pres- 
sure should depend on wall variables only. He adds that 
as long as they are used in flows with amall or negligible 
normal pressure gradients, this is not crucial. However, 
in many compressible fiows there are significant no& 
pressure gradients and the calibration equations should 
be expressed in terms of wall variables. The only cali- 
bration which does so is that by Bradshaw & Unsworth 
(1974). Here, for adiabatic flows and for u,d/v, > 100: 

which reduces to a very good fit to the calibration data 
of Patel (1965) for incompressible flows as M, + 0. 

Allen (1977) suggested that the constants used by Brad- 
shaw & Unsworth were incorrect and proposed that the 
last term should read: 
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Figure 55: Mean velocity profiles in outer-layer scaling for zero pressure gradient compressible turbulent boundary 
layers . From Fernholz & Finley (1980). The key to the data is given in Fernholz (1969). 

However, Finley (1994) concluded that these corrections 
were baaed on unreliable balance data, and on the basis 
of a detailed analysis of the available data recommended 
that the original constants as given in Equation 71 are 
more accurate than thcee given by AUen (1977). It should 
also be noted that Finley introduced a reduction proce- 
dure originally due to Gaudet (1993, private communic& 
tion), in wall variables, which depends on the van Driest 
(1951) transformation, and not directly on balance me& 
surements. 

The Clauser method (Clauser, 1954) can also be used as 
long as a logarithmic region can be found, but the r e  
sults obviously depend on the validity of the particular 
compressibility transformation used. In perturbed-flows, 
the compressibility transformation of Carvin et al (1988) 
should be more reliable than that of van Driest because 
it does not have the additional requirement of a self- 
preserving boundary layer. In practice, for a wide variety 
of flows, including flows with strong pressure gradients 
and shock wave boundary layer interactions, the differ- 
ences between the Clauser-chart results obtained using 
the two transformations seem to be within about f 15% 
of the Preston-tube results (Smith et d. ,1992). The laser 
interferometer skin friction meter (LISF) is a promising 
new technique that does not require assumptions about 
the character of the wall region to deduce the wall shear 
stress, and can thus provide direct measurement of the 
skin friction in a perturbed flow. Kim et d. (1991) com- 
pared LISF results to Preston tube measurements in a 
three-dimensional shock-wave boundary-layer interaction 
and found encouraging agreement. 

As a result of the increased viscous dissipation in com- 
pressible boundary layers is a decrease in the skin-friction 
coefficient with increasing Mach number (at fixed Re). 
The low density of the fluid near the wall indirectly results 
in a decrease in the slope of the non-dimensionalized ve- 
locity profile relative to that for an equivalent-Reynolds- 
number incompressible boundary layer. Since density 
bas a stronger dependence on temperature than viscok 
ity does, the skin-friction coefficient decreases with Mach 
number (although the dimensional wall shear incream 

due to the increase in velocity). The general trends for 
hot and cold walle can be predicted horn these considers 
tions, with heated walls lending to lower C, (Hinze, 1975, 
Fernholz, 1971, Fernholz & Finley, 1980). 

While the Howarth-DorodNtsyn compressibility tramfor- 
mation provides an analytical solution for Cf in lami- 
nar boundary layers (Pr = I), no such solution exists in 
turbulent compressible boundary layers. Instead, a vs- 
riety of experimental correlations, transformations, and 
finite-difference solutions exist. Bradshaw (1977) criti- 
cally reviewed the most widely-used skin-hiction formu- 
las and found that a variation of "van Driest 11" (van 
Driest, 1956) exhibited the best agreement with reliable 
zero-pressure-gradient data, with less than 10% error for 
0.2 5 T,/T., < 1. Of course, the success of van Driest 
11 is mainly due to the fact that for air the molecular and 
turbulent Prandtl numbers are close to unity. 

4.5 Scales for Turbulent Transport 

In the analysis of the mean velocity distributions in su- 
personic boundary layers it was asanmed that the mix- 
ing length distribution was the w e  as in s u b m ~ c  flows. 
This comprises essentially a variable fluid property 8s- 
sumption, that is, the mechanisms governing turbulent 
transport are the same as at low speed, and the varik 
tions of density are taken in account by scaling the local 
stress. This hypothesis is quite successful, since, as we 
have seen, experimental evidence supports that the log 
law is observed on the van Driest transformed velocity, 
with the same constant as in at low speed. Therefore it 
may be expected that the typical size of the energetic ed- 
dies producing turbulent transport obeys the same laws 
as in subsonic flows. Note that this scale is built on the 
shear stress -G, and that it is a scale related to turbulent 
diffusion. 

The following discussion has been adapted hom the r e  
cent work by Duasauge & Smits (1995). Consider the 
characteristic time scales of the turbulent and mean m u  
tions. The turbulent time scale tr can be expressed as a 



function of mean time scale, flow parameters such as the 
Reynolds and Mach numbers R and M ,  the position y 
and the length scale L. That is: 

We know that the energetic structures and the mean m u  
tion have characteristic scales of the same order. This 
suggests that the previous relationship can be rewritten 
as 

tr = tmg(R, M,u,  L, .... ) (72) 

where the function g is of order 1. If we aasume 
Morkovin's hypothesis, then for weak compressibility ef- 
fects, for example in boundary layern at moderate Mach 
numbers, the relation between the scales is the same as 
at low speeds. Equation 72 reduces to: 

The turbulent time scale is defined as usual by k / ~ .  The 
mean time scale is chosen as (aU/&)-', the turnover 
time of the mean motion, as in low speed flows. This 
choice can he justified as follows. The main role of the 
mean inhomogeneity is to amplify turbulence through lin- 
ear mechanisms described, for example, by rapid distor- 
tion theories. In general, a fluctuation subjected to mean 
shear obeys an equation of the form: 

In this equation, f represents the pressure, non-linear and 
viscous tern. It appears from the linear left hand side 
that the amplification of u' by linear mechanisms occurs 
with a time constant of order of (XI/&)-' (for incom- 
pressible turbulence, the role of the pressure t e r n  in f is 
to reduce ulaU/&, but the order of magnitude remains 
unchanged). The mean time scale can therefore he inter- 
preted as a response time of fluctuations to mean homu 
geneity, and it must therefore be of order (XJ/&)-'. If 
we evaluate f in the zone where the shear is constant, and 
where production and dissipation are equal: 

Moreover, in this region, we mume that similarity of the 
profile is achieved by using either a viscous length scale, or 
an external length scale. We denote L the scale, whatever 
the choice. Equation 73 can then be rewritten as: 

We recognize in Equation 74 the scaling p r o p d  by 
Morkovin for the similarity of the Reynolds stresses: simi- 
larity is achieved if the local velocity scale in the constant 
stress region is now m u ,  instead of u,. We can 
now define a length scale in the particular case when pro- 
duction is balanced by dissipation. The turbulent time 
scale is defined as Alu', where u' is a characteristic scale 
for velocity fluctuations, for example fi. Equating this 
time to k / ~ ,  and setting E equal to production gives the 
relation: 

or, according to Equation 74, 

from Equation 75, it can be deduced that the length 
scale is the same in.subsonic and supersonic flow when 
the ratio u1/(aU/&) is unchanged. Thin implies that 
the scaling for denaity effects should he the same for u' 
and ~ U / & I .  We know kom experiment (and from Equa- 
tion 74) that in supersonic layers, u' varies like p-'Ia. 
We also h o w  that aU/& varies as p-'/' since the van 
Driest tramformed velocity obey the name log-law as in 
subsonic flows. Therefore the characteristic length scales 
governing turbulent transport should not change in the 
supersonic regime. 

To conclude theae scaling conaiderations on turbulent 
transport, it should be emphasized that the presence of a 
logarithmic region in the mean velocity profile is a neces- 
sary condition, and that we have only considered a single 
velocity scale and a single length scale. This was a p  
plied to turbulent stresses, which are r ep rmted  by a 
tensor. Therefore, it is likely that the results we obtained 
are related mainly to a single component or to the tur- 
bulent kinetic energy, but not to all of the components. 
Finally, Equations 72 and 74 may give mme insight into 
the influence of compressible turbulence on the high speed 
boundary layers, and indicate some possible ways to in- 
vestigate departures from Morkovin's hypothesis in these 
flows. In Equation 72, an acoustic time scale (or a Mach 
number) may be introduced, while the equilibrium condi- 
tion should be modified by balancing the dissipation rate 
by the sum of production and pressure divergence t e r n ,  
and by modifying Equation 74. 

4.6 Mean Turbulence Behavior 

Sandborn (1974) and Fernholz & Finley (1981) both crit- 
ically reviewed turbulence measurements in supersonic 
boundary layers. While many data sets were acquired 
in the period between the two reviews, their conclusions 
were similar and they continue to be relevant. In particu- 
lar, accurate, repeatable measurements of the Reynolds- 
stress tensor are still needed over a wide Mach-number 
range. The most well-documented component is the lon- 
gitudinal normal stress, which has been widely measured 
and properly scaled. But there have been m few system- 
atic investigations of the effects of Reynolds number and 
wall heat transfer in supersonic flow that their influence 
on the turhulence field is not well known. The reason 
for the scarcity of measurements and their generally poor 
quality is simple: the measurement of turbulence quanti- 
ties in supersonic boundary layers is exceedingly difficult, 
with the level of difficulty increasing with flow complexity 
and Mach number. But furthermore, there are significant 
measurement and data-reduction errors aesoeiated with 
every technique designed to measure fluctuating veloci- 
ties in supersonic flow: thermal anemometry (see Smite 
& Dussauge, 1989), laser-Doppler velocimetry (Johnson, 



Figure 56: Distribution of turbulent velocity fluctuations 
in boundary layers. Measurements are fromKistler (1959) 
and Klebanoff (1955). Figure from Schlichting (1979). 

1989), and advanced laser-based techniques such as laser- 
induced fluorescence (Logan, 1987, Miles & Noeenchuck, 
1989). 

Despite these uncertainties in the measurements, certain 
trends can be distinguished. For example, when the longi- 
tudinal velocity fluctuations are normalized by the shear 
velocity, F lu : ,  there is a clear decrease in fluctuation 
level with increasing Mach number (see Kistler, 1959, 
Fernholz & Finley, 1981). This is shown in figure 56. 

However, when the streamwise normal stress is nor- 
malized by'tbe wall shear stress, the data exhibit some 
degree of similarity (as suggested in Section 4.5), par- 
ticularly in the outer layer (see figure 57). This formu- 
lation of the velocity fluctuations indicates the success 
of the scaling suggested by Morkovin (1962) to account 
for the mean-density variation, and provides some s u p  
port for the discussion given in Section 4.5. In fairness, 
it should be mentioned that Fernholz & Finley (1981), 
in considering an earlier set of data, concluded that the 
streamwise Reynolds stress did not show a similar behav- 
ior in the outer region, no matter which velocity scale 
was used in the non-dimensionalization. It appears that 
the later data shown in figure 57 displays a more regu- 
lar behavior. The streamwise normal stress distribution 
for supersonic flows is in fair agreement with the incom- 
pressible results of Klebanoff (1955), except near the wall 
where reduced accuracy affects the supersonic measure- 
ments. Morkovin's scaling appears to be appropriate to 
at least Mach 5. Measurements by Owen et al. (1975) 
at Me = 6.7 and Laderman & Demetriadea (1974) at 
M. = 9.4 exhibit damped turbulent fluctuations, partic- 
ularly near the wall. Since both of the hypersonic data 
sets are for cold-wall conditions, this may simply indicate 
the stabilizing effect of cooling. 

Cmskwire measurements of both streamwise and wall- 
normal components of velocity have suggested additional 
apparent differences between Mach 3 and incompressible 
boundary-layer structure (Smits et al. , 1989). Measure- 
ments of and are less common than those of p, 
the data exhibit more scatter, and the conclusions are 

Figure 57: Velocity fluctuation intensity in supersonic 
boundary layers: *, Duseauge & Gaviglio (1987); , 
M = 1.72; 0, M = 3.56; 0, M = 4.67, Kistler (1959); 
A,  hot wire; 0, laser, M = 2.9, Johnson & Rose (1975); 

, M = 2.9, Smits et d. (1989); ., M = 2.32, E l h a  
& Lacharme (1988); 4 M = 2.3, Debibve (1983); , 
M = 2.32, E l h a  & Gaviglio (1993); 0, M = 3, Yanta 
& Crapo (1976). Figure taken from Dussauge & Gaviglio 
(1987). 

therefore less certain. In contrast to the streamwise tw- 
bulence intensity, both distributions appear to increase 
slightly with increasing Mach number (Fernholz & Fin- 
ley, 1981). In this case, Morkovin's scaling doen not col- 
lapse the data, and j%T/rw and @/rw show no real 
trend toward similarity. Komad (1993) using hot-wire 
anemometry found that 2 and Bnd in a Mach 2.9 bound- 
ary layer were approximately equal throughout the layer 
(see figure 58). In contrast, the measurements by El6na 
& Lacharme (1988) in a Mach 2.3 boundary layer u s  
ing laser Doppler anemometry indicate that the behav- 
ior of is almost identical to that found in subeonic 
flows (see figure 59). The behavior of the anisotropy 
parameter is therefore not clear: the measurements by 

EMna & Lacharme (1988) indicate that @/o is al- 
most the same as in subsonic flows, whereas the hot-wire 
measurements by Fernando & Smits (1990) and Konrad 
(1993) indicate that this ratio i n c r e m  with Mach num- 
ber (Reynolds number effects were shown to be negligibly 
small in Section 3.2.3). The limited nature of the data 
precludes any conclusions regarding the effects of com- 
pressibility on this structure parameter. 

Sandborn (1974) reviewed direct measurements and in- 
direct evaluations of the zer-pressure-gradient Reynolds 
shear stress, -j%Z (a later, more comprehensive study 
was provided by Fernholz & Finley, 1981). Sandborn 
constructed a 'best fit' of normalized shear stress prc- 
files (r/r,,,) h m  integrated mean-flow data taken by a 
variety of researchers over a wide Mach-number range, 
2.5 < M, < 7.2 (extended to Mach 10 by Watson (1978) 



Figure 58: Turbulence histributiona in a Mach 2.9 
boundary layer, measured using hot-wire probes ( R e  = 
65,000). Adapted from Konrad (1993). 

Figure 59: Turbulence distributions in a Mach 2.3 
boundary layer, measured using LDV (Ree = 5,650). 
Figure from El6na & Lacharme (1988). 

for adiabatic and cold walls). The data indicate a near- 
universal shear-streea profile that agrees well with the in- 
compressible measurements of Klebanoff (1955) (see fig- 
ure 60). As Sandborn pointed out, the universality of 
T/T, over such a wide Mach-number range is not surpris- 
ing in light of the fixed constraints on the values of the 
shear stress at the wall and in the freeatream. Even so, the 
only Reynolds shear stress measurements to agree with 
the 'best fit' in 1974, and then only in the outer layer, 
were the LDV data of Rose & Johnson (1975). Subse- 
quent Reynolds shear stress measurements by Mikulla k 
Horstman (1975), Kumy et d. (1978), Robinson (1983), 
Smits & Muck (1984), and Donovan et d (1994) (all 
using hot wires except Robinson) have exhibited modest 
agreement with Sandhorn's best fit and the inmmpreak 
ible distribution. The agreement is limited to the outer 
layer, with great scatter in the inner layer and most p m  
files not tending toward r/r, = 1 near the wall. The data 
in the inner layer do not scale with m / v , ,  almost eer- 
tainly because of the difficulties with the measurements. 

The behavior of the shear correlation coefficient L. is 
affected strongly by the level of F. In the measurements 
by, for example, Fernando & Smits (1990) a t  Mach 2.9, 
&, decreases significantly with distance from the wall, 
from a value of about 0.45 near the wall to about 0.2 
near the boundary layer edge (see figure 61). This is in 
contrast to most subsonic flows where the correlation w 
efficient is nearly constant at a value of about 0.45 in the 
region between 0.16 and 0.86. As can be seen in the fig- 
ure, the data by E lha  & Lachanne (1988) a t  Mach 2.3 
follow the subsonic distribution closely, and it is difficult 
to say what the effect of compressibility is on the level of 
&, without further experiments. However, the subsonic 
data showed that the maximum value of F increases sig- 
nificantly with Reynolds number (see figure 32), and mn- 
sidering that there is about a factor of 15 difference in 
the Reynolds numbers between the results of Fernando 
& Smits (1990) and E l h a  & Lacharme (1988), the differ- 
ences seen in the distribution of &. may well indicate the 
effects of Reynolds number. Joint probability density d i s  
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Figure 60: Distribution of turbulence shear stress in 
boundary layers at supersonic speed. Figure from Sand- 
born (1974). 

Figure 61: Distribution of QY in subsonic and super- 
sonic boundary layer: (a) Data from E16na & Lacharme 
(1988): the dotted line corresponds to the subsonic data 
of Klebanoff (1955). (b) Data from Fernando & Smits 
(1990): the filled-in symbols are subject to errors due to 
transonic effects. 

Figure 62: Test of the Strong Reynolds Analogy in a 
supersonic boundary layer (Me = 2.32, Re* = 5,650). 
Data from Debihve (1983). 

tributions of the two velocity (or mass-flux) components 
may also be somewhat different between subsonic and su- 
personic flows, with the supersonic case favoring verti- 
cal fluctuations in the mid-layer slightly more than the 
subsonic case (for M h e r  details see Fernando & Smits, 
1990), but again the evidence is not conclusive. 

In Section 2.3 the Strong Reynolds Analogy was die- 
cussed. Some measurements designed to test the validity 
of this analogy in adiabatic flows are presented in fig- 
ures 62 and 63. The results indicate that the SRA is 
closely followed in supersonic boundary layers, and the 
correlation coefficient Qr is close to the value of 0.8 
throughout the layer (note that for y/6 > 0.8, the as- 
sumptions used in the data reduction are probably in- 
valid). This value is considerably higher than that found 
in slightly heated subsonic flows, as seen in figure 63, and 
the reason is not entirely clear. However, the SRA can 
be a very useful tool in describing the behavior of super- 
sonic turbulent boundary layers, especially in formulat- 
ing turbulence models. The SRA can also be extended to 
non-adiabatic flows, as discussed by Gaviglio (1987). 

At hypersonic Mach numbers, it is possible that the triple 
correlation p'u'v' may become comparable to the 'in- 
compressible' Reynolds shear stress, m-, since p ' b  - 
M%'/u. Owen (1990) evaluated the various contribu- 
tions to the 'compressible' Reynolds shear stress at Mach 
6 through simultaneous use of t w w o m p o n ~ L D V  and a 
normal hot wire. His results indicate that p'u'v' is negligi- 
ble compared to ~7. Even though density fluctuations 
increase with the square of the Mach number, it should be 
remembered that the main contribution to the Reynolds 
shear streas occurs in the region where the local Mach 
number is small compared to the freestream value, so this 
'hypersonic effect' should only be important at very high 
freestream Mach number. 



length scale was the distance from the wall y. And in 
the third zone, the scales were given by the Kolmogorov 
length and velocity scales q and v (s?e equations 39 and 
40). Matching Zones 1 and 2 leads to a spectrum which 
variea as k;', and matching Zones 2 and 3 gives a k; '/a 

variation. 

We will now extend these considerations to high speed 
houndarx layers (for further details see Dumauge & Smita, 
1905). The scales for wnes 1 and 2 were discussed in 
Section 4.5, where it was shown that the local scale for - 
u'a is (p,u?)/p. Again, the -1 power law is obtained as 
the result of the overlap between zones 1 and 2. 

0 
0.2 0.4 0.6 0.8 For the viscous zone, however, the Kobnogorov scales will '' 

change. We can define new length and velocity scales by 
considering the dynamic viscosity h, the rate of dissipk 

Figure 63: Distribution of LT in boundary layers. tion per unit volume p (and not per ,,nit mass E )  and the 
Curve 1: Me = 2.32, Ree = 5,650, from Debibve (1983). density p. ~ i ~ ~ ~ i ~ ~ a l  analysis giw: 
Curves 2 and 3: Me = 1.73, R e e  = 5,700, from Dussauge 
(1981). Curve 4: M. << 1, Re0 = 5,000, from Fulachier 114 

(1972). Figure from E l h a  & Gaviglio (1993). 

The stagnation-temperature fluctuation must be known and 
= p-'ll 

to evaluate the turbulent heat-flux correlation, - % p v T .  bdl' . 
Kistler (1959) observed that Gr,,/% increased with 
Mach number. with maxima of 0.02 at M ,  = 1.72 and Equations 42 and 43 now have the - 
0.048 at M, = 4.67. If Kistler's data is alternately non- 
dimensionalized by either T, (Femholz & Finley, 1981) or 
T, - T. (Sandborn, 1974), the Mach-number dependence 
appears to be eliminated, but similarity of the stagnation- 
temperature distributions is not achieved. Similar con- 
clusions are reached from measurements by Morkovin & 
Phinney (1958) and Horstman & Owen (1972). The maxi- 
mum level of stagnation-temperature fluctuations is about 
6% (for M < 7). Further analysis of these data shows that 
T&,. scales according to either To. -T, or To. - T,. The 
fluctuations in total temperature appear to be produced 
by the difference in stagnation temperature between the 
wall and the freestream, and not, for example, by the 
unsteadiness in pressure, through the tern &/at in the 
total enthalpy equation. In these experiments, the max- 
imum of To.,./(Tor -TI) is about 0.5, regardless of the 
Mach number, a rather eatisfactory result since it shows 
that the tow temoerature fluctuations are of the order of 
(but less than) the total temperature difference across the 
boundary layer. Finally, G.,. is less than that of u:,. 
and C,., but not low enough to satisfy the strict Strong 
Reynolds Analogy (see Gaviglio, 1987). In fact, the SRA 
can be used to estimate that TA,, is about 60% of C,. 
at Mach 3 (Smitn & Dueaauge, 1989). 

4.7 Spectral Scaling 

We saw in Section 3.2.2 that two overlap regions in 
wavenumber space can be found by considering the scaling 
for the snectraof subsonic boundarv lavers in the loearith- ~ ~ ~. - u 

mic region, one where the spectra has a power law with 
exponent -1 and another with an exponent -513 (Perry 
et 01. , 1986). Three spectral zones were considered. In 
the first zone the length scale was the layer thickness 6 
and the turbulent velocity scale was u,. In the second 
zone, the turbulent velocity scale was the same, but the 

So the Kolmogorov scales are unchanged as long as C, = 
p / p  and d = p/p. The analysis for the overlap region 
is the same as for low speed boundary layers: the Kol- 
mogorov scales are determined in the equilibrium zone 
where production and dissipation are assumed to balance, 
where the turbulent shear stress is constant, and where 
the van Driest velocity2 logarithmic. It is again found 
that the spectrum of u'l should have a range in k;"'. 
Since the analysis can be performed using either the in- 
compressible or compressible variables, the changes in the 
scales due to variations in the mean density are absorbed 
in the modified dissipation rate because of the density 
scaling of the velocity gradient. The differences between 
the incompressible and the compressible definitions of the 
Kolmogorov scales are mainly related to the link between 
velocity and density in the part of the layer where dissi- 
pation is maximum, and therefore it should scale with the 
friction Mach number M, = +/a,. 

It may then be inferred that for weak compressibility 
effects, the spectra have two wave number ranges with 
power law variations ink;' and in k;'I3, as at low speeds. 
This analysis does not indicate where these wave number 
ranges are placed in the spectrum, that is, if high speeds 
produce larger or smaller energetic eddies, or induce a 
change in the orientation of these eddies. It appears also 
that the existence of a k;' range seems to be a rather r* 
bust feature, since the only conditions are the existence of 
two domains where the wave numbers scale respectively 
with 6 and with y. The k;'Ia law is expected to have less 
generality, since the existence of a constant shear stress 



zone with logarithmic velocity profiles is postulated, and 
the balance between production and dissipation is also 
required. As a last remark, it may be seen that the in- 
compressible and the compressible definitions of the Kol- 
mogorov scales are equivalent for moderate Mach num- 
bers. However, in the buKer zone they may differ signif- 
icantly from each other if the friction Mach number M, 
is not much less than 1. In this case, however it may be 
expected that the hypotheses required for the derivation 
of the power laws are no longer valid. In practice, friction 
Mach numbers are usually small (5 0.1), except at hyper- 
sonic Mach numbers and very high Reynolds numbers, or 
extremely cold walls. 

4.8 Spectral Data 

Experimentally, the integral scales are deduced mainly 
from one point hot-wire measurements, so that the sp& 
tial scales are deduced using Taylor's hypothesis. Even 
when measurements of twc-point correlations are avail- 
able ((see, for example, Spina & Smits, 1987, Robinson, 
1986), it b often difficult to determine integral scales from 
the data. The types of data which are available also de- 
pend on the measurement technique. For instance, when 
constant current anemometers (CCA) are used, time h i s  
tories are generally not measured. Spectral data for u' 
and 7" can be obtained directly by processing the signal 
with the fluctuation diagram technique to separate the 
contributions of u' and 7" (see Nachier, 1972, Bestion, 
1982, Debihve, 1982, Debihve, 1983, Bestion et d. , 1983, 
Audiffren, 1993). Bestion (1982), and Audiffren (1993) 
showed that for an adiabatic flat-plate boundary layer at 
a Mach numbers of 2.3 the shapes of the spectra of (pu)' 
and u' are practically the same, but differ considerably 
from the s b t r u m  of total temperature z. Therefore, 
when anemometers are operated with a single overheat, a 
suRciently high value of the resistance should be chosen 
to minimize the contribution of and to obtain a signal 
practically proportional to (pu)'. When constant temper- 
ature hot-wire anemometers (CTA) are used at a high 
overheat ratio, the measured signal is practically propor- 
tional to (pu)', which in turn givs spectral information 
on u'. Such data can be inaccurate at low wave num- 
bers. The spectral measurements of velocity and temper- 
ature performed with a CCA in adiabatic boundary lay- 
ers by Morkovin (1962), Bestion (1982), Audiffren (1993) 
show that the ratio (u'/U)/(T'/T) at low frequencies is 
not a constant, and that the spectral correlation coeffi- 
cient R"T (f) increases to unity at zero frequency. This 
may be the cause for the differences in the shapes of the 
spectra for u' and (pu)' at low frequencies, depending 
on the Mach number. For higher frequencies, the ratio 
(u'/u)I(T'IT) and the correlation coefficient are approx- 
imately constant, and the spectra are nearly proportional 
to each other. 

Now, the classical integral scale can be determined from 
one-point measurements by integrating the autocorrela- 
tion coefficient of u'. It is then necessary to define the 
domain of integration, since the autocorrelation can be- 
come negative. When using hot-wire anemometry in su- 
pemnic flows, this question can be complicated by poasi- 
ble "strain-gauge" effects. These effects can cause peaks 
in the spectrum, which may be acceptable for measure- 

ments of the overall stress or the turbulence energy, hut 
which can cause spurious oscillations in the autocomla- 
tions, and make the estimates of the integral scale inac- 
curate. 

To avoid thin effect, the integral scale can be determined 
by finding the value of the energy spectrum at zero fre- 
quency. However, since the signal is usually filtered with 
a high-pass filter, it has zero mean and its spectrum has a 
zero value at zero freguency. The integral scale must then 
be found by extrapolating the spectrum to zero frequency. 
In practice, the value at a frequency slightly larger than 
the Limit of the high-pass filter b taken as the best -ti- 
mate. Moreover, it may be difficult to measure the low 
frequencies, because they can be affected by noise of the 
power supply, and by the peculiarities of each wind tunnel 
such as acoustic resonances. For CTA measurements, it 
has also been shown that, the spectra of u' and of (pu)' 
may be different at very low frequencies. 

For these reaeons, an additional scale has also been used. 
Since we expect that the spectra have a region of k;' 
dependence in the logarithmic zone, E ( k ~ )  varies as k;', 
and klE(k1) is constant or presents a maximum. Here 
we have chosen the wave number for which this maximum 
occurs as the (inverse of the) characteristic space scale. 

This probably has a clearer physical meaning than the 
integral scale, since for the incompressible part of the 
fluctuating motion it characterizes the eddies extracting 
energy from the mean field. As indicated earlier, exper- 
imentalists usually measure frequency spectra, so that a 
characteristic frequency is measured, and then a length 
scale is deduced using Taylor's hypothesis. There is usu- 
ally a considerable amount of scatter because the loca- 
tion of the maximum is not always well defined. For the 
data considered here, a maximum was generally found in 
the external layer, but in the logarithmic zone of the sub- 
sonic boundary layer the spectra were frequently "double 
humped"and the maximum was difficult to determine. 
Such shapes were also mentioned by Perry et d. (1986) 
who interpreted them to mean that Taylor's hypothe 
sis failed for low frequencies. Uddin (1994) noted that 
the bump at low wavenumber became more prominent at 
higher Reynolds numbers (see also Smith, 1994). These 
double-humped profiles led to some difficulty in determin- 
ing the length scale, and it was necessary to d i a r d  some 
points in the log-law region of the subeonic boundary layer 
data. However, the typical situation was that the higher 
frequency bump corresponds to scales comparable to the 
scales of the outer layer, and the other maximum occurs 
at frequencies an order of magnitude lower, correspond- 
ing to length scales five to ten times larger than the outer 
layer scales. 

For supersonic boundary layers, there is another source of 
uncertainty. Generally, the point where the slope is -1 oc- 
curs at freauencies bevond the natural cut-off of the wire: 
this means that it occurs in a range where the shape of 
the spectrum depends on the system used to extend the 
system frequency response beyond the wire thermal lag (a 
feed-hack loop is used for the CTA, and a compensation 
circuit is used for the CCAI. In such conditions. it can be 
misleading to rely on one series of experiments. The data 
from supersonic flows, however, were obtained in different 
laboratories using different techniques (CTA and CCA). 



Figure 64: Integral scales in turbulent boundary layers. Subsonic data +, Klebanoff (1955); A, Machier (1972); 0 
Rm = 20,900, Fernholz et d. (1995); k1 = 57,720, Fernholz et d. (1995). Supersonic data: +, Debibve (1983); 
A, Bestion et d. (1983); 0 ,  Spina & Smite (1987); 0, Audiffren (1993); 0 Rm = 633, McGinley et d. (1994); v 
Rs2 = 1,115, McGinley et d. (1994). Figure from Dussauge & Smits (1995). 

Table 4: Sourcw for spectral data. Table from Dusssuge 
& Smits (1995). 

In the CCA data, two different generations of anemome- 
ters were used, where the compensation of the wire was 
performed in completely different ways. With such sets of 
independent measurements, it is believed that firm con- 
clusions can be drawn from the results. 
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The characteristics of the boundary layers considered in 
the analysis of spectra are given in Table 4. As noted 
in the Introduction, Reg and Rs2 are Reynolds numbers 
based on momentum thickness. Reg is defined in the usual 
way (Re = p.U.Bllr.), whereas kl= p.U.Blp,. 
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The results on the integral scale A are given in figure 64. 
The outer-layer scaling was used, since most of the data 
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were obtained outside the inner layer. Plotting the data in 
inner-layer viriables does not alter the conclusions. The 
data points from Smita & Dusssnge (1989) were deduced 
from autmrrelations in a way which may underestimate 
the integral scale, due to a le.ck of experimental pointa for 
large time delays. The results in figure 64 were obtained 
by defining the boundary-layer thickness from the profilea 
of total pressure. This was recommended by Fernholz & 
Finley (1980) sincelhe usual definition based on the ve- 
locity is probably not appropriate at high Mach numbers 
because variations of velocity near the edge of the layer are 
weak whereas the temperature or Mach number still vary 
significantly. Choosing a boundary-layer thickness based 
on 0.99Ue would make mme difference in the magnitude 
of 1\16 at Mach 3: in this experiment, the integral scale 
would be a little closer to its subsonic value. It would slso 
significantly increase A16 for the hypemnic experiment 
by McGinley et d. (1994), but in this case, the mean pro- 
files indicate that the traditional choice based on O.99U. 
would be rather unphysical. In any case, a first result a p  
pears very clearly: the subsonic data indicate that in the 
external layer, A is about 0.56 in subsonic flows, but is 
only about half that value in supersonic layers. The hy- 
personic data of McGinley et d. (1994) indicate a very 
low value, about 0.26, for k 2  = 1,115, but larger values 
at the lower Reynolds number. In this case, the spectra at 
low frequency reveal peaks and bump  which precldea an 
accurate estimate of the integral scale. The uncertainty 
on A has been evaluated and is indicated in figure 64 by 
error bars. In fact, the lower limit of the error bar over- 
laps the other high speed data This could be due to 
the remnants of transition, as speculated formerly. In the 
data by Spina & Smits, the point at at y/6 = 0.1 has 
an integral scale nearly equal to the subsonic value. This 
is due to the significant slope in the spectrum, obeerved 
at low frequency, where the spectra of u' and (pu)' are 
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Firmre 65: Production scales in turbulent boundary layers. Symbols as in figure 64. Figure from Dussauge & Smits 

perhaps not proportional, as d i s c d  above. In spite of 
this trend, the integral scales at Mach 2.9 in the middle 
of the layer are significantly below the subsonic results. 
Note that Demetriades & Martindale (1983) in a bound- 
ary layer on a flat plate at Mach 3 report measuring an 
integral scale of 0.286, a h  considerably smaller than that 
found in subsonic flows. Within the experimental accu- 
racy the results are independent of Reynolds number. 

The production scales L are given in figure 65. The 
Reynolds numbers in the subsonic and supersonic cases 
cover comparable ranges, except perhaps for the hyper- 
sonic data. It is clear that the production range is shifted 
to higher frequencies in supersonic flows. It should be em- 
phasized that the limited spatial resolution of the wires 
prohably precludes any accurate determination of the 
-513 law in the supersonic data, and it tends to shift the 
maximum of f E ( f )  to lower frequencies, and therefore if 
such systematic errors are significant the values measured 
in high-speed flows are probahly overestimated, reinforc- 
ing the notion that the scales are reduced with increasing 
Mach number. 

It appears that the production scale L follows the same 
trends as A, and L = 2A. That is, L is about 26 for low 
speed boundary layers, and about 6 in high speed bound- 
ary layers. Note that the measurements of Morkovin 
& Phinney, quoted in Morkovin (1962) and not shown 
here, suggested the same trend for the production scales. 
Again, plotting these data in inner layer variables does 
not change the differences between the subsonic and su- 
personic data. The only discrepancy is found in the Mach 
11 boundary layer, but several reasons can be found for 
this departure. First, the houndary layer is prohably not 
fully turbulent, at least at the lower Reynolds number. 
Second, it is not clear that the velocity and mass flux 
spectra are proportional to each other at this Mach num- 
ber. Third, the conclusions d r a m  from the power law 
analysis are probahly not valid if strong compressibility 

effects are present. Fourth, the change in the shape of 
the spectra may indicate a modification of the turbulence 
structure. In hypersonic boundary layers, most of the 
mass flux occurs near the external edge of the layer, and 
the mean mass flux profiles have an idexion point. Thia 
suggests that the external layer can behave more like a 
mixing layer than like a classical boundary layer. Such 
free shear flows are known for containing turbulent struc- 
ture of large spatial extent, with production scales aeveral 
layer thicknesws in size. This would be consistent with 
the surprisingly high level of energy observed at low fre- 
quencies in the present Mach 11 experiments. 

So it seem that the apparent size of the energetic eddies 
in the longitudinal direction, deduced from u' or (pu)' 
measurements in zero pressure gradient boundary layers, 
decreases with increasing Mach number, whatever the ex- 
oerimental method. This trend can also be illustrated 
by using another representation. If we assume that the 
friction Mach number can be used to characterize com- 
pressibility in turbulent boundary layers is the friction 
Mach number M,. Since M: = C f M : / 2 ,  this parame- 
ter depends on Mach and Reynolds number. The average 
value of Ll6 in the outer layer is shown as a function 
of M, in figure 66. The results obtained for Me = 2 
by Bestion, Dehihve, Dussauge and Audiffren have prac- 
tically the same values of M, and L/6 ,  and the results 
obtained by Srnits et d. , although at M. = 2.89, have a 
comparable value of M,. All these results agree on the 
average value of L/6  in supersonic flows. The hypersonic 
results by McGinley et aL have a value of M, only a Little 
larger than 0.1, hut they indicate a further decrease in 
the production scale. 

Thia change in typical frequencies or time scales can he 
attributed either to variations in the convection veloc- 
ity or variations in the spatial scales. Measurements of 
convection velocity by Spina & Smits (1987) in a high 
Reynolds numher boundary layer at Mach 2.9 showed that 



Figure 66: Evolution of the integral scale es a function 
of the friction Mach number. Symbols as in figure 65. 
Figure from Dussauge & Smits (1995). 

this quantity is not very sensitive to compressibility. This 
implies that smaller space scales are found in supersonic 
flows. In contrast, the transverse scales related to turbu- 
lent diffusion remain unchanged, while the longitudinal 
scales determined from u' decrease. Now Spina & Smite 
(1987) showed that the direction of the maximum space- 
time correlation in their boundary layer at Mach 2.9 is 
steeper than a t  low speeda (eee figures 46 and 67). If 
the boundary layer is thought of as a forest of hairpin 
vortices, it can be imagined that the crosksection of the 
vortices is unchanged, but their inclination is changed. 
In fact, Uddin (1994) suggested that at high Reynolds 
numbers, the croskeection of the vortices reduces. This 
purely geometric explanation is not sufficient to explain 
all the evolution observed seen in figure 66 since it would 
not be consistent either with the rather high values of v' 
measured in the same boundary layer. 

It is expected that the obaerved modifications in the flow 
structure and scales are due to compressibility. Therefore, 
a possible interpretation can be found in the changes in 
the potential field induced in the external flow by the 
boundary layer, and in the generation of acoustic noise 
by supersonic boundary layers. Can they create smaller 
scales, and modify the orientation of the lines of maxi- 
mum correlations? The variation of the angle has been 
interpreted in the previous paragraph as a change in the 
direction of vortical structures. In fact, the two-point 
measurements by Spina & Smits did not use conditional 
statistics, and therefore did not discriminate between the 
vortical and potential contributions in the intermittent 
zone. In supersonic flows, the induced preeaure field can 
depend on local condition (the pressure perturbation in- 
duced by a large scale structure, for instance), but also 
by the noise radiated by Mach waves (see for example, 

Laufer, 1961). These waves can have low levels of (p)', 
but they are generally more conservative than ordinary 
turbulence, and could modify the space-time correlations 
for large separation distances. The fomt ion  of these 
Mach waves necessitates the velocity difference between 
the sources y d  the external flow to be supersonic. In a 
boundary-layer, this condition is always fulfilled, but at 
moderate supersonic Mach numbers the part of the layer 
able to radiate Mach waves is very thin and generally 
confined to the visrous sublayer or the logarithmic wne. 
In this case, the behaviour will be Reynolds and Mach 
number dependent. The orientation of the Mach wave8 
will depend on this Mach number difference. For ex- 
ample, transonic perturbations would be very steep, and 
would contribute to make the maximum space-time cor- 
relation locus more vertical. Another element, as noted 
by Laufer (1961), is an increase of the radiated field near 
Mach 3, which could be interpreted as follows. If the con- 
vection velocity of the large eddies in the external layer 
is typically 0.8U., as at low speeds, the velocity differ- 
ence with respect to the external flow is 0.2U.. Now, it 
may be expected that these large eddies will start forming 
eddy shocklets when this relative Mach number is Larger 
than, say, 0.6. This corresponds to an external Mach 
number of 3, and this criterion would be independent of 
the Reynolds number since the convection velocity of the 
large structures appears to be independent of Reynolds 
number. The measurements taken at a Mach number 
of 2.9 would then be at the onset of a new regime, and 
represent the first manifestation, in boundary layers, of 
compressible turbulence phenomena as observed in mix- 
ing layers. Of c o r n ,  the previous interpretation is very 
approximate, becauae it depends critically on the value 
of the instantaneous convection velocities which are not 
known very accurately, so that the value of the Mach num- 
ber for which such effects are important remains poorly 
determined. Such an interpretation, although specula- 
tive in many respects, is tempting becsuse it can explain 
changes in the structure of u', as long as the radiated noise 
does not affect significantly the shear streas. To conclude, 
the spectral data show that there are modifications to the 
motions which contribute to the energy ecales but not to 
the turbulent transport. This implies that the primary 
action of compressibility is to alter inactive motiom. As 
these motions are related to the irrotational part of the 
fluctuations and to the pressure fluctuations induced by 
the layer, this explanation may be correct, but a full ak 
Beasment would require a more complete knowledge of the 
twwpoint correlations, and of conditional statitice of tur- 
bulence in these flows. 

4.9 Boundary-Layer Structure 

The eddy-structure and internal dynamics of compressible 
turbulent boundary layers play an important role in mag, 
aerospace engineering applications. These include turbu- 
lent mixing for high-speed propulsion systems, tripping of 
hypersonic laminar boundary layers (for inlet etficiency), 
acoustic noise generation and propagation from high- 
speed engines, surface heat-transfer on high-speed vehi- 
cles, performance optimization for low-obeervable conllg- 
urations, and unsteadiness in shock/turbulent boundary 
layer interactions. The following review was adapted from 



Figure 67: Characteristics of the large scale structure, as measured by Spina et d. (1991a), in a turbulent boundary 
layer at Ree = 81,000 and M = 2.9. a) Broadband convection velocity based on measurements with three different 
streamwise probe separations. &/6 = 0.11 q ; 0.16 0;  0.18 A. b) Broadband structure angle based on different 
wall-normal probe separations. ("16 = 0.09 0;  0.21 --.--... 0,  0.30 ---------a; 0.40 
-+. Figure from Spina et d. (1991a). 



the paper by Spina et d. , where further details may be 
found. 

The current state of knowledge concerning compressible 
boundary layer structure is limited to large-scale motions 
in the outer-region, and is derived largely from recent 
studies by Spina et d. (199la), Spina et d. (199lb), 
Smits et d. (1989), ~ p i i  & SAG (1987), Fernando & 
Smits (1990), Donovan et d. (1994), and Robinson (1986) 
of flat-date lavers with bee-stream Mach numbers of am 
proximately 3.0. These studies were preceded by a pio- 
neering investigation by Owen & Horstman (1972), who 
made extensive two-point cross-correlation measurements 
with hot-wires in a Mach 7.2 boundan, laver. Most of the - .  
results available in the literature were obtained using hot- 
wire anemometry (with its attendant limitations), with 
some degree of corroboration by high-speed flow visual- 
ization techniques (Cogne et d. , 1993, Smith & Smits, 
1988). 

For moderate Mach numbers, the outer region of the 
boundary layer (beyond the logarithmic region) is domi- 
nated by the entrainment process rather than by turbu- 
lence production. Thus the available studies of supersonic 
turbulent boundary layer structure are primarily relevant 
to the processes by which the boundary layer grows. In 
contrast, for subsonic turbulent boundary layers, most of 
the attention has focused upon the near-wall turbulence 
production processes. In addition, while most structure 
measurements in supersonic flow have been conducted at 
very high Reynolds number, the majority of studies in 
subsonic flow has been at quite low Reynolds number. 
These mismatches in emphases between subsonic and su- 
personic investigations sometimes make comparisons in- 
conclusive. at least for isolatine effects of comoressibilitv - 
on turbulence physics. To avoid the additional unce; 
tainties due to measurement difficulties, it seems h t  to 
study quantities which are largely independent of calibra- 
tion and measurement errors, such as the intermittency, 
ratios of Reynolds stresses, space-time correlations and 
structure angles. 

The intermittency is one measure of the wallward ex- 
tent of the entrainment process. The intermittency pro- 
file is often estimated with measurements of d flatness. 
The measured flatness profile displays an apparent Mach- 
number dependence (see figure 37), wherein the onset of 
intermittency (corresponding to the rise in flatness fac- 
tor) occurs nearer the boundary-layer edge as the Mach 
number increases. Since the cone of influence of a flow die- 
turbance is inversely proportional to Mach number, the 
intermittent zone could become thinner as the Mach num- 
ber increases. This internretation is not fullv sunmrted " A. 

by high-speed flow visualizations, however, so the data re- 
main provocative. For example, double-pulsed Rayleigb- 
scattering flow visualization by Cogne et d. (1993) show 
deep potential incursions into the turbulent eddies of a 
Mach 3 boundary layer (figure 44) in patterns that are 
strikingly similar to visualizations of low-speed boundary 
layers. 

For both incompressible low Reynolds number boundary 
lavers. and comnressible hieh Revnolds number boundarv . . - - 
layem, the most identifiable feature of the outer-region is 
a downstream-sloping shear-layer interface between u p  
stream high-speed fluid and downstream low-speed fluid. 

(Unfortunately, these structures have been labeled both 
"fronts" and "backs" in the literature.) These interfaces 
are three-dimensional shear layers which are believed to 
form the upstream side of the largest of the boundary- 
layer eddies, and remain coherent long enough to convect 
several boundary-layer thicknesses downstream. They are 
not inert, however, since Spina et d. (19918) have shown 
that 40% of the outer-layer Reynolds shear stress can 
be found in the neighborhood of these sloping interfaces 
(causality is not implied.) The intense turbulence produc- 
tion prmeawa near the wall in the Mach 3 layer have not 
been investigated, but incompressible experience suggests 
that the large-scale sloping interfaces are not cloeely affili- 
ated with near-wall regions of high Reynolds shear strem. 

Sloping interface8 are easily detected with dual hot-wirea 
separated in y, using either traditional space-time come- 
lations. or a varietv of conditional eamnlinn techniaues. . - 
For MA 3 turbulent boundary layers, the effect of &nn- 
pressibility on the large-scale outer structures has been 
found to be generally small, which may be expected since 
the fluctuating Mach number in the outer regions is un- 
likely to approach unity (figure 3). However, differen- 
between subsonic and supersonic large-scale motions have 
been observed, and m e  of these results were mentioned 
in,earlier sections. The main results can be summarized 
as follows. 

The average "structure angle" at which delta-scale in- 
terfaces lean downstream in a Mach 3 turbulent bound- 
ary layer ranges from 45' to 60" (standard deviation 
EZ: 20") acrca most of the boundary layer, with a de- 
crease near the wall and an increase near the boundary 
layer edge. The measured value of the structure angle is 
strongly dependent on measurement technique, although 
one method in current favor employs two hot-wires, sep 
arated by a fixed distance in y of 0.1 to 0.36, with both 
traversed across thelayer. Structure angles measured uk 
ine this techniaue in subsonic. low-Revnolde-number tur- v 

hulent boundary layers are somewhat lower than those 
for Mach 3, high-Reynolds-number layers (see figurea 46 
and 67). As indicated in Section 3.4, it seems likely that 
increasing Reynolds number decreases the structure an- 
gle, while increasing Mach number increases the structure 
angle 

Hot-wire and flow visualizations show that the sloping 
delta-scale structures convect downstream at approxi- 
mately 90% of the freeatream velocity (slightly greater 
than for similar structures in low Reynolds number, in- 
compressible turbulent boundary layers), and persist for 
at least 4 boundary-layer thicknesse8 (and probably much 
farther) downstream (Spina et d. , 1991b). 

Outer-region space-time correlations suggest that the av- 
erage spanwise extent of the largest eddies in the Mach 3 
turbulent boundary layer issimilar to that of subsonic tur- 
bulent boundary layers: approximately 1/26 in the outer 
layer, decreasing near the wall. (Although mean and in- 
stantaneous results for the sloping interface structure are 
in good agreement, the average croskeorrelations d to 
deduce spanwise extent probably suffer hom 'jitter' aver- 
aging, and the instantaneous extents may be larger.) The 
average streamwise scales of the largest eddies in the high 
Reynolds number, Mach 3 turbulent boundary layer are 
about two to three times thoee of low Reynolds number, 



Figure 68: Ensemble-averaged view of the large-scale motions in a Mach 2.9 boundary layer. Fiure from Spina et d. 

subsonic turbulent boundary layers (see figures 49, 50, 51 
and 52). This seems to be the mast significant structural 
difference between the two flows yet found, and as in- 
dicated earlier Reynolds number and compressibility a p  
pear to be important. Increasing Reynolds number will 
increase the streamwise scales, whereas increasing Mach 
number will decrease them. Otherwise, the structural 
model for the large-scale motions in a supersonic is very 
similar to that derived from studies of suhsonic flows, as 
cam be seen by comparing Figures 42 and 68. 

Since the influence of compressibility on the large-scale 
turbulent boundary layer motions seems to be subtle, ex- 
planations for the observed differences between low- and 
high-speed boundary layer structure are mostly specula- 
tive. Density-gradient effects are known to play a signif- 
icant role in turbulent shear layers, but these effects are 
moat likely to inhence the near-wall region of the wall- 
layer, out of reach of standard measurement techniques. 
Parallels have also been drawn between the 45-degree 
slope of the interfacial structures in supemnic boundary 
layers and that of the hairpin-vortex structure observed 
in incompressible boundary layers. Insufficient evidence 
exists to support either side of this comparison, however. 
More conclusive results concerning compressibility effects 
on large-scale structure require higher Mach number in- 
vestigations. 

For boundary layers with freestream Mach numbers above 
5, the near-wall region is more likely to show significant 
departures born known incompressible structure. The vis- 
cous sublayer for hypersonic boundary layers is likely to 
be much more quiescent than for incompressible flows (al- 
though pressure fluctuations will be imposed from above), 
and may not display the familar streaky structure. Since 
the mass-flu near the wall is very low for high Mach 
numbers, the buffer region may not be the dominant re- 
gion for turbulence production, as in s u ~ n i c  boundary 
layers (note that hypersonic laminar boundary layers un- 
dergo transition by disturbances spreading inward from 
the outer layer). Further investigation will depend on the 

development and application of non-intrusive measure- 
ment techniques to the near-wall regions of hypemnic 
boundary layers. 

Finally, we note that the rate of decay of the large scale 
motions, as measured by the rate at which the peak in 
the space-time correlation decays with distance, appears 
to decrease significantly with Mach number. For exam- 
ple, the distance over which the peak d e c r e d  to half 
its original level differs by an order of magnitude in the 
experiments by Favre et d. (1957), Favre et d. (1958) 
at Mach 0.04 and Owen & Horstman (1972) at Mach 7 
when scaled by 6. A better scaling for the rate of de- 
cay may be the time scale of the energy-containing ed- 
dim, Alu'. A and u' both decrease with Mach number, 
so that their ratio seems to remain approximately con- 
stant. This result may in turn suggest that the decrease 
in the streamwise length scales with Mach number simply 
reflects the fact that the time scale of the large eddies re- 
mains constant as the absolute fluctuation level decreases. 
The more complex scaling arguments presented by Smith 
& Smits (1991) to explain the experimental observations 
may therefore not be necessary. 

5 Summary 

This AGARDograph has provided a lengthy, but cer- 
tainly not exhaustive, review of the Literature on turhu- 
lent boundary-layer structure. The emphasis has been 
on Reynolds-number effects and Mach-number effects. A 
major drawback of the current knowledge of these effects 
is that the data have been collected from many different 
flows, using different data acquisition and analysis proce- 
dures. These differences have resulted in large variations 
among the published results. Nevertheless, some definite 
conclusions can be made. 

From the review of the subsonic flows, it is clear that 
the classic arguments on inner- and outer-layer similarity 
hold extremely well over a very large range of Reynolds 



numbers ( approximately 350 5 Ree 5 210,000), and the 
overlap region is well established over the same range (see 
Fernholz & Finley, 1995). There still exist certain issues, 
such as the Reynolds number dependence of the constants 
in the log-law, and the evidence for power-law similarity 
arguments, which cannot be answered on the basis of the 
existing data, primarily because of the difficulty of mea- 
suring accurately the friction at the wall. The wake pa- 
rameter becomes constant for Ree > 5,0013, and although 
there have been some previous indications that it may d e  
crease at very high Reynolds numbers, we believe there is 
enough uncertainty in the data to invalidate any strong 
conclusions regarding the asymptotic behavior. 

In contrast to the mean-flow behavior, the scaling of 
the turbulent stresses does not necessarily follow the in- 
ner/outer scaling arguments. For example, as found pre- 
viously by Sreenivaaan (1989) and Gad-el-Hak & Bandy- 
opadhyay (1994), the Reynolds number can have a sig- 
nificant effect on the level of the maximum turbulence 
stresses, and the location of that maximum in the bound- 
ary layer. In other respects, the scaling arguments put 
forward by Perry and his c-workers (see, for example, 
Perry & Li, 1990) indicate how the stresses may scale in 
the overlap region, and the experimental evidence tends 
to support their conclusions. It is clear, however, that an 
overlap region for the turbulent streaMs appears only at a 
much higher Reynolds number than the Reynolds number 
at which an overlap region appears in the mean velocity 
profile. 

The evolution of the organized motions in the boundary 
layer slso depends on Reynolds number. In particular, the 
streamwise scaling of the outer-layer structure is rather 
sensitive, where the scale increases with Reynolds num- 
ber. This was confinned by Smith (1994) by direct me& 
surements of the space-time correlation, and by Duesange 
& Smits (1995) from measurements of the spectra. In 
contrast, the spanwiee scaling appears to be insensitive 
to Reynolds number, so that on average the structures 
become more elongated in the streamwise direction with 
increasing Reynolds number. The average inclination of 
the outer-layer structures also decreases, which may be re- 
lated to the increase in the streamwise aspect ratio. It also 
appears that the spanwise scaling of the sublayer streaks 
is fixed at a mean value of about lWv/u, over a very 
wide Reynolds-number range. 

Fkom the review of supersonic flows with moderate Mach 
number, it appear6 that the direct effects of compress- 
ibility on wall turbulence are rather small: the most n- 
table differences between subsonic and supersonic bound- 
ary layers may be attributed to the variation in fluid 
properties across the layer. Under the assumption that 
the length scales are not affected by compressibility, the 
mean velocity profile can be transformed into an "equiv- 
alent" incompressible profile, and the agreement with the 
incompressible scaling appears to hold over very wide 
Reynolds number and Mach number ranges. Further- 
more, the turbulent stresses in the outer region scale on 
the wall stress, as first suggested by Morkovin (1962), as 
far as we can tell from the available data. This result is 
not surprising in some ways since the fluctuating Mach 
number (M' = M - x) for moderately supersonic flows 
is considerably less than one, as illustrated in figure 3. 
However, a more detailed inspection of the turbulence 

properties reveals certain characteristics that cannot be 
collapsed by a simple density scaling. For example, there 
are suggestions that the intermittency profile is fuller than 
the corresponding subsonic profile, and the shear corre- 
lation coefficient R.," decreaae~ with distance from the 
wall instead of remaining approximately constant. There 
are other results, however, which indicate that R.,, fol- 
lows the incompressible trend, and there is the passibility 
that the differences may be caused by a Reynokhnumber 
rather than a Mach-number dependence. Unfortunately 
the data base is very spame, and considerable effort needs 
to be spent before these issues can be laid to rest. With re- 
spect to the streamwise and spanwise length scales of the 
large-scale motions, and their average inclination to the 
wall, there exists strong evidence to indicate the effect of 
Mach number. The streamwise length scales are reduced 
significantly by increasing Mach number, and the angle 
of inclination is increased, although in coming to these 
conclusions we have implicitly assumed that Mach and 
Reynolds number effects are independent. It is necessary 
to make this assumption since the data do not overlap 
to any significant extent, and we are forced to compare 
experiments in supersonic flow with the mults  obtained 
in subsonic flow, usually at a different Reynolds num- 
ber. In fact, the actual Reynolds number to be used in 
such a comparison is controversial, since the temperature 
varies significantly acra. the layer, and there is usually 
a major difference between the values of R e  and Rs2. 
Finally, there is an order-of-magnitude decrease in the 
rate of decay of the largescale motions as the Mach num- 
ber increases from low-subsonic to high supersonic values 
(Smits et al. , 1989). Even if we account for the change 
in time scale of the energy-containing eddies A/u', we 
see that the lateral correlations are almost unaffected by 
changes in Mach and Reynolds number. 

How can we explain these differences? Part of the an- 
swer may lie in understanding the role of Reynolds num- 
ber more clearly, but understanding the effects of fluid- 
property variations may be more important. In that re- 
spect, a direct numerical simulation of a strongly heated, 
incompressible turbulent boundary layer in the abeence 
of buoyancy effects would be particularly valuable. Ex- 
perimentally, we urgently need detailed turbulence data 
at higher Mach numbers. We are seeing subtle differ- 
ences at supersonic speeds that may signal the onset of 
direct compressibility effects such as the increased impor- 
tance of pressure fluctuations and pressurevelocity corre- 
lations. These effects will become more obvious at hyper- 
sonic Mach numbers, and such studies would contribute 
to our understanding of the supemnic behavior. 

While few specifics are known, the turbulence physics be- 
come more complex as the Mach number increases b e  
yond about five. For example, the Strong Reynolds Anal- 
ogy and Morkovin's hypothesis are staples of boundary- 
layer analyaes at moderate Mach number. However, an 
upper-Mach-number limit must exist on the applicability 
of these simplifying assumptions, if only because there is 
a limit on the magnitude of temperature fluctuations. In- 
deed, the change in magnitude of the fluctuating Mach 
number distribution as the flow enters the hypersonic 
range (see figure 3) points to the possibility of a dramatic 
alteration of turbulence dynamics due to compressibility 
effects around Mach 5 (in comparison, the Mach num- 



ber of the fluctuations, ul,./h is lees than 0.3 even for 
the Mach 7.2 and 9.4 flows). Unlike the distribution of 
ul,./h, the fluctuating Mach number develop a peak 
near the middle of the boundary layer where both the ve- 
locity and temperature fluctuations are important. This 
behavior, when considered together with the large gradi- 
ents in density and v i m i t y  near the wall, a h  leads to 
the conclusion that there may be substantial differencee 
in turbulence dynamics at high Mach number. 

At the same time, the near-wall gradients in density and 
viscosity are strongly dependent on heat transfer, and 
therefore the thickness of the sublayer will depend on 
Mach number, Reynolds number, and wall temperature. 
Thin leads to the issue of how the vimus instability of 
the sublayer changes when fluid properties vary with die- 
tance from the wall (see Morkovin, 1992). Since the local 
Reynolds number increases away from an adiabatic wall 
faster in supersonic flow than in incompressible flow, we 
would expect the flow to become less stable as we move 
away kom the wall at a rate that is faster than in an 
incompressible flow at  the same friction velocity. At the 
same time, the increasing Mach number ia known to be 
a stabilizing influence in laminar-to-turbulent transition, 
where the most unstable disturbance changes from being 
tw-dimensional to being three-dimensional as the Mach 
number increases. What ia then the proper basis of com- 
parison between compressible and incompressible bound- 
ary layers in the near-wall region? Is it simply a matter 
of defining an "effective" Reynolds number? We can only 
hope that further results will become available to help 
shed light on these unanswered questions. 
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